Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Plasmonic colour generation

Abstract

Plasmonic colours are structural colours that emerge from resonant interactions between light and metallic nanostructures. The engineering of plasmonic colours is a promising, rapidly emerging research field that could have a large technological impact. We highlight basic properties of plasmonic colours and recent nanofabrication developments, comparing technology-performance indicators for traditional and nanophotonic colour technologies. The structures of interest include diffraction gratings, nanoaperture arrays, thin films, and multilayers and structures that support Mie resonances and whispering-gallery modes. We discuss plasmonic colour nanotechnology based on localized surface plasmon resonances, such as gap plasmons and hybridized disk–hole plasmons, which allow for colour printing with sub-diffraction resolution. We also address a range of fabrication approaches that enable large-area printing and nanoscale lithography compatible with complementary metal-oxide semiconductor technologies, including nanoimprint lithography and self-assembly. Finally, we review recent developments in dynamically reconfigurable plasmonic colours and in the laser-induced post-processing of plasmonic colour surfaces.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Colours from diffractive gratings, subwavelength gratings and enhanced-optical transmission structures.
Figure 2: Colours from localized Mie resonances in dielectric and metal–dielectric core–shell nanoparticles.
Figure 3: Colours from plasmonic resonances in nanoantenna arrays.
Figure 4: Plasmonic subwavelength-resolution printing.
Figure 5: Large-scale patterning and plasmonic colour printing.
Figure 6: Dynamic tuning of plasmonic colours.
Figure 7: Laser post-processing of plasmonic surfaces.

References

  1. 1

    Brongersma, M. L. Introductory lecture: nanoplasmonics. Faraday Discuss. 178, 9–36 (2015).

    CAS  Google Scholar 

  2. 2

    Pendry, J. Photonics: metamaterials in the sunshine. Nat. Mater. 5, 599–600 (2006).

    CAS  Google Scholar 

  3. 3

    Baev, A., Prasad, P. N., Ågren, H., Samoc´, M. & Wegener, M. Metaphotonics: an emerging field with opportunities and challenges. Phys. Rep. 594, 1–60 (2015).

    Google Scholar 

  4. 4

    Odom, T. W. Colours at the nanoscale: printable stained glass. Nat. Nanotechnol. 7, 550–551 (2012).

    CAS  Google Scholar 

  5. 5

    Dean, N. Colouring at the nanoscale. Nat. Nanotechnol. 10, 15–16 (2015).

    CAS  Google Scholar 

  6. 6

    Graydon, O. View from… SPP7: a colourful future? Nat. Photonics 9, 487–488 (2015).

    CAS  Google Scholar 

  7. 7

    Colomban, P. The use of metal nanoparticles to produce yellow, red and iridescent colour, from bronze age to present times in lustre pottery and glass: solid state chemistry, spectroscopy and nanostructure. J. Nano Res. 8, 109–132 (2009).

    CAS  Google Scholar 

  8. 8

    Bhushan, B. (ed.) Springer Handbook of Nanotechnology (Springer-Verlag, 2010).

    Google Scholar 

  9. 9

    Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

    Google Scholar 

  10. 10

    Shalaev, V. M. Optical negative-index metamaterials. Nat. Photonics 1, 41–48 (2007).

    CAS  Google Scholar 

  11. 11

    Vukusic, P. & Sambles, J. R. Photonic structures in biology. Nature 424, 852–855 (2003).

    CAS  Article  Google Scholar 

  12. 12

    Kinoshita, S., Yoshioka, S. & Miyazaki, J. Physics of structural colors. Rep. Prog. Phys. 71, 076401 (2008).

    Google Scholar 

  13. 13

    Parker, A. R. & Townley, H. E. Biomimetics of photonic nanostructures. Nat. Nanotechnol. 2, 347–353 2007).

    CAS  Google Scholar 

  14. 14

    Al-Salem, S. M., Lettieri, P. & Baeyens, J. Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manag. 29, 2625–2643 (2009).

    CAS  Google Scholar 

  15. 15

    Dushkina, N. & Lakhtakia, A. in Engineered Biomimicry Ch. 11 (eds Lakhtakia, A. & Martín-Palma, R. J. ) 267–303 (Elsevier, 2013).

    Google Scholar 

  16. 16

    Fu, Y., Tippets, C. A., Donev, E. U. & Lopez, R. Structural colors: from natural to artificial systems. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 8, 758–775 (2016).

    Google Scholar 

  17. 17

    Xu, T. et al. Structural colors: from plasmonic to carbon nanostructures. Small 7, 3128–3136 (2011).

    CAS  Google Scholar 

  18. 18

    Gu, Y., Zhang, L., Yang, J. K. W., Yeo, S. P. & Qiu, C.-W. Color generation via subwavelength plasmonic nanostructures. Nanoscale 7, 6409–6419 (2015).

    CAS  Google Scholar 

  19. 19

    Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nat. Photonics 4, 83–91 (2010).

    CAS  Google Scholar 

  20. 20

    Gramotnev, D. K. & Bozhevolnyi, S. I. Nanofocusing of electromagnetic radiation. Nat. Photonics 8, 14–23 (2014).

    Google Scholar 

  21. 21

    Kumar, K. et al. Printing colour at the optical diffraction limit. Nat. Nanotechnol. 7, 557–561 (2012).

    CAS  Google Scholar 

  22. 22

    Tan, S. J. et al. Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett. 14, 4023–4029 (2014).

    CAS  Google Scholar 

  23. 23

    Roberts, A. S., Pors, A., Albrektsen, O. & Bozhevolnyi, S. I. Subwavelength plasmonic color printing protected for ambient use. Nano Lett. 14, 783–787 (2014).

    CAS  Google Scholar 

  24. 24

    Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008).

    CAS  Google Scholar 

  25. 25

    Jain, P. K., Huang, X., El-Sayed, I. H. & El-Sayed, M. A. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Accounts Chem. Res. 41, 1578–1586 (2008).

    CAS  Google Scholar 

  26. 26

    Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010).

    CAS  Google Scholar 

  27. 27

    Linic, S., Christopher, P. & Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911–921 (2011).

    CAS  Google Scholar 

  28. 28

    Tame, M. S. et al. Quantum plasmonics. Nat. Phys. 9, 329–340 (2013).

    CAS  Google Scholar 

  29. 29

    Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015).

    CAS  Google Scholar 

  30. 30

    Busch, K. et al. Periodic nanostructures for photonics. Phys. Rep. 444, 101–202 (2007).

    Google Scholar 

  31. 31

    Shen, Y. et al. Structural colors from Fano resonances. ACS Photonics 2, 27–32 (2015).

    CAS  Google Scholar 

  32. 32

    Kim, H. et al. Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal. Nat. Photonics 3, 534–540 (2009).

    CAS  Google Scholar 

  33. 33

    Duempelmann, L., Casari, D., Luu-Dinh, A., Gallinet, B. & Novotny, L. Color rendering plasmonic aluminum substrates with angular symmetry breaking. ACS Nano 9, 12383–12391 (2015).

    CAS  Google Scholar 

  34. 34

    Shrestha, V. R., Lee, S.-S., Kim, E.-S. & Choi, D.-Y. Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array. Sci. Rep. 5, 12450 (2015).

    Google Scholar 

  35. 35

    Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).

    CAS  Google Scholar 

  36. 36

    Genet, C. & Ebbesen, T. W. Light in tiny holes. Nature 445, 39–46 (2007).

    CAS  Google Scholar 

  37. 37

    Maystre, D. Rigorous vector theories of diffraction gratings. Prog. Opt. 21, 1–67 (1984).

    Google Scholar 

  38. 38

    Lalanne, P., Hugonin, J. P., Liu, H. T. & Wang, B. A microscopic view of the electromagnetic properties of sub-λ metallic surfaces. Surf. Sci. Rep. 64, 453–469 (2009).

    CAS  Google Scholar 

  39. 39

    Christiansen, A. B. et al. Imprinted and injection-molded nano-structured optical surfaces. Proc. SPIE 8818, 881803 (2013).

    Google Scholar 

  40. 40

    Lochbihler, H. Colored images generated by metallic sub-wavelength gratings. Opt. Express 17, 12189–12196 (2009).

    CAS  Google Scholar 

  41. 41

    Lochbihler, H. Reflective colored image based on metal–dielectric–metal-coated gratings. Opt. Lett. 38, 1398–1400 (2013).

    Google Scholar 

  42. 42

    Zeng, B., Gao, Y. & Bartoli, F. J. Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters. Sci. Rep. 3, 2840 (2013).

    Google Scholar 

  43. 43

    Wu, Y.-K. R., Hollowell, A. E., Zhang, C. & Guo, L. J. Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit. Sci. Rep. 3, 1194 (2013).

    Google Scholar 

  44. 44

    Lütolf, F., Stalder, M. & Martin, O. J. F. Metallized gratings enable color effects and floating screen films by first-order diffraction. Adv. Opt. Mater. 3, 1793–1799 (2015).

    Google Scholar 

  45. 45

    Xu, T., Wu, Y.-K., Luo, X. & Guo, L. J. Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat. Commun. 1, 59 (2010).

    Google Scholar 

  46. 46

    Duempelmann, L., Luu-Dinh, A., Gallinet, B. & Novotny, L. Four-fold color filter based on plasmonic phase retarder. ACS Photonics 3, 190–196 (2016).

    CAS  Google Scholar 

  47. 47

    García de Abajo, F. J. Colloquium: light scattering by particle and hole arrays. Rev. Mod. Phys. 79, 1267–1290 (2007).

    Google Scholar 

  48. 48

    Do, Y. S. et al. Plasmonic color filter and its fabrication for large-area applications. Adv. Opt. Mater. 1, 133–138 (2013).

    Google Scholar 

  49. 49

    Inoue, D. et al. Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes. Appl. Phys. Lett. 98, 093113 (2011).

    Google Scholar 

  50. 50

    Lee, H.-S., Yoon, Y.-T., Lee, S.-S., Kim, S.-H. & Lee, K.-D. Color filter based on a subwavelength patterned metal grating. Opt. Express 15, 15457–15463 (2007).

    Google Scholar 

  51. 51

    Burgos, S. P., Yokogawa, S. & Atwater, H. A. Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor. ACS Nano 7, 10038–10047 (2013).

    CAS  Google Scholar 

  52. 52

    Chen, Q. & Cumming, D. R. S. High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films. Opt. Express 18, 14056–14062 (2010).

    CAS  Google Scholar 

  53. 53

    Chen, Q. et al. A CMOS image sensor integrated with plasmonic colour filters. Plasmonics 7, 695–699 (2012).

    CAS  Google Scholar 

  54. 54

    Chen, Q. et al. CMOS photodetectors integrated with plasmonic color filters. IEEE Photonics Technol. Lett. 24, 197–199 (2012).

    Google Scholar 

  55. 55

    Rajasekharan, R. et al. Filling schemes at submicron scale: development of submicron sized plasmonic colour filters. Sci. Rep. 4, 6435 (2014).

    CAS  Google Scholar 

  56. 56

    Yokogawa, S., Burgos, S. P. & Atwater, H. A. Plasmonic color filters for CMOS image sensor applications. Nano Lett. 12, 4349–4354 (2012).

    CAS  Google Scholar 

  57. 57

    McCrindle, I. J. H., Grant, J., Drysdale, T. D. & Cumming, D. R. S. Multi-spectral materials: hybridisation of optical plasmonic filters and a terahertz metamaterial absorber. Adv. Opt. Mater. 2, 149–153 (2014).

    Google Scholar 

  58. 58

    Laux, E., Genet, C., Skauli, T. & Ebbesen, T. W. Plasmonic photon sorters for spectral and polarimetric imaging. Nat. Photonics 2, 161–164 (2008).

    CAS  Google Scholar 

  59. 59

    García de Abajo, F. J., Saenz, J. J., Campillo, I. & Dolado, J. S. Site and lattice resonances in metallic hole arrays. Opt. Express 14, 7–18 (2006).

    Google Scholar 

  60. 60

    Raut, H. K., Ganesh, V. A., Nair, A. S. & Ramakrishna, S. Anti-reflective coatings: a critical, in-depth review. Energy Environ. Sci. 4, 3779–3804 (2011).

    CAS  Google Scholar 

  61. 61

    Hedayati, M. K. & Elbahri, M. Antireflective coatings: conventional stacking layers and ultrathin plasmonic metasurfaces, a mini-review. Materials 9, 497 (2016).

    Google Scholar 

  62. 62

    Kats, M. A., Blanchard, R., Genevet, P. & Capasso, F. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mater. 12, 20–24 (2013).

    CAS  Google Scholar 

  63. 63

    Mirshafieyan, S. S. & Guo, J. Silicon colors: spectral selective perfect light absorption in single layer silicon films on aluminum surface and its thermal tunability. Opt. Express 22, 31545–31554 (2014).

    Google Scholar 

  64. 64

    Yakovlev, A. V., Milichko, V. A., Vinogradov, V. V. & Vinogradov, A. V. Inkjet color printing by interference nanostructures. ACS Nano 10, 3078–3086 (2016).

    CAS  Google Scholar 

  65. 65

    Chung, K. et al. Flexible, angle-independent, structural color reflectors inspired by Morpho butterfly wings. Adv. Mater. 24, 2375–2379 (2012).

    CAS  Google Scholar 

  66. 66

    Chen, F. et al. Colorful solar selective absorber integrated with different colored units. Opt. Express 24, A92–A103 (2016).

    CAS  Google Scholar 

  67. 67

    Park, J.-G. et al. Full-spectrum photonic pigments with non-iridescent structural colors through colloidal assembly. Angew. Chem. Int. Ed. 53, 2899–2903 (2014).

    CAS  Google Scholar 

  68. 68

    Bohren, C. F. How can a particle absorb more than the light incident on it? Am. J. Phys. 51, 323–327 (1983).

    CAS  Google Scholar 

  69. 69

    Proust, J., Bedu, F., Gallas, B., Ozerov, I. & Bonod, N. All-dielectric colored metasurfaces with silicon Mie resonators. ACS Nano 10, 7761–7767 (2016).

    CAS  Google Scholar 

  70. 70

    Højlund-Nielsen, E. et al. Angle-independent structural colors of silicon. J. Nanophotonics 8, 083988 (2014).

    Google Scholar 

  71. 71

    Mie, G. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Annalen Physik 330, 377–445 (in German) (1908).

    Google Scholar 

  72. 72

    Zhao, Q., Zhou, J., Zhang, F. & Lippens, D. Mie resonance-based dielectric metamaterials. Mater. Today 12, 60–69 (2009).

    CAS  Google Scholar 

  73. 73

    Seo, K. et al. Multicolored vertical silicon nanowires. Nano Lett. 11, 1851–1856 (2011).

    CAS  Google Scholar 

  74. 74

    Cao, L., Fan, P., Barnard, E. S., Brown, A. M. & Brongersma, M. L. Tuning the color of silicon nanostructures. Nano Lett. 10, 2649–2654 (2010).

    CAS  Google Scholar 

  75. 75

    Khudiyev, T., Ozgur, E., Yaman, M. & Bayindir, M. Structural coloring in large scale coreshell nanowires. Nano Lett. 11, 4661–4665 (2011).

    CAS  Google Scholar 

  76. 76

    Hsu, C. W. et al. Transparent displays enabled by resonant nanoparticle scattering. Nat. Commun. 5, 3152 (2014).

    Google Scholar 

  77. 77

    Kuznetsov, A. I., Miroshnichenko, A. E., Fu, Y. H., Zhang, J. & Luk'yanchuk, B. Magnetic light. Sci. Rep. 2, 492 (2012).

    Google Scholar 

  78. 78

    Staude, I. et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano 7, 7824–7832 (2013).

    CAS  Google Scholar 

  79. 79

    Zywietz, U., Evlyukhin, A. B., Reinhardt, C. & Chichkov, B. N. Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses. Nat. Commun. 5, 3402 (2014).

    Google Scholar 

  80. 80

    Novotny, L. & van Hulst, N. Antennas for light. Nat. Photonics 5, 83–90 (2011).

    CAS  Google Scholar 

  81. 81

    Ellenbogen, T., Seo, K. & Crozier, K. B. Chromatic plasmonic polarizers for active visible color filtering and polarimetry. Nano Lett. 12, 1026–1031 (2012).

    CAS  Google Scholar 

  82. 82

    Zentgraf, T. et al. Babinet's principle for optical frequency metamaterials and nanoantennas. Phys. Rev. B 76, 033407 (2007).

    Google Scholar 

  83. 83

    Li, Z., Clark, A. W. & Cooper, J. M. Dual color plasmonic pixels create a polarization controlled nano color palette. ACS Nano 10, 492–498 (2016).

    Google Scholar 

  84. 84

    Goh, X. M. et al. Three-dimensional plasmonic stereoscopic prints in full colour. Nat. Commun. 5, 5361 (2014).

    CAS  Google Scholar 

  85. 85

    Olson, J. et al. Vivid, full-color aluminum plasmonic pixels. Proc. Natl Acad. Sci. USA 111, 14348–14353 (2014).

    CAS  Google Scholar 

  86. 86

    Olson, J. et al. High chromaticity aluminum plasmonic pixels for active liquid crystal displays. ACS Nano 10, 1108–1117 (2016).

    CAS  Google Scholar 

  87. 87

    Hu, X. L. et al. Polarization-independent plasmonic subtractive color filtering in ultrathin Ag nanodisks with high transmission. Appl. Opt. 55, 148–152 (2016).

    CAS  Google Scholar 

  88. 88

    Si, G. et al. Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays. Nanoscale 5, 6243–6248 (2013).

    CAS  Google Scholar 

  89. 89

    Ye, M. et al. Angle-insensitive plasmonic color filters with randomly distributed silver nanodisks. Opt. Lett. 40, 4979–4982 (2015).

    CAS  Google Scholar 

  90. 90

    Yue, W., Gao, S., Lee, S.-S., Kim, E.-S. & Choi, D.-Y. Subtractive color filters based on a silicon–aluminum hybrid-nanodisk metasurface enabling enhanced color purity. Sci. Rep. 6, 29756 (2016).

    CAS  Google Scholar 

  91. 91

    Shrestha, V. R., Lee, S.-S., Kim, E.-S. & Choi, D.-Y. Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array. Nano Lett. 14, 6672–6678 (2014).

    CAS  Google Scholar 

  92. 92

    Zhang, J., Ou, J.-Y., MacDonald, K. F. & Zheludev, N. I. Optical response of plasmonic relief meta-surfaces. J. Opt. 14, 114002 (2012).

    Google Scholar 

  93. 93

    Zhang, J. et al. Continuous metal plasmonic frequency selective surfaces. Opt. Express 19, 23279–23285 (2011).

    CAS  Google Scholar 

  94. 94

    Lee, S. Y. et al. Plasmon-enhanced structural coloration of metal films with isotropic pinwheel nanoparticle arrays. Opt. Express 19, 23818–23830 (2011).

    CAS  Google Scholar 

  95. 95

    Watts, C. M., Liu, X. & Padilla, W. J. Metamaterial electromagnetic wave absorbers. Adv. Mater. 24, OP98–OP120 (2012).

    CAS  Google Scholar 

  96. 96

    Cheng, F., Gao, J., Luk, T. S. & Yang, X. Structural color printing based on plasmonic metasurfaces of perfect light absorption. Sci. Rep. 5, 11045 (2015).

    CAS  Google Scholar 

  97. 97

    Cheng, F. et al. Aluminum plasmonic metamaterials for structural color printing. Opt. Express 23, 14552–14560 (2015).

    CAS  Google Scholar 

  98. 98

    Cheng, F. et al. Enhanced structural color generation in aluminum metamaterials coated with a thin polymer layer. Opt. Express 23, 25329–25339 (2015).

    CAS  Google Scholar 

  99. 99

    Ng, R. J. H., Goh, X. M. & Yang, J. K. W. All-metal nanostructured substrates as subtractive color reflectors with near-perfect absorptance. Opt. Express 23, 32597–32605 (2015).

    CAS  Google Scholar 

  100. 100

    Goh, X. M., Ng, R. J. H., Wang, S., Tan, S. J. & Yang, J. K. W. Comparative study of plasmonic colors from all-metal structures of posts and pits. ACS Photonics 3, 1000–1009 (2016).

    CAS  Google Scholar 

  101. 101

    Chen, H. L., Chuang, S. Y., Cheng, H. C., Lin, C. H. & Chu, T. C. Directly patterning metal films by nanoimprint lithography with low-temperature and low-pressure. Microelectron. Eng. 83, 893–896 (2006).

    CAS  Google Scholar 

  102. 102

    Varghese, L. T. et al. Resistless nanoimprinting in metal for plasmonic nanostructures. Small 9, 3778–3783 (2013).

    CAS  Google Scholar 

  103. 103

    Cadusch, J. J. et al. Emission enhancement and polarization of semiconductor quantum dots with nanoimprinted plasmonic cavities: towards scalable fabrication of plasmon–exciton displays. Nanoscale 7, 13816–13821 (2015).

    CAS  Google Scholar 

  104. 104

    Yang, Z. et al. Reflective color filters and monolithic color printing based on asymmetric Fabry–Perot cavities using nickel as a broadband absorber. Adv. Opt. Mater. 4, 1196–1202 (2016).

    CAS  Google Scholar 

  105. 105

    Lee, K.-T., Seo, S. & Guo, L. J. High-color-purity subtractive color filters with a wide viewing angle based on plasmonic perfect absorbers. Adv. Opt. Mater. 3, 347–352 (2015).

    CAS  Google Scholar 

  106. 106

    Li, Z., Butun, S. & Aydin, K. Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films. ACS Photonics 2, 183–188 (2015).

    CAS  Google Scholar 

  107. 107

    Smith, C. L. C., Stenger, N., Kristensen, A., Mortensen, N. A. & Bozhevolnyi, S. I. Gap and channeled plasmons in tapered grooves: a review. Nanoscale 7, 9355–9386 (2015).

    CAS  Google Scholar 

  108. 108

    Søndergaard, T. et al. Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves. Nat. Commun. 3, 969 (2012).

    Google Scholar 

  109. 109

    Raza, S. et al. Extremely confined gap surface-plasmon modes excited by electrons. Nat. Commun. 5, 4125 (2014).

    CAS  Google Scholar 

  110. 110

    Clapham, P. B. & