Nanoengineered materials for liquid–vapour phase-change heat transfer

Abstract

Liquid–vapour phase change is a useful and efficient process to transfer energy in nature, as well as in numerous domestic and industrial applications. Relatively recent advances in altering surface chemistry, and in the formation of micro- and nanoscale features on surfaces, have led to exciting improvements in liquid–vapour phase-change performance and better understanding of the underlying science. In this Review, we present an overview of the surface, thermal and material science to illustrate how new materials and designs can improve boiling and condensation. There are many parallels between boiling and condensation, such as nucleation of a phase and its departure from a surface; however, the particular set of challenges associated with each phenomenon results in different material designs used in different manners. We also discuss alternative techniques, such as introducing heterogeneous surface chemistry or direct real-time manipulation of the phase-change process, which can offer further control of heat-transfer processes. Finally, long-term robustness is essential to ensure reliability and feasibility but remains a key challenge.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Common wetting, growth and departure mechanisms for generic phases 1 and 2, which could be liquid or vapour.
Figure 2: Schematic diagrams of typical boiling and condensation heat-transfer curves.
Figure 3: Recent developments in pool-boiling performance.
Figure 4: SEM images of representative micro- and nanostructured surfaces for pool boiling.
Figure 5: Recent developments in condensation heat-transfer performance.
Figure 6: SEM images of representative micro- and nanostructured surfaces for condensation.
Figure 7: Nucleation control through mixed materials, channels or transient effects for boiling.
Figure 8: Mixed wettability surfaces and other advanced techniques for condensation heat-transfer enhancement.

References

  1. 1

    Kehlhofer, R. Combined-Cycle Gas and Steam Turbine Power Plants (PennWell, 2009).

    Google Scholar 

  2. 2

    Hansen, J. D., Johnson, J. A. & Winter, D. A. History and use of heat in pest control: a review. Int. J. Pest Manag. 57, 267–289 (2011).

    Article  Google Scholar 

  3. 3

    Mattila-Sandholm, T. & Wirtanen, G. Biofilm formation in the industry: a review. Food Rev. Int. 8, 573–603 (1992).

    Article  CAS  Google Scholar 

  4. 4

    Haryanto, A., Fernando, S., Murali, N. & Adhikari, S. Current status of hydrogen production techniques by steam reforming of ethanol: a review. Energy Fuels 19, 2098–2106 (2005).

    Article  CAS  Google Scholar 

  5. 5

    Humplik, T. et al. Nanostructured materials for water desalination. Nanotechnology 22, 292001 (2011).

    Article  CAS  Google Scholar 

  6. 6

    Vasiliev, L. L. Heat pipes in modern heat exchangers. Appl. Therm. Eng. 25, 1–19 (2005).

    Article  CAS  Google Scholar 

  7. 7

    Lee, A., Moon, M. W., Lim, H., Kim, W. D. & Kim, H. Y. Water harvest via dewing. Langmuir 28, 10183–10191 (2012).

    Article  CAS  Google Scholar 

  8. 8

    Barbosa, J. R., Ribeiro, G. B. & de Oliveira, P. A. A. State-of-the-art review of compact vapor compression refrigeration systems and their applications. Heat Transfer Eng. 33, 356–374 (2012).

    Article  CAS  Google Scholar 

  9. 9

    Ghasemi, H. et al. Solar steam generation by heat localization. Nat. Commun. 5, 4449 (2014).

    Article  CAS  Google Scholar 

  10. 10

    Yang, S. et al. Condition monitoring for device reliability in power electronic converters: a review. Power Electron. IEEE Trans. 25, 2734–2752 (2010).

    Article  Google Scholar 

  11. 11

    Shakouri, A. Nanoscale thermal transport and microrefrigerators on a chip. Proc. IEEE 94, 1613–1638 (2006).

    Article  CAS  Google Scholar 

  12. 12

    Bergles, A. E. ExHFT for fourth generation heat transfer technology. Exp. Therm. Fluid Sci. 26, 335–344 (2002).

    Article  CAS  Google Scholar 

  13. 13

    Hummel, R. L. Means for increasing the heat transfer coefficient between a wall and boiling liquid. US Patent 3207209 (1965).

  14. 14

    Kolb, W. B. & Huelsman, G. L. Component separation system including condensing mechanism. US Patent 5980697 (1999).

  15. 15

    Hao, C. et al. Bioinspired interfacial materials with enhanced drop mobility: from fundamentals to multifunctional applications. Small 12, 1825–1839 (2016).

    Article  CAS  Google Scholar 

  16. 16

    Patankar, N. A. Supernucleating surfaces for nucleate boiling and dropwise condensation heat transfer. Soft Matter 6, 1613 (2010).

    Article  CAS  Google Scholar 

  17. 17

    Carey, V. Liquid–Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment (CRC Press, 1992).

    Google Scholar 

  18. 18

    Fletcher, N. H. Size effect in heterogeneous nucleation. J. Chem. Phys. 29, 572 (1958).

    Article  CAS  Google Scholar 

  19. 19

    Jones, S. Bubble nucleation from gas cavities — a review. Adv. Colloid Interface Sci. 80, 27–50 (1999).

    Article  CAS  Google Scholar 

  20. 20

    Wang, C. H. & Dhir, V. K. Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface. J. Heat Transfer 115, 659 (1993). This boiling study investigates how the intrinsic contact angle of a smooth surface affects nucleation, HTC and CHF.

    Article  CAS  Google Scholar 

  21. 21

    Varanasi, K. K., Hsu, M., Bhate, N., Yang, W. S. & Deng, T. Spatial control in the heterogeneous nucleation of water. Appl. Phys. Lett. 95, 94101–94103 (2009). This condensation study is the first to demonstrate spatial control of the nucleation of water.

    Article  CAS  Google Scholar 

  22. 22

    Son, G. & Dhir, V. K. Dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface. J. Heat Transfer 121, 623–631 (2015).

    Article  Google Scholar 

  23. 23

    Chavan, S. et al. Heat transfer through a condensate droplet on hydrophobic and nanostructured superhydrophobic surfaces. Langmuir 32, 7774–7787 (2016).

    Article  CAS  Google Scholar 

  24. 24

    Narhe, R. D. & Beysens, D. A. Water condensation on a super-hydrophobic spike surface. Europhys. Lett. 75, 98–104 (2007).

    Article  CAS  Google Scholar 

  25. 25

    Narhe, R. D. & Beysens, D. A. Nucleation and growth on a superhydrophobic grooved surface. Phys. Rev. Lett. 93, 076103 (2004).

    Article  CAS  Google Scholar 

  26. 26

    Narhe, R. D. & Beysens, D. A. Growth dynamics of water drops on a square-pattern rough hydrophobic surface. Langmuir 23, 6486–6489 (2007).

    Article  CAS  Google Scholar 

  27. 27

    Lafuma, A. & Quéré, D. Superhydrophobic states. Nat. Mater. 2, 457–460 (2003).

    Article  CAS  Google Scholar 

  28. 28

    Miljkovic, N. & Wang, E. N. Condensation heat transfer on superhydrophobic surfaces. MRS Bull. 38, 397–406 (2013).

    Article  CAS  Google Scholar 

  29. 29

    Miljkovic, N., Enright, R. & Wang, E. N. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. ACS Nano 6, 1776–1785 (2012).

    Article  CAS  Google Scholar 

  30. 30

    Thome, J. R. Boiling in microchannels: a review of experiment and theory. Int. J. Heat Fluid Flow 25, 128–139 (2004).

    Article  CAS  Google Scholar 

  31. 31

    Son, Y. & Kim, C. Spreading of inkjet droplet of non-Newtonian fluid on solid surface with controlled contact angle at low Weber and Reynolds numbers. J. Non-Newton. Fluid Mech. 162, 78–87 (2009).

    Article  CAS  Google Scholar 

  32. 32

    Kandlikar, S. G. A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation. J. Heat Transfer 123, 1071–1079 (2001).

    Article  CAS  Google Scholar 

  33. 33

    Wenzel, R. N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988–994 (1936).

    Article  CAS  Google Scholar 

  34. 34

    O'Hanley, H. et al. Separate effects of surface roughness, wettability, and porosity on the boiling critical heat flux. Appl. Phys. Lett. 103, 24102 (2013). This parametric boiling study examines the effects of structure, porosity and intrinsic contact angle on CHF.

    Article  CAS  Google Scholar 

  35. 35

    Li, C. et al. Nanostructured copper interfaces for enhanced boiling. Small 4, 1084–1088 (2008).

    Article  CAS  Google Scholar 

  36. 36

    Kim, S. et al. Effects of nano-fluid and surfaces with nano structure on the increase of CHF. Exp. Therm. Fluid Sci. 34, 487–495 (2010).

    Article  CAS  Google Scholar 

  37. 37

    Chen, R. et al. Nanowires for enhanced boiling heat transfer. Nano Lett. 9, 548–553 (2009).

    Article  CAS  Google Scholar 

  38. 38

    Chu, K.-H., Enright, R. & Wang, E. N. Structured surfaces for enhanced pool boiling heat transfer. Appl. Phys. Lett. 100, 241603 (2012).

    Article  CAS  Google Scholar 

  39. 39

    Chu, K.-H., Soo Joung, Y., Enright, R., Buie, C. R. & Wang, E. N. Hierarchically structured surfaces for boiling critical heat flux enhancement. Appl. Phys. Lett. 102, 151602 (2013).

    Article  CAS  Google Scholar 

  40. 40

    Rahman, M. M., Ölçerogˇlu, E. & McCarthy, M. Role of wickability on the critical heat flux of structured superhydrophilic surfaces. Langmuir 30, 11225–11234 (2014). This boiling study introduces the material quantity of ‘wickability‘ and shows that it correlates well with CHF.

    Article  CAS  Google Scholar 

  41. 41

    Liter, S. G. & Kaviany, M. Pool-boiling CHF enhancement by modulated porous-layer coating: theory and experiment. Int. J. Heat Mass Transfer 44, 4287–4311 (2001).

    Article  CAS  Google Scholar 

  42. 42

    Kwark, S. M., Kumar, R., Moreno, G., Yoo, J. & You, S. M. Pool boiling characteristics of low concentration nanofluids. Int. J. Heat Mass Transfer 53, 972–981 (2010).

    Article  CAS  Google Scholar 

  43. 43

    Liu, Z.-h. & Liao, L. Sorption and agglutination phenomenon of nanofluids on a plain heating surface during pool boiling. Int. J. Heat Mass Transfer 51, 2593–2602 (2008).

    Article  CAS  Google Scholar 

  44. 44

    Attinger, D. et al. Surface engineering for phase change heat transfer: a review. MRS Energy Sustainability 1, E4 (2014). This comprehensive review of boiling and condensation work details much of the surface engineering involved in fabricating various surfaces.

    Article  Google Scholar 

  45. 45

    You, S. M., Kim, J. H. & Kim, K. H. Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Appl. Phys. Lett. 83, 3374–3376 (2003).

    Article  CAS  Google Scholar 

  46. 46

    Kim, S. J., Bang, I. C., Buongiorno, J. & Hu, L. W. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int. J. Heat Mass Transfer 50, 4105–4116 (2007).

    Article  CAS  Google Scholar 

  47. 47

    Kruse, C. et al. Extraordinary shifts of the Leidenfrost temperature from multiscale micro/nanostructured surfaces. Langmuir 29, 9798–9806 (2013).

    Article  CAS  Google Scholar 

  48. 48

    Kwon, H., Bird, J. C. & Varanasi, K. K. Increasing Leidenfrost point using micro–nano hierarchical surface structures. Appl. Phys. Lett. 103, 201601 (2013).

    Article  CAS  Google Scholar 

  49. 49

    Adera, S., Raj, R., Enright, R. & Wang, E. N. Non-wetting droplets on hot superhydrophilic surfaces. Nat. Commun. 4, 2518 (2013).

    Article  CAS  Google Scholar 

  50. 50

    Li, J. et al. Directional transport of high-temperature Janus droplets mediated by structural topography. Nat. Phys. 12, 1–8 (2016).

    Article  CAS  Google Scholar 

  51. 51

    Kim, H., Buongiorno, J., Hu, L.-W. & McKrell, T. Nanoparticle deposition effects on the minimum heat flux point and quench front speed during quenching in water-based alumina nanofluids. Int. J. Heat Mass Transfer 53, 1542–1553 (2010).

    Article  CAS  Google Scholar 

  52. 52

    Kim, J. Spray cooling heat transfer: the state of the art. Int. J. Heat Fluid Flow 28, 753–767 (2007).

    Article  Google Scholar 

  53. 53

    Dhillon, N. S., Buongiorno, J. & Varanasi, K. K. Critical heat flux maxima during boiling crisis on textured surfaces. Nat. Commun. 6, 8247 (2015).

    Article  Google Scholar 

  54. 54

    Wang, H. S. & Rose, J. W. Film condensation in horizontal microchannels: effect of channel shape. Int. J. Therm. Sci. 45, 1205–1212 (2006).

    Article  CAS  Google Scholar 

  55. 55

    Wanniarachchi, A. S., Marto, P. J. & Rose, J. W. Film condensation of steam on horizontal finned tubes: effect of fin spacing. J. Heat Transfer 108, 960–966 (1986).

    Article  CAS  Google Scholar 

  56. 56

    Yau, K. K., Cooper, J. R. & Rose, J. W. Effect of fin spacing on the performance of horizontal integral-fin condenser tubes. J. Heat Transfer 107, 377–383 (1985).

    Article  CAS  Google Scholar 

  57. 57

    Tanasawa, I. & Utaka, Y. Measurement of condensation curves for dropwise condensation of steam at atmospheric pressure. J. Heat Transfer 105, 633–638 (1983).

    Article  Google Scholar 

  58. 58

    Stylianou, S. A. & Rose, J. W. Dropwise condensation on surfaces having different thermal-conductivities. J. Heat Transfer 102, 477–482 (1980).

    Article  CAS  Google Scholar 

  59. 59

    Wilmhurst, R. Heat Transfer During Dropwise Condensation of Steam, Ethane 1,2 Diol, Aniline and Nitrobenzene. Thesis, Queen Mary, Univ. London (1979).

    Google Scholar 

  60. 60

    Schmidt, E., Schurig, W. & Sellschopp, W. Versuche über die Kondensation von Wasserdampf in Film- und Tropfenform. Tech. Mech. Thermodyn. 1, 53–63 (1930).

    Google Scholar 

  61. 61

    Nagle, W., Bays, G., Blenderman, L. & Drew, T. Heat-transfer coefficients during dropwise condensation of steam. Trans. Am. Inst. Chem. Eng. 31, 593–621 (1935).

    CAS  Google Scholar 

  62. 62

    Gnam, E. Tropfenkondensation von Wasserdampf. VDI Forsch. 382, 17–31 (1937).

    Google Scholar 

  63. 63

    Fitzpatrick, J., Baum, S. & McAdams, W. Dropwise condensation of steam on vertical tubes. Trans. Am. Inst. Chem. Eng. 35, 97–107 (1939).

    CAS  Google Scholar 

  64. 64

    Shea, F. & Krase, N. Drop-wise and film condensation of steam. Trans. Am. Inst. Chem. Eng. 36, 463–490 (1940).

    CAS  Google Scholar 

  65. 65

    Le Fevre, E. J. & Rose, J. Heat-transfer measurements during dropwise condensation of steam. Int. J. Heat Mass Transfer 7, 272–273 (1964).

    Article  Google Scholar 

  66. 66

    Le Fevre, E. J. & Rose, J. W. An experimental study of heat transfer by dropwise condensation. Int. J. Heat Mass Transfer 8, 1117–1133 (1965).

    Article  CAS  Google Scholar 

  67. 67

    Aksan, S. N. & Rose, J. W. Dropwise condensation: the effect thermal properties of the condenser. Int. J. Heat Mass Transfer 16, 461–467 (1973).

    Article  CAS  Google Scholar 

  68. 68

    Leipertz, A. & Koch, G. Dropwise condensation of steam on hard coated surfaces. Heat Transfer 6, 379–384 (1998).

    Google Scholar 

  69. 69

    Kim, S. & Kim, K. J. Dropwise condensation modeling suitable for superhydrophobic surfaces. J. Heat Transfer 133, 81502 (2011).

    Article  Google Scholar 

  70. 70

    Miljkovic, N., Preston, D. J. & Wang, E. N. in Encyclopedia of Two-Phase Heat Transfer and Flow II (eds Thome, J. & Kim, J. ) 85–131 (World Scientific, 2015).

    Google Scholar 

  71. 71

    Paxson, A. T., Yague, J. L., Gleason, K. K. & Varanasi, K. K. Stable dropwise condensation for enhancing heat transfer via the initiated chemical vapor deposition (iCVD) of grafted polymer films. Adv. Mater. 26, 418–423 (2013).

    Article  CAS  Google Scholar 

  72. 72

    Leipertz, A. & Froba, A. P. Improvement of condensation heat transfer by surface modifications. Heat Transfer Eng. 29, 343–356 (2008).

    Article  CAS  Google Scholar 

  73. 73

    Erb, R. A. Wettability of gold. J. Phys. Chem. 72, 2412–2417 (1968).

    Article  CAS  Google Scholar 

  74. 74

    Azimi, G., Dhiman, R., Kwon, H.-M., Paxson, A. T. & Varanasi, K. K. Hydrophobicity of rare-earth oxide ceramics. Nat. Mater. 12, 315–320 (2013).

    Article  CAS  Google Scholar 

  75. 75

    Preston, D. J., Mafra, D. L., Miljkovic, N., Kong, J. & Wang, E. N. Scalable graphene coatings for enhanced condensation heat transfer. Nano Lett. 15, 2902–2909 (2015).

    Article  CAS  Google Scholar 

  76. 76

    Enright, R., Miljkovic, N., Al-Obeidi, A., Thompson, C. V. & Wang, E. N. Condensation on superhydrophobic surfaces: the role of local energy barriers and structure length scale. Langmuir 28, 14424–14432 (2012). This paper introduces the concept of local energy barriers that determine whether suspended or partially wetting regimes are favoured.

    Article  CAS  Google Scholar 

  77. 77

    Miljkovic, N. et al. Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces. Nano Lett. 13, 179–187 (2013). This condensation study is the first to show experimental heat transfer measurements of jumping-droplet condensation.

    Article  CAS  Google Scholar 

  78. 78

    Torresin, D., Tiwari, M. K., Del Col, D. & Poulikakos, D. Flow condensation on copper-based nanotextured superhydrophobic surfaces. Langmuir 29, 840–848 (2013).

    Article  CAS  Google Scholar 

  79. 79

    Cheng, J., Vandadi, A. & Chen, C.-L. Condensation heat transfer on two-tier superhydrophobic surfaces. Appl. Phys. Lett. 101, 131909 (2012).

    Article  CAS  Google Scholar 

  80. 80

    Enright, R. et al. How coalescing droplets jump. ACS Nano 8, 10352–10362 (2014).

    Article  CAS  Google Scholar 

  81. 81

    Nam, Y., Kim, H. & Shin, S. Energy and hydrodynamic analyses of coalescence-induced jumping droplets. Appl. Phys. Lett. 103, 161601 (2013).

    Article  CAS  Google Scholar 

  82. 82

    Liu, T. Q., Sun, W., Sun, X. Y. & Ai, H. R. Mechanism study of condensed drops jumping on super-hydrophobic surfaces. Colloids Surf. A 414, 366–374 (2012).

    Article  CAS  Google Scholar 

  83. 83

    Wang, F. C., Yang, F. & Zhao, Y. P. Size effect on the coalescence-induced self-propelled droplet. Appl. Phys. Lett. 98, 1–3 (2011).

    CAS  Google Scholar 

  84. 84

    Cavalli, A. et al. Electrically induced drop detachment and ejection. Phys. Fluids 28, 22101 (2016).

    Article  CAS  Google Scholar 

  85. 85

    Miljkovic, N., Preston, D. J., Enright, R. & Wang, E. N. Electrostatic charging of jumping droplets. Nat. Commun. 4, 2517 (2013).

    Article  CAS  Google Scholar 

  86. 86

    Cha, H., Chun, J. M., Sotelo, J. & Miljkovic, N. Focal plane shift imaging for the analysis of dynamic wetting processes. ACS Nano 10, 8223–8232 (2016).

    Article  CAS  Google Scholar 

  87. 87

    Chen, X., Patel, R. S., Weibel, J. A. & Garimella, S. V. Coalescence-induced jumping of multiple condensate droplets on hierarchical superhydrophobic surfaces. Sci. Rep. 6, 18649 (2016).

    Article  CAS  Google Scholar 

  88. 88

    Chen, C. H. et al. Dropwise condensation on superhydrophobic surfaces with two-tier roughness. Appl. Phys. Lett. 90, 173103–173108 (2007).

    Article  CAS  Google Scholar 

  89. 89

    Boreyko, J. B. & Chen, C. H. Self-propelled dropwise condensate on superhydrophobic surfaces. Phys. Rev. Lett. 103, 184501–184504 (2009).

    Article  CAS  Google Scholar 

  90. 90

    Miljkovic, N., Enright, R. & Wang, E. N. Modeling and optimization of superhydrophobic condensation. J. Heat Transfer 135, 111004 (2013).

    Article  Google Scholar 

  91. 91

    Preston, D. J., Miljkovic, N., Enright, R. & Wang, E. N. Jumping droplet electrostatic charging and effect on vapor drag. J. Heat Transfer 136, 80909 (2014).

    Article  Google Scholar 

  92. 92

    Miljkovic, N., Preston, D. J., Enright, R. & Wang, E. N. Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces. ACS Nano 7, 11043–11054 (2013).

    Article  CAS  Google Scholar 

  93. 93

    Yanagisawa, K., Sakai, M., Isobe, T., Matsushita, S. & Nakajima, A. Investigation of droplet jumping on superhydrophobic coatings during dew condensation by the observation from two directions. Appl. Surf. Sci. 315, 212–221 (2014).

    Article  CAS  Google Scholar 

  94. 94

    Birbarah, P., Li, Z., Pauls, A. & Miljkovic, N. A. Comprehensive model of electric-field-enhanced jumping-droplet condensation on superhydrophobic surfaces. Langmuir 31, 7885–7896 (2015).

    Article  CAS  Google Scholar 

  95. 95

    Chen, X. M. et al. Nanograssed micropyramidal architectures for continuous dropwise condensation. Adv. Funct. Mater. 21, 4617–4623 (2011).

    Article  CAS  Google Scholar 

  96. 96

    Rykaczewski, K. et al. Multimode multidrop serial coalescence effects during condensation on hierarchical superhydrophobic surfaces. Langmuir 29, 881–891 (2013).

    Article  CAS  Google Scholar 

  97. 97

    Boreyko, J. B. & Chen, C. H. Vapor chambers with jumping-drop liquid return from superhydrophobic condensers. Int. J. Heat Mass Transfer 61, 409–418 (2013).

    Article  CAS  Google Scholar 

  98. 98

    Boreyko, J. B., Zhao, Y. J. & Chen, C. H. Planar jumping-drop thermal diodes. Appl. Phys. Lett. 99, 234105 (2011).

    Article  CAS  Google Scholar 

  99. 99

    Zhang, K. et al. Self-propelled droplet removal from hydrophobic fiber-based coalescers. Phys. Rev. Lett. 115, 74502 (2015).

    Article  CAS  Google Scholar 

  100. 100

    Wisdom, K. M. et al. Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate. Proc. Natl Acad. Sci. USA 116, 7992–7997 (2013).

    Article  Google Scholar 

  101. 101

    Watson, G. S., Gellender, M. & Watson, J. A. Self-propulsion of dew drops on lotus leaves: a potential mechanism for self cleaning. Biofouling 30, 427–434 (2014).

    Article  Google Scholar 

  102. 102

    Feng, J., Qin, Z. Q. & Yao, S. H. Factors affecting the spontaneous motion of condensate drops on superhydrophobic copper surfaces. Langmuir 28, 6067–6075 (2012).

    Article  CAS  Google Scholar 

  103. 103

    Feng, J., Pang, Y., Qin, Z., Ma, R. & Yao, S. Why condensate drops can spontaneously move away on some superhydrophobic surfaces but not on others. ACS Appl. Mater. Interfaces 4, 6618–6625 (2012).

    Article  CAS  Google Scholar 

  104. 104

    Lo, C.-W., Wang, C.-C. & Lu, M.-C. Scale effect on dropwise condensation on superhydrophobic surfaces. ACS Appl. Mater. Interfaces 6, 14353–14359 (2014).

    Article  CAS  Google Scholar 

  105. 105

    Yao, C. W., Alvarado, J. L., Marsh, C. P., Jones, B. G. & Collins, M. K. Wetting behavior on hybrid surfaces with hydrophobic and hydrophilic properties. Appl. Surf. Sci. 290, 59–65 (2014).

    Article  CAS  Google Scholar 

  106. 106

    Tian, J. et al. Efficient self-propelling of small-scale condensed microdrops by closely packed ZnO nanoneedles. J. Phys. Chem. Lett. 5, 2084–2088 (2014).

    Article  CAS  Google Scholar 

  107. 107

    Chen, X., Weibel, J. A. & Garimella, S. V. Exploiting microscale roughness on hierarchical superhydrophobic copper surfaces for enhanced dropwise condensation. Adv. Mater. Interfaces 2, 2–7 (2015).

    Google Scholar 

  108. 108

    Zhao, Y. et al. Condensate microdrop self-propelling aluminum surfaces based on controllable fabrication of alumina rod-capped nanopores. ACS Appl. Mater. Interfaces 7, 11079–11082 (2015).

    Article  CAS  Google Scholar 

  109. 109

    Lv, C., Hao, P., Zhang, X. & He, F. Dewetting transitions of dropwise condensation on nanotexture-enhanced superhydrophobic surfaces. ACS Nano 9, 12311–12319 (2015).

    Article  CAS  Google Scholar 

  110. 110

    Ölçerogˇlu, E., Hsieh, C.-Y., Rahman, M. M., Lau, K. K. S. & McCarthy, M. Full-field dynamic characterization of superhydrophobic condensation on biotemplated nanostructured surfaces. Langmuir 30, 7556–7566 (2014).

    Article  CAS  Google Scholar 

  111. 111

    Enright, R., Miljkovic, N., Dou, N., Nam, Y. & Wang, E. N. Condensation on superhydrophobic copper oxide nanostructures. J. Heat Transfer 135, 91304 (2013).

    Article  CAS  Google Scholar 

  112. 112

    Rykaczewski, K. & Scott, J. H. J. Methodology for imaging nano-to-microscale water condensation dynamics on complex nanostructures. ACS Nano 5, 5962–5968 (2011).

    Article  CAS  Google Scholar 

  113. 113

    Paxson, A. T. & Varanasi, K. K. Self-similarity of contact line depinning from textured surfaces. Nat. Commun. 4, 1492 (2013).

    Article  CAS  Google Scholar 

  114. 114

    Schellenberger, F., Encrinas, N., Vollmer, D. & Butt, H. J. How water advances on superhydrophobic surfaces. Phys. Rev. Lett. 116, 096101 (2016).

    Article  CAS  Google Scholar 

  115. 115

    Kim, H. & Nam, Y. Condensation behaviors and resulting heat transfer performance of nano-engineered copper surfaces. Int. J. Heat Mass Transfer 93, 286–292 (2016).

    Article  CAS  Google Scholar 

  116. 116

    Zhu, J., Luo, Y., Tian, J., Li, J. & Gao, X. Clustered ribbed-nanoneedle structured copper surfaces with high-efficiency dropwise condensation heat transfer performance. ACS Appl. Mater. Interfaces 7, 10660–10665 (2015).

    Article  CAS  Google Scholar 

  117. 117

    Graham, C. The Limiting Heat Transfer Mechanisms of Dropwise Condensation. Thesis, Massachusetts Institute of Technology (1969).

    Google Scholar 

  118. 118

    Ma, X. H., Zhou, X. D., Lan, Z., Li, Y. M. & Zhang, Y. Condensation heat transfer enhancement in the presence of non-condensable gas using the interfacial effect of dropwise condensation. Int. J. Heat Mass Transfer 51, 1728–1737 (2008). This condensation study experimentally demonstrates the detrimental effect of NCGs on heat transfer performance.

    Article  CAS  Google Scholar 

  119. 119

    Rafiee, J. et al. Wetting transparency of graphene. Nat. Mater. 11, 217–222 (2012).

    Article  CAS  Google Scholar 

  120. 120

    Lv, C. et al. Condensation and jumping relay of droplets on lotus leaf. Appl. Phys. Lett. 103, 16–21 (2013).

    Google Scholar 

  121. 121

    Lv, C., Hao, P., Yao, Z. & Niu, F. Departure of condensation droplets on superhydrophobic surfaces. Langmuir 31, 2414–2420 (2015).

    Article  CAS  Google Scholar 

  122. 122

    Kim, M. K. et al. Enhanced jumping-droplet departure. Langmuir 31, 13452–13466 (2015).

    Article  CAS  Google Scholar 

  123. 123

    Qu, X. et al. Self-propelled sweeping removal of dropwise condensate. Appl. Phys. Lett. 106, 1–5 (2015).

    Google Scholar 

  124. 124

    Liu, J. et al. Guided self-propelled leaping of droplets on a micro-anisotropic superhydrophobic surface. Angew. Chem. Int. Ed. 55, 4265–4269 (2016).

    Article  CAS  Google Scholar 

  125. 125

    Li, C. & Peterson, G. P. Parametric study of pool boiling on horizontal highly conductive microporous coated surfaces. J. Heat Transfer 129, 1465 (2007).

    Article  CAS  Google Scholar 

  126. 126

    Li, C., Peterson, G. P. & Wang, Y. Evaporation/boiling in thin capillary wicks (l) — wick thickness effects. J. Heat Transfer 128, 1312 (2006).

    Article  CAS  Google Scholar 

  127. 127

    Betz, A. R., Xu, J., Qiu, H. & Attinger, D. Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling? Appl. Phys. Lett. 97, 141909 (2010).

    Article  CAS  Google Scholar 

  128. 128

    Betz, A. R., Jenkins, J., Kim, C.-J. & Attinger, D. Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces. Int. J. Heat Mass Transfer 57, 733–741 (2013). This boiling study demonstrates the high CHF and high HTC behaviour of superbiphilic surfaces.

    Article  CAS  Google Scholar 

  129. 129

    Rahman, M. M., Pollack, J. & McCarthy, M. Increasing boiling heat transfer using low conductivity materials. Sci. Rep. 5, 13145 (2015). This boiling study demonstrates the high CHF and high HTC behaviour of biconductive surfaces.

    Article  CAS  Google Scholar 

  130. 130

    Cooke, D. & Kandlikar, S. G. Pool boiling heat transfer and bubble dynamics over plain and enhanced microchannels. J. Heat Transfer 133, 52902 (2011).

    Article  CAS  Google Scholar 

  131. 131

    Jaikumar, A. & Kandlikar, S. G. Ultra-high pool boiling performance and effect of channel width with selectively coated open microchannels. Int. J. Heat Mass Transfer 95, 795–805 (2016). This boiling study demonstrates the high CHF and high HTC behaviour of coated microchannels.

    Article  Google Scholar 

  132. 132

    Cheng, L., Mewes, D. & Luke, A. Boiling phenomena with surfactants and polymeric additives: a state-of-the-art review. Int. J. Heat Mass Transfer 50, 2744–2771 (2007).

    Article  CAS  Google Scholar 

  133. 133

    Zhang, J. & Manglik, R. M. Additive adsorption and interfacial characteristics of nucleate pool boiling in aqueous surfactant solutions. J. Heat Transfer 127, 684–691 (2005).

    Article  CAS  Google Scholar 

  134. 134

    Cho, H. J., Sresht, V., Blankschtein, D. & Wang, E. N. in Proc. ASME 2013 Heat Transfer Summer Conf. http://dx.doi.org/10.1115/HT2013-17497 (ASME, 2013).

    Google Scholar 

  135. 135

    Cho, H. J., Mizerak, J. P. & Wang, E. N. Turning bubbles on and off during boiling using charged surfactants. Nat. Commun. 6, 8599 (2015).

    Article  CAS  Google Scholar 

  136. 136

    Jones, T. B. in Advances in Heat Transfer Vol. 14, 107–148 (Elsevier, 1979).

    Google Scholar 

  137. 137

    Kandlikar, S. G., Shoji, M. & Dhir, V. K. Handbook of Phase Change: Boiling and Condensation (Taylor & Francis, 1999).

    Google Scholar 

  138. 138

    Choi, J. H. et al. Hydrophilic dots on hydrophobic nanopatterned surfaces as a flexible gas barrier. Langmuir 25, 7156–7160 (2009).

    Article  CAS  Google Scholar 

  139. 139

    Boreyko, J. B. et al. Controlling condensation and frost growth with chemical micropatterns. Sci. Rep. 6, 19131 (2016).

    Article  CAS  Google Scholar 

  140. 140

    Parker, A. R. & Lawrence, C. R. Water capture by a desert beetle. Nature 414, 33–34 (2001).

    Article  CAS  Google Scholar 

  141. 141

    Guadarrama-Cetina, J. et al. Dew condensation on desert beetle skin. Eur. Phys. J. 37, 109 (2014).

    CAS  Google Scholar 

  142. 142

    Zhai, L. et al. Patterned superhydrophobic surfaces: toward a synthetic mimic of the Namib Desert beetle. Nano Lett. 6, 1213–1217 (2006).

    Article  CAS  Google Scholar 

  143. 143

    Garrod, R. P. et al. Mimicking a stenocara beetle's back for microcondensation using plasmachemical patterned superhydrophobic–superhydrophilic surfaces. Langmuir 23, 689–693 (2007).

    Article  CAS  Google Scholar 

  144. 144

    Dorrer, C. & Rühe, J. Mimicking the stenocara beetle — dewetting of drops from a patterned superhydrophobic surface. Langmuir 24, 6154–6158 (2008).

    Article  CAS  Google Scholar 

  145. 145

    Her, E. K., Ko, T. J., Lee, K. R., Oh, K. H. & Moon, M. W. Bioinspired steel surfaces with extreme wettability contrast. Nanoscale 4, 2900–2905 (2012).

    Article  CAS  Google Scholar 

  146. 146

    Mishchenko, L., Khan, M., Aizenberg, J. & Hatton, B. D. Spatial control of condensation and freezing on superhydrophobic surfaces with hydrophilic patches. Adv. Funct. Mater. 23, 4577–4584 (2013).

    Article  CAS  Google Scholar 

  147. 147

    Yamada, Y., Ikuta, T., Nishiyama, T., Takahashi, K. & Takata, Y. Droplet nucleation on a well-defined hydrophilic–hydrophobic surface of 10 nm order resolution. Langmuir 30, 14532–14537 (2014).

    Article  CAS  Google Scholar 

  148. 148

    Lo, C., Wang, C. & Lu, M. Spatial control of heterogeneous nucleation on the superhydrophobic nanowire array. Adv. Funct. Mater. 24, 1211–1217 (2014).

    Article  CAS  Google Scholar 

  149. 149

    Choo, S., Choi, H. J. & Lee, H. Water-collecting behavior of nanostructured surfaces with special wettability. Appl. Surf. Sci. 324, 563–568 (2015).

    Article  CAS  Google Scholar 

  150. 150

    Hou, Y., Yu, M., Chen, X., Wang, Z. & Yao, S. Recurrent filmwise and dropwise condensation on a beetle mimetic surface. ACS Nano 9, 71–81 (2015).

    Article  CAS  Google Scholar 

  151. 151

    Ölçerogˇlu, E. & McCarthy, M. Self-organization of microscale condensate for delayed flooding of nanostructured superhydrophobic surfaces. ACS Appl. Mater. Interfaces 8, 5729–5736 (2016).

    Article  CAS  Google Scholar 

  152. 152

    Tuteja, A. et al. Designing superoleophobic surfaces. Science 318, 1618–1622 (2007).

    Article  CAS  Google Scholar 

  153. 153

    Tuteja, A., Choi, W., McKinley, G. H., Cohen, R. E. & Rubner, M. F. Design parameters for superhydrophobicity and superoleophobicity. MRS Bull. 33, 752–758 (2008).

    Article  CAS  Google Scholar 

  154. 154

    Cavalli, A., Boggild, P. & Okkels, F. Parametric optimization of inverse trapezoid oleophobic surfaces. Langmuir 28, 17545–17551 (2012).

    Article  CAS  Google Scholar 

  155. 155

    Liu, T. L. & Kim, C.-J. C. Turning a surface superrepellent even to completely wetting liquids. Science 346, 1096–1100 (2014).

    Article  CAS  Google Scholar 

  156. 156

    Anderson, D. M. et al. Using amphiphilic nanostructures to enable long-range ensemble coalescence and surface rejuvenation in dropwise condensation. ACS Nano 6, 3262–3268 (2012).

    Article  CAS  Google Scholar 

  157. 157

    Anand, S., Paxson, A. T., Dhiman, R., Smith, D. J. & Varanasi, K. K. Enhanced condensation on lubricant-impregnated nanotextured surfaces. ACS Nano 6, 10122–10129 (2012).

    Article  CAS  Google Scholar 

  158. 158

    Vaaler, L. E. Impregnated porous condenser surfaces. US Patent 2919115 (1959).

  159. 159

    Verheijen, H. J. J. & Prins, M. W. J. Reversible electrowetting and trapping of charge: model and experiments. Langmuir 15, 6616–6620 (1999).

    Article  CAS  Google Scholar 

  160. 160

    Quéré, D. Non-sticking drops. Rep. Prog. Phys. 68, 2495–2532 (2005).

    Article  Google Scholar 

  161. 161

    Wong, T.-S. et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443–447 (2011).

    Article  CAS  Google Scholar 

  162. 162

    Lafuma, A. & Quéré, D. Slippery pre-suffused surfaces. Europhys. Lett. 96, 56001 (2011).

    Article  CAS  Google Scholar 

  163. 163

    Xiao, R., Miljkovic, N., Enright, R. & Wang, E. N. Immersion condensation on oil-infused heterogeneous surfaces for enhanced heat transfer. Sci. Rep. 3, 1988 (2013). This condensation study is the first to show experimental results of HTC enhancement on a SLIPS condensation surface.

    Article  Google Scholar 

  164. 164

    Rykaczewski, K. et al. Dropwise condensation of low surface tension fluids on omniphobic surfaces. Sci. Rep. 4, 4158 (2014).

    Article  CAS  Google Scholar 

  165. 165

    Anand, S., Rykaczewski, K., Subramanyam, S. B., Beysens, D. & Varanasi, K. K. How droplets nucleate and grow on liquids and liquid impregnated surfaces. Soft Matter 11, 69–80 (2014).

    Article  CAS  Google Scholar 

  166. 166

    Park, K.-C. et al. Condensation on slippery asymmetric bumps. Nature 531, 78–82 (2016).

    Article  CAS  Google Scholar 

  167. 167

    Mancio Reis, F. M., Lavieille, P. & Miscevic, M. Toward enhancement of water vapour condensation using wettability gradient surface. Exp. Therm. Fluid Sci. 67, 70–74 (2015).

    Article  Google Scholar 

  168. 168

    Bai, H. et al. Efficient water collection on integrative bioinspired surfaces with star-shaped wettability patterns. Adv. Mater. 26, 5025–5030 (2014).

    Article  CAS  Google Scholar 

  169. 169

    Zheng, Y. et al. Directional water collection on wetted spider silk. Nature 463, 640–643 (2010).

    Article  CAS  Google Scholar 

  170. 170

    Keysar, S., Semiat, R., Hasson, D. & Yahalom, J. Effect of surface roughness on the morphology of calcite crystallizing on mild steel. J. Colloid Interface Sci. 162, 311–319 (1994).

    Article  CAS  Google Scholar 

  171. 171

    Macadam, J. & Parsons, S. A. Calcium carbonate scale control, effect of material and inhibitors. Water Sci. Technol. 49, 153–159 (2004).

    Article  CAS  Google Scholar 

  172. 172

    Kreder, M. J., Alvarenga, J., Kim, P. & Aizenberg, J. Design of anti-icing surfaces: smooth, textured or slippery? Nat. Rev. Mater. 1, 15003 (2016).

    Article  CAS  Google Scholar 

  173. 173

    Jakob, M. Heat Transfer (Wiley, 1949).

    Google Scholar 

  174. 174

    Webb, R. L. The evolution of enhanced surface geometries for nucleate boiling. Heat Transfer Eng. 2, 46–69 (1981).

    Article  Google Scholar 

  175. 175

    Lewis, L. G. & Sather, N. F. OTEC performance tests of the Union Carbide flooded-bundle evaporator. http://dx.doi.org/10.2172/6357238 (Argonne National Laboratory, 1978).

  176. 176

    Bergles, A. E. & Chyu, M. C. Characteristics of nucleate pool boiling from porous metallic coatings. J. Heat Transfer 104, 279 (1982).

    Article  CAS  Google Scholar 

  177. 177

    MacAdam, J. & Parsons, S. A. Calcium carbonate scale formation and control. Rev. Environ. Sci. Biotechnol. 3, 159–169 (2004).

    Article  CAS  Google Scholar 

  178. 178

    Wang, L. L. & Liu, M. Y. Pool boiling fouling and corrosion properties on liquid-phase-deposition TiO2 coatings with copper substrate. AIChE J. 57, 1710–1718 (2011).

    Article  CAS  Google Scholar 

  179. 179

    Zhao, Q., Liu, Y., Wang, C., Wang, S. & Müller-Steinhagen, H. Effect of surface free energy on the adhesion of biofouling and crystalline fouling. Chem. Eng. Sci. 60, 4858–4865 (2005).

    Article  CAS  Google Scholar 

  180. 180

    Buongiorno, J. Can corrosion and CRUD actually improve safety margins in LWRs? Ann. Nucl. Energy 63, 9–21 (2014).

    Article  CAS  Google Scholar 

  181. 181

    He, M. et al. Hierarchically structured porous aluminum surfaces for high-efficient removal of condensed water. Soft Matter 8, 6680 (2012).

    Article  CAS  Google Scholar 

  182. 182

    Son, H. H., Jeong, U., Seo, G. H. & Kim, S. J. Oxidation effect on the pool boiling critical heat flux of the carbon steel substrates. Int. J. Heat Mass Transfer 93, 1008–1019 (2016).

    Article  CAS  Google Scholar 

  183. 183

    Das, A. K., Kilty, H. P., Marto, P. J., Andeen, G. B. & Kumar, A. The use of an organic self-assembled monolayer coating to promote dropwise condensation of steam on horizontal tubes. J. Heat Transfer 122, 278–286 (2000).

    Article  CAS  Google Scholar 

  184. 184

    Rose, J. W. Dropwise condensation theory and experiment: a review. Proc. Inst. Mech. Eng. Part A 216, 115–128 (2002). This is a comprehensive review of dropwise condensation research since 1930.

    Article  CAS  Google Scholar 

  185. 185

    Boinovich, L. B. & Emelyanenko, A. M. Hydrophobic materials and coatings: principles of design, properties and applications. Russ. Chem. Rev. 77, 583–600 (2008).

    Article  CAS  Google Scholar 

  186. 186

    Citakoglu, E. & Rose, J. W. Dropwise condensation — some factors influencing the validity of heat-transfer measurements. Int. J. Heat Mass Transfer 11, 523–537 (1968).

    Article  CAS  Google Scholar 

  187. 187

    Azimi, G., Kwon, H.-M. & Varanasi, K. K. Superhydrophobic surfaces by laser ablation of rare-earth oxide ceramics. MRS Commun. 4, 1–5 (2014).

    Article  CAS  Google Scholar 

  188. 188

    Khan, S., Azimi, G., Yildiz, B. & Varanasi, K. K. Role of surface oxygen-to-metal ratio on the wettability of rare-earth oxides. Appl. Phys. Lett. 106, 061601(2015).

    Article  CAS  Google Scholar 

  189. 189

    Preston, D. J. et al. Effect of hydrocarbon adsorption on the wettability of rare earth oxide ceramics. Appl. Phys. Lett. 105, 11601 (2014).

    Article  CAS  Google Scholar 

  190. 190

    Prakash, S. Wettability of Oxide Thin Films Prepared by Pulsed Laser Deposition: New Insights. Thesis, National Univ. Singapore (2015).

    Google Scholar 

  191. 191

    Hassebrook, A. et al. in Proc. Int. Tech. Conf. Exhib. Packag. Integr. Electron. Photonic Microsyst. http://dx.doi.org/0.1115/ICNMM2015-48459 (ASME, 2015).

    Google Scholar 

  192. 192

    Young, T. An essay on the cohesion of fluids. Phil. Trans. R. Soc. 95, 65–87 (1805).

    Article  Google Scholar 

  193. 193

    Cassie, A. B. D. & Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 40, 546 (1944).

    Article  CAS  Google Scholar 

  194. 194

    Cassie, A. B. D. & Baxter, S. Large contact angles of plant and animal surfaces. Nature 155, 21–22 (1945).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially funded by Singapore–MIT Alliance for Research and Technology (SMART) and the Office of Naval Research (ONR) with M. Spector as program manager (Contract Nos. N00014-15-1-2483 and N00014-12-1-0624). D.J.P. acknowledges funding received from the National Science Foundation Graduate Research Fellowship under Grant No. 1122374. Any opinion, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Evelyn N. Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary information S1 (Box)

Classical Nucleation Theory. (PDF 386 kb)

Supplementary information S2 (figure)

Recent developments in pool-boiling performance. (PDF 559 kb)

Supplementary information S3 (Table)

Summary of Boiling and Condensation Data used in Figures S2 and S4. (PDF 214 kb)

Supplementary information S4 (figure)

Recent developments in condensation heat-transfer performance. (PDF 530 kb)

Supplementary information S5 (Box)

Data adjustment and extrapolation. (PDF 852 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cho, H., Preston, D., Zhu, Y. et al. Nanoengineered materials for liquid–vapour phase-change heat transfer. Nat Rev Mater 2, 16092 (2017). https://doi.org/10.1038/natrevmats.2016.92

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing