Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The renaissance of hydrides as energy materials

Abstract

Materials based on hydrides have been the linchpin in the development of several practical energy storage technologies, of which the most prominent example is nickel–metal hydride batteries. Motivated by the need to meet the future's energy demand, the past decade has witnessed substantial advancements in the research and development of hydrides as media for hydrogen energy storage. More recently, new and rapidly evolving discoveries have positioned hydrides as highly promising materials for future electrochemical energy storage, such as electrolytes for mono- and divalent batteries, and anodes for lithium-ion batteries. In addition, the potential of hydrides in efficient power transmission has been recently revealed. In this Review, we highlight key advances and illustrate how the versatility of hydrides has not only yielded a meaningful past, but also ensures a very bright future.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Timeline of milestones in the research and development of hydrides in energy applications.
Figure 2: Hydrides for hydrogen storage.
Figure 3: Strategies to improve hydrogen release from hydrogen-rich hydrides.
Figure 4: Properties of solid-state electrolytes for lithium- and sodium-ion batteries.
Figure 5: Hydrides for magnesium batteries.
Figure 6: Superconductors based on hydrides.

References

  1. 1

    International Energy Agency. World energy outlook 2014: executive summary (IEA, 2014).

  2. 2

    Takagi, S. & Orimo, S. Recent progress in hydrogen-rich materials from the perspective of bonding flexibility of hydrogen. Scr. Mater. 109, 1–5 (2015).

    CAS  Google Scholar 

  3. 3

    Reddy, R. B. & Linden, D. Linden's Handbook of Batteries 4th edn (McGraw Hill, 2011).

    Google Scholar 

  4. 4

    Pillot, C. The rechargeable battery market and main trends 2014–2025 http://www.avicenne.com/pdf/Fort_Lauderdale_Tutorial_C_Pillot_March2015.pdf (Avicenne Energy, 2015).

    Google Scholar 

  5. 5

    Lototskyy, M. V., Yartys, V. A., Pollet, B. G. & Bowman R. C. Jr. Metal hydride hydrogen compressors: a review. Int. J. Hydrogen Energy 39, 5818–5851 (2014). This article explains the operating principles and applications of hydrides as compressors.

    CAS  Google Scholar 

  6. 6

    Tauber, J. A. et al. Planck pre-launch status: the Planck mission. Astron. Astrophys. 520, A1 (2010).

    Google Scholar 

  7. 7

    Winsche, W. E., Hoffman, K. C. & Salzano, F. Hydrogen: its future role in the nation's energy economy. Science. 180, 1325–1332 (1973).

    CAS  Google Scholar 

  8. 8

    Gregory, D. P. The hydrogen economy. Sci. Am. 228, 13–21 (1973).

    Google Scholar 

  9. 9

    Stetson, N. T. Hydrogen storage program area: plenary presentation (US Department of Energy, 2015).

    Google Scholar 

  10. 10

    Schlapbach, L. & Züttel, A. Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001). This article concisely explains the different types of hydrogen storage materials and the attractive features desired for mobile applications.

    CAS  Google Scholar 

  11. 11

    Orimo, S., Nakamori, Y., Eliseo, J. R., Züttel, A. & Jensen, C. M. Complex hydrides for hydrogen storage. Chem. Rev. 107, 4111–4132 (2007).

    CAS  Google Scholar 

  12. 12

    Sakintunaa, B., Lamari-Darkrimb, F. & Hirscher, M. Metal hydride materials for solid hydrogen storage: a review. Int. J. Hydrogen Energy 32, 1121–1140 (2007).

    Google Scholar 

  13. 13

    Chen, P., Akiba, E., Orimo, S., Züttel, A. & Schlapbach, L. in Hydrogen Science and Engineering: Materials, Processes, Systems and Technology (eds Stolten, D. & Emonts, B. ) 763–790 (Wiley-VCH, 2016). This work details the material properties in metal and complex hydrides.

    Google Scholar 

  14. 14

    Callini, E. et al. Complex and liquid hydrides for energy storage. Appl. Phys. A 122, 2–22 (2016).

    Google Scholar 

  15. 15

    Zhua, Q.-L. & Xu, Q. Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage. Energy Environ. Sci. 8, 478–512 (2015).

    Google Scholar 

  16. 16

    Staubitz, A., Robertson, A. P. M. & Manners, I. Ammonia-borane and related compounds as dihydrogen sources. Chem. Rev. 110, 4079–4124 (2010).

    CAS  Google Scholar 

  17. 17

    Anton, D. & Motyka, T. Hydrogen storage engineering center of excellence S2004 (US Department of Energy, 2012).

    Google Scholar 

  18. 18

    Ahluwalia, R. K., Peng, J.-K. & Hua, T. Q. in Hydrogen Science and Engineering: Materials, Processes, Systems and Technology (eds Stolten, D. & Emonts, B. ) 791–809 (Wiley-VCH, 2016).

    Google Scholar 

  19. 19

    Lai, Q. et al. Hydrogen storage materials for mobile and stationary applications: current state of the art. ChemSusChem 8, 2789–2825 (2015).

    CAS  Google Scholar 

  20. 20

    Chen, P., Xiong, Z. T., Luo, J. Z., Lin, J. Y. & Tan, K. L. Interaction of hydrogen with metal nitrides and imides. Nature 420, 302–304 (2002).

    CAS  Google Scholar 

  21. 21

    Vajo, J. J., Skeith, S. L. & Mertens, F. Reversible storage of hydrogen in destabilized LiBH4 . J. Phys. Chem. B 109, 3719–3722 (2005).

    CAS  Google Scholar 

  22. 22

    Li, H.-W. et al. Materials designing of metal borohydrides: viewpoints from thermodynamical stabilities. J. Alloys Compd. 446447, 315–318 (2007).

    Google Scholar 

  23. 23

    Graetz, J., Lee, Y., Reilly, J. J., Park, S. & Vogt, T. Structures and thermodynamics of the mixed alkali alanates. Phys. Rev. B. 71, 184115 (2005).

    Google Scholar 

  24. 24

    Ohba, N. et al. A first-principles study on the stability of intermediate compounds of LiBH4 . Phys. Rev. B 74, 075110 (2006).

    Google Scholar 

  25. 25

    Orimo, S. et al. Experimental studies on intermediate compound of LiBH4 . Appl. Phys. Lett. 89, 021920 (2006).

    Google Scholar 

  26. 26

    Diyabalanage, H. V. K. et al. Calcium amidotrihydroborate: a hydrogen storage material. Angew. Chem. Int. Ed. 46, 8995–8997 (2007).

    Google Scholar 

  27. 27

    Xiong, Z. et al. High-capacity hydrogen storage in lithium and sodium amidoboranes. Nat. Mater. 7, 138–141 (2008).

    CAS  Google Scholar 

  28. 28

    Hagemann, H. et al. LiSc(BH4)4: a novel salt of Li+ and discrete Sc(BH4)4 complex anions. J. Phys. Chem. A 112, 7551–7555 (2008).

    CAS  Google Scholar 

  29. 29

    Knight, D. A. et al. Synthesis, characterization, and atomistic modeling of stabilized highly pyrophoric Al(BH4)3 via the formation of the hypersalt K[Al(BH4)4]. J. Phys. Chem. C 117, 19905–19915 (2013).

    CAS  Google Scholar 

  30. 30

    Dovgaliuk, I. et al. The first halide-free bimetallic aluminum borohydride: synthesis, structure, stability, and decomposition pathway. J. Phys. Chem. C 118, 145–153 (2014).

    CAS  Google Scholar 

  31. 31

    Ravnsbæk, D. et al. Mixed-anion and mixed-cation borohydride KZn(BH4)Cl2: synthesis, structure and thermal decomposition. Eur. J. Inorg. Chem. 11, 1608–1612 (2010).

    Google Scholar 

  32. 32

    Lascola, R., Knight, D. A., Mohtadi, R., Sivasubramanian, P. & Zidan, R. Synthesis and structural characterization of stabilized aluminum borohydride adducts with triethylenediamine. Int. J. Hydrogen Energy 38, 13368–13380 (2013).

    CAS  Google Scholar 

  33. 33

    Guo, Y., Yu, X., Sun, W., Sun, D. & Yang, W. The hydrogen-enriched Al–B–N system as an advanced solid hydrogen-storage candidate. Angew. Chem. Int. Ed. 123, 1119–1123 (2011).

    Google Scholar 

  34. 34

    de Jongh, P. E. & Adelhelm, P. Nanosizing and nanoconfinement: new strategies towards meeting hydrogen storage goals. ChemSusChem 3, 1332–1348 (2010). In this article, the rationale and effects of nanosizing and confinement on hydrides are reviewed.

    CAS  Google Scholar 

  35. 35

    Fichtner, M. Nanotechnological aspects in materials for hydrogen storage. Adv. Eng. Mater. 7, 443–455 (2005).

    CAS  Google Scholar 

  36. 36

    Wang, J. et al. Potassium-modified Mg(NH2)2/2LiH system for hydrogen storage. Angew. Chem. Int. Ed. 48, 5828–5832 (2009).

    CAS  Google Scholar 

  37. 37

    Bogdanovic, B. & Schwickardi, M. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J. Alloys Compd. 253254, 1–9 (1997). Seminal report demonstrating the reversibility of complex hydrides for hydrogen energy storage.

    Google Scholar 

  38. 38

    Gutowska, A. et al. Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. Angew. Chem. Int. Ed. 44, 3578–3582 (2005).

    CAS  Google Scholar 

  39. 39

    Vajo, J. J. Influence of nano-confinement on the thermodynamics and dehydrogenation kinetics of metal hydrides. Curr. Opin. Solid State Mater. Sci. 15, 52–61 (2011).

    CAS  Google Scholar 

  40. 40

    Gosalawit-Utke, R. et al. 2LiBH4–MgH2–0.13TiCl4 confined in nanoporous structure of carbon aerogel scaffold for reversible hydrogen storage. J. Alloy. Compd. 599, 78–86 (2014).

    CAS  Google Scholar 

  41. 41

    van Hassel, B. A. et al. Engineering improvement of NaAlH4 system. Int. J. Hydrogen Energy 37, 2756–2766 (2012).

    CAS  Google Scholar 

  42. 42

    Mosher, D. A., Arsenault, S., Tang, X. & Laube, B. L. IV.A.3 High density hydrogen storage system demonstration using NaAlH4 based complex compound dydrides (US Department of Energy, 2007).

    Google Scholar 

  43. 43

    Bellosta von Colbe, J. M. et al. Design, sorption behaviour and energy management in a sodium alanate-based lightweight hydrogen storage tank. Int. J. Hydrogen Energy 40, 2984–2988 (2015).

    CAS  Google Scholar 

  44. 44

    Libowitz, G. G. in Proc. 9th Intersoc. Energy Convers. Eng. Conf. 322–325 (American Society of Mechanical Engineers, 1974).

    Google Scholar 

  45. 45

    Muthukumar, P. & Groll, M. Metal hydride based heating and cooling systems: a review. Int. J. Hydrogen Energy 35, 3817–3831 (2010); erratum 35, 8816–8829 (2010).

    CAS  Google Scholar 

  46. 46

    Bogdanovic´, B. Ritter, A. & Spliethoff, B. Active MgH2–Mg systems for reversible chemical energy storage. Angew. Chem. Int. Ed. 29, 223–234 (1990).

    Google Scholar 

  47. 47

    Felderhoff, M. & Bogdanović, B. High temperature metal hydrides as heat storage materials for solar and related applications. Int. J. Mol. Sci. 10, 325–344 (2009). In this article, heat storage applications using hydrides are proposed and demonstrated.

    CAS  Google Scholar 

  48. 48

    International Energy Agency. Technology map: solar thermal energy (IEA, 2014).

  49. 49

    Rönnebro, E. C. E. & Majzoub, E. H. Recent advances in metal hydrides for clean energy applications. MRS Bull. 38, 452–458 (2013).

    Google Scholar 

  50. 50

    Sheppard, D. A. et al. Metal hydrides for concentrating solar thermal power energy storage. Appl. Phys. A 122, 395 (2016).

    Google Scholar 

  51. 51

    Rönnebro, E. C. E. et al. Metal hydrides for high-temperature power generation. Energies 8, 8406–8430 (2015).

    Google Scholar 

  52. 52

    Sheppard, D. A. Hydriding characteristics of NaMgH2F with preliminary technical and cost evaluation of magnesium-based metal hydride materials for concentrating solar power thermal storage. RSC Adv. 4, 26552–26562 (2014).

    CAS  Google Scholar 

  53. 53

    Dudney, N. J., West, W. C. & Nanda, J. Handbook of Solid State Batteries 2nd edn Vol. 6 (World Scientific, 2016).

    Google Scholar 

  54. 54

    Nakamori, Y., Orimo, S. & Tsutaoka, T. Dehydriding reaction of metal hydrides and alkali borohydrides enhanced by microwave irradiation. Appl. Phys. Lett. 88, 112104 (2006).

    Google Scholar 

  55. 55

    Matsuo, M., Nakamori, Y., Orimo, S. Maekawa, H. & Takamura, H. Lithium superionic conduction in lithium borohydride accompanied by structural transition. Appl. Phys. Lett. 91, 224103 (2007). This work presents the potential of lithium-ion conductivity in borohydrides for the first time.

    Google Scholar 

  56. 56

    Matsuo, M. & Orimo, S. Lithium fast-ionic conduction in complex hydrides: review and prospects. Adv. Energy Mater. 1, 161–172 (2011).

    CAS  Google Scholar 

  57. 57

    Ley, M. B. et al. LiCe(BH4)3Cl, a new lithium-ion conductor and hydrogen storage material with isolated tetranuclear anionic clusters. Chem. Mater. 24, 1654–1663 (2012).

    CAS  Google Scholar 

  58. 58

    Sveinbjörnsson, D. et al. Ionic conductivity and the formation of cubic CaH2 in the LiBH4–Ca(BH4)2 composite. J. Solid State Chem. 211, 81–89 (2014).

    Google Scholar 

  59. 59

    Teprovich J. A. Jr et al. Experimental and theoretical analysis of fast lithium ionic conduction in a LiBH4–C60 nanocomposite. J. Phys. Chem. C 118, 21755–21761 (2014).

    CAS  Google Scholar 

  60. 60

    Unemoto, A., Matsuo, M. & Orimo, S. Complex hydrides for electrochemical energy storage. Adv. Funct. Mater. 24, 2267–2279 (2014). This article highlights the possibility to use complex hydrides as solid electrolytes for battery devices.

    CAS  Google Scholar 

  61. 61

    Maekawa, H. et al. Halide-stabilized LiBH4, a room-temperature lithium fast-ion conductor. J. Am. Chem. Soc. 131, 894–895 (2009).

    CAS  Google Scholar 

  62. 62

    Ngene, P., Adelhelm, P., Beale, A. M., de Jong, K. P. & de Jongh, P. E. LiBH4/SBA-15 nanocomposites prepared by melt infiltration under hydrogen pressure: synthesis and hydrogen sorption properties. J. Phys. Chem. C 114, 6163–6168 (2010).

    CAS  Google Scholar 

  63. 63

    Blanchard, D. et al. Nanoconfined LiBH4 as a fast lithium ion conductor. Adv. Funct. Mater. 25, 184–192 (2015).

    CAS  Google Scholar 

  64. 64

    Verdal, N. et al. Dynamical perturbations of tetrahydroborate anions in LiBH4 due to nanoconfinement in controlled-pore carbon scaffolds. J. Phys. Chem. C 117, 17983–17995 (2013).

    CAS  Google Scholar 

  65. 65

    Unemoto, A. et al. Fast lithium-ionic conduction in a new complex hydride–sulphide crystalline phase. Chem. Commun. 52, 564–566 (2016).

    CAS  Google Scholar 

  66. 66

    Takahashi, K. et al. All-solid-state lithium battery with LiBH4 solid electrolyte. J. Power Sources 226, 61–64 (2013).

    CAS  Google Scholar 

  67. 67

    Unemoto, A. et al. Development of bulk-type all-solid-state lithium–sulfur battery using LiBH4 electrolyte. Appl. Phys. Lett. 105, 083901–083903 (2014).

    Google Scholar 

  68. 68

    Sveinbjörnsson, D., Christiansen, A. S., Viskinde, R., Norby, P. & Vegge, T. The LiBH4–LiI solid solution as an electrolyte in an all-solid-state battery. J. Electrochem. Soc. 161, A1432–A1439 (2014).

    Google Scholar 

  69. 69

    Unemoto, A. et al. Stable interface formation between TiS2 and LiBH4 in bulk-type all-solid-state lithium batteries. Chem. Mater. 27, 5407–5416 (2015).

    CAS  Google Scholar 

  70. 70

    Udovic, T. et al. Sodium superionic conduction in Na2B12H12 . Chem. Commun. 50, 3750–3752 (2014). In this article, the potential of lithium-ion conductivity in closo-type hydrides is presented for the first time.

    CAS  Google Scholar 

  71. 71

    Udovic, T. J. et al. Exceptional superionic conductivity in disordered sodium decahydro-closo-decaborate. Adv. Mater. 26, 7622–7626 (2014).

    CAS  Google Scholar 

  72. 72

    Tang, W. S. et al. Unparalleled lithium and sodium superionic conduction in solid electrolytes with large monovalent cage-like anions. Energy Environ. Sci. 8, 3637–3645 (2015).

    CAS  Google Scholar 

  73. 73

    Sadikin, Y., Brighi, M., Schouwink, P. & Černý, R. Superionic conduction of sodium and lithium in anion-mixed hydroborates Na3BH4B12H12 and (Li0.7Na0.3)3BH4B12H12 . Adv. Energy Mater. 5, 1501016 (2015).

    Google Scholar 

  74. 74

    Tang, W. S. et al. Stabilizing superionic-conducting structures via mixed-anion solid solutions of monocarba-closo-borate salts. ACS Energy Lett. 1, 659–664 (2016).

    CAS  Google Scholar 

  75. 75

    Teprovich, J. A. Jr Bi-functional Li2B12H12 for energy storage and conversion applications: solid-state electrolyte and luminescent down-conversion dye. J. Mater. Chem. A 3, 22853–22859 (2015).

    CAS  Google Scholar 

  76. 76

    Tang, W. S. et al. Liquid-like ionic conduction in solid lithium and sodium monocarba-closo-decaborates near or at room temperature. Adv. Energy Mater. 6, 1502237 (2016).

    Google Scholar 

  77. 77

    de Jongh, P. E., Blanchard, D., Matsuo, M., Udovic, T. J. & Orimo, S. Complex hydrides as room-temperature solid electrolytes for rechargeable batteries. Appl. Phys. A 122, 251 (2016).

    Google Scholar 

  78. 78

    Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016). This work offers an overview of beyond lithium-ion batteries and existing challenges.

    CAS  Google Scholar 

  79. 79

    Mohtadi, R. & Mizuno, F. Magnesium batteries: current state of the art, issues and future perspectives. Beilstein J. Nanotechnol. 5, 1291–1311 (2014).

    Google Scholar 

  80. 80

    Tutusaus, O. & Mohtadi, R. Paving the way towards highly stable and practical electrolytes for rechargeable magnesium batteries. ChemElectroChem 2, 51–57 (2015).

    CAS  Google Scholar 

  81. 81

    Mohtadi, R., Matsui, M., Arthur, T. S. & Hwang, S.-J. Magnesium borohydride: from hydrogen storage to magnesium battery. Angew. Chem. Int. Ed. 51, 9780–9783 (2012). The first presentation of the potential of hydrides in magnesium batteries.

    CAS  Google Scholar 

  82. 82

    Shao, Y. Y. et al. Coordination chemistry in magnesium battery electrolytes: how ligands affect their performance. Sci. Rep. 3, 3130 (2013).

    Google Scholar 

  83. 83

    Rajput, N. N., Qu, X., Sa, N., Burrell, A. K. & Persson, K. A. The coupling between stability and ion pair formation in magnesium electrolytes from first-principles quantum mechanics and classical molecular dynamics. J. Am. Chem. Soc. 137, 3411–3420 (2014).

    Google Scholar 

  84. 84

    Chang, J. et al. Synergetic role of Li+ during Mg electrodeposition/dissolution in borohydride diglyme electrolyte solution: voltammetric stripping behaviors on a Pt microelectrode indicative of Mg–Li alloying and facilitated dissolution. ACS Appl. Mater. Interfaces 7, 2494–2502 (2015).

    CAS  Google Scholar 

  85. 85

    MacFarlane, D. R. et al. Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nat. Rev. Mater. 1, 15005 (2016).

    CAS  Google Scholar 

  86. 86

    Watkins, T., Kumar, A. & Buttry, D. A. Designer ionic liquids for reversible electrochemical deposition/dissolution of magnesium. J. Am. Chem. Soc. 138, 641–650 (2016).

    CAS  Google Scholar 

  87. 87

    Kar, M. et al. Ionic liquid electrolytes for reversible magnesium electrochemistry. Chem. Commun. 52, 4033–4036 (2016).

    CAS  Google Scholar 

  88. 88

    Higashi, S., Miwa, K., Aoki, M. & Takechi, K. A novel inorganic solid state ion conductor for rechargeable Mg batteries. Chem. Commun. 50, 1320–1322 (2014).

    CAS  Google Scholar 

  89. 89

    Carter, T. J. et al. Boron clusters as highly stable magnesium-battery electrolytes. Angew. Chem. Int. Ed. 53, 3173–3177 (2014). This work unveils the potential and explains the rationale for using boron-cluster chemistry to advance magnesium electrolytes.

    CAS  Google Scholar 

  90. 90

    Tutusaus, O. et al. An efficient halogen-free electrolyte for use in rechargeable magnesium batteries. Angew. Chem. Int. Ed. 54, 7900–7904 (2015).

    CAS  Google Scholar 

  91. 91

    Zhang, Y., Xie, J., Han, Y. & Li, C. Dual-salt Mg-based batteries with conversion cathodes. Adv. Funct. Mater. 25, 7300–7308 (2015).

    CAS  Google Scholar 

  92. 92

    Bruce, P. G., Scrosati, B. & Tarascon, J.-M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008).

    CAS  Google Scholar 

  93. 93

    Oumellal, Y., Rougier, A., Nazri, G. A., Tarascon, J.-M. & Aymard, L. Metal hydrides for lithium-ion batteries. Nat. Mater. 7, 916–921 (2008). In this article, the possibility to use metal hydrides as conversion cathodes is presented for the first time.

    CAS  Google Scholar 

  94. 94

    Aymard, L., Oumellal, Y. & Bonnet, J.-P. Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries. Beilstein J. Nanotechnol. 6, 1821–1839 (2015).

    CAS  Google Scholar 

  95. 95

    Oumellal, Y. et al. Reactivity of TiH2 hydride with lithium ion: evidence for a new conversion mechanism. Int. J. Hydrogen Energy 37, 7831–7835 (2012).

    CAS  Google Scholar 

  96. 96

    Zhang, J. et al. XAS investigations on nanocrystalline Mg2FeH6 used as a negative electrode of Li-ion batteries. J. Mater. Chem. A 1, 4706–4717 (2013).

    CAS  Google Scholar 

  97. 97

    Oumellal, Y. et al. Bottom-up preparation of MgH2 nanoparticles with enhanced cycle life stability during electrochemical conversion in Li-ion batteries. Nanoscale 6, 14459–14466 (2014).

    CAS  Google Scholar 

  98. 98

    Zaïdi, W. et al. Carboxymethylcellulose and carboxymethylcellulose-formate as binders in MgH2-carbon composites negative electrode for lithium-ion batteries. J. Power Sources 196, 2854–2857 (2011).

    Google Scholar 

  99. 99

    Zeng, L. et al. Metal hydride-based materials towards high performance negative electrodes for all-solid-state lithium-ion batteries. Chem. Commun. 51, 9773–9776 (2015).

    CAS  Google Scholar 

  100. 100

    Ashcroft, N. W. Metallic hydrogen: a high-temperature superconductor? Phys. Rev. Lett. 21, 1748–1750 (1968). The first prediction of possible superconductivity of hydrogen.

    CAS  Google Scholar 

  101. 101

    US Department of Energy. Basic research needs for superconductivity (DOE, 2006).

  102. 102

    Eremets, M. I., Troyan, I. A. & Drozdov, A. P. Low temperature phase diagram of hydrogen at pressures up to 380 GPa. A possible metallic phase at 360 GPa and 200 K. Preprint at http://arXiv.org/abs/1601.04479 (2016).

  103. 103

    Stritzker, B. High superconducting transition temperatures in the palladium-noble metal-hydrogen system. Z. Phys. 268, 261–264 (1974).

    CAS  Google Scholar 

  104. 104

    Leiberich, A., Scholz, W., Standish, W. J. & Homan, C. G. Superconductivity in H-charged Cu-implanted Pd. Phys. Lett. A 87, 57–60 (1981).

    Google Scholar 

  105. 105

    Hirsch, J. E., Maple, M. B. & Marsiglio, F. Superconducting materials classes: introduction and overview. Phys. C. 514, 1–8 (2015).

    CAS  Google Scholar 

  106. 106

    Ashcroft, N. W. Hydrogen dominant metallic alloys: high temperature superconductors? Phys. Rev. Lett. 92, 187002 (2004).

    CAS  Google Scholar 

  107. 107

    Eremets, M. I., Trojan, I. A., Medvedev, S. A., Tse, J. S. & Yao, Y. Superconductivity in hydrogen dominant materials: silane. Science 319, 1506–1509 (2008).

    CAS  Google Scholar 

  108. 108

    Schilling, A., Cantoni, M., Guo, J. D. & Ott, H. R. Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system. Nature 363, 56–58 (1993).

    CAS  Google Scholar 

  109. 109

    Gao, L. et al. Superconductivity up to 164 K in HaBa2Cam−1CumO2m + 2 + d (m=1,2, and 3) under quasihydrostatic pressures. Phys. Rev. B 50, 4260–4263 (1994).

    CAS  Google Scholar 

  110. 110

    Bonn, D. A. Are high-temperature superconductors exotic? Nat. Phys. 2, 159–168 (2006).

    CAS  Google Scholar 

  111. 111

    Foltyn, S. R. et al. Materials science challenges for high-temperature superconducting wire. Nat. Mater. 6, 631–642 (2007).

    CAS  Google Scholar 

  112. 112

    Struzhkin, V. V. Superconductivity in compressed hydrogen-rich materials: pressing on hydrogen. Phys. C. 514, 77–85 (2015).

    CAS  Google Scholar 

  113. 113

    Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015). In this work, a hydride as the warmest superconductor is experimentally demonstrated for the first time.

    CAS  Google Scholar 

  114. 114

    Drozdov, A. P., Eremets, M. I. & Troyan, I. A. Conventional superconductivity at 190 K at high pressures. Preprint at http://arXiv.org/abs/arXiv:1412.0460 (2014).

  115. 115

    Einaga, M. et al. Crystal structure of the superconducting phase of sulfur hydride. Nat. Phys. 12, 835–838 (2016).

    CAS  Google Scholar 

  116. 116

    Akashi, R., Kawamura, M., Tsuneyuki, S., Nomura, Y. & Arita, R. First-principles study of the pressure and crystal-structure dependences of the superconducting transition temperature in compressed sulfur hydrides. Phys. Rev. B 91, 224513 (2015).

    Google Scholar 

  117. 117

    Duan, D. et al. Pressure-induced decomposition of solid hydrogen sulfide. Phys. Rev. B 91, 180502 (2015).

    Google Scholar 

  118. 118

    Bernstein, N., Hellberg, C. S., Johannes, M. D., Mazin, I. I. & Mehl, M. J. What superconducts in sulfur hydrides under pressure and why. Phys. Rev. B 91, 060511 (2015).

    Google Scholar 

  119. 119

    Drozdov, A. P., Eremets, M. I. & Troyan, I. A. Superconductivity above 100 K in PH3 at high pressures. Preprint at http://arXiv.org/abs/arXiv:1508.06224 (2015).

  120. 120

    Brenner, T. M., Egger, D. A., Kronik, L., Hodes, G. & Cahen, D. Hybrid organic–inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 15007 (2016). This article provides a background on perovskites for solar applications and on factors that govern their performances.

    CAS  Google Scholar 

  121. 121

    Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015).

    CAS  Google Scholar 

  122. 122

    Tilley, R. J. D. Perovskites: Structure–Property Relationships (Wiley, 2016).

    Google Scholar 

  123. 123

    Reller, A. & Williams, T. Perovskites — chemical chameleons. Chem. Br. 25, 1227–1230 (1989).

    CAS  Google Scholar 

  124. 124

    Goldschmidt, V. M. Die Gesetze der Krystallochemie. Naturwissenschaen 14, 477–485 (in German) (1926).

    CAS  Google Scholar 

  125. 125

    Ikeda, K., Sato, T. & Orimo, S. Perovskite-type hydrides — synthesis, structures and properties. Int. J. Mater. Res. 99, 471–479 (2008).

    CAS  Google Scholar 

  126. 126

    Schouwink, P. et al. Structure and properties of complex hydride perovskite materials. Nat. Commun. 5, 5706 (2014).

    CAS  Google Scholar 

  127. 127

    Kieslich, G., Sun, S. & Cheetham, A. K. An extended tolerance factor approach for organic–inorganic perovskites. Chem. Sci. 6, 3430–3433 (2015).

    CAS  Google Scholar 

  128. 128

    Manser, J. S., Saidaminov, M. I., Christians, J. A., Bakr, O. M. & Kamat, P. V. Making and breaking of lead halide perovskites. Acc. Chem. Res. 49, 330–338 (2016).

    CAS  Google Scholar 

  129. 129

    Feng, H. & Jena, P. Molecular origin of properties of organic–inorganic hybrid perovskites: the big picture from small clusters. J. Phys. Chem. Lett. 7, 1596–1603 (2016).

    Google Scholar 

  130. 130

    Chong, M., Matsuo, M., Orimo, S., Autrey, T. & Jensen, C. M. Selective reversible hydrogenation of Mg(B3H8)2/MgH2 to Mg(BH4)2: pathway to reversible borane-based hydrogen storage? Inorg. Chem. 54, 4120–4125 (2015).

    CAS  Google Scholar 

  131. 131

    New Energy and Industrial Technology Development Organization. Hydrogen society has come: beginning of the new age of hydrogen. No. 57 (NEDO, 2015).

  132. 132

    Weinstein, L. A. et al. Concentrating solar power. Chem. Rev. 115, 12797–12838 (2015).

    CAS  Google Scholar 

  133. 133

    Tang, W. S. et al. Stabilization of lithium and sodium fast-ion conduction in solid polyhedral borate salts at devise relevant temperature. Energy Storage Mater. 4, 79–83 (2016).

    Google Scholar 

  134. 134

    Syed, H. M., Gould, T. J., Webb, C. J. & Gray, E. MacA. Superconductivity in palladium hydride and deuteride at 52–61 kelvin. Preprint at https://arxiv.org/abs/1608.01774 (2016).

Download references

Acknowledgements

R.M. thanks M. I. Eremets at Max-Planck Institute and E. C. E. Rönnebro at Pacific Northwest National Laboratory, and S.O. thanks A. Unemoto at Hitachi, T. Kono and S. Takagi at the Collaborative Research Center for Energy Materials in Tohoku University for the very helpful discussions and suggestions. R.M. thanks O. Tutusaus and R. Zhang for their assistance with the graphics. R.M. thanks T. Matsunaga at Toyota Research Institute of North America for the helpful discussions and is indebted to K. Suto for his insightful suggestions. R.M. also thanks T. Kuzuya and H. Nishikoori at Toyota Motor Corporation for reviewing the manuscript. This work was made possible by support from Toyota Research Institute of North America.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Rana Mohtadi or Shin-ichi Orimo.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohtadi, R., Orimo, Si. The renaissance of hydrides as energy materials. Nat Rev Mater 2, 16091 (2017). https://doi.org/10.1038/natrevmats.2016.91

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing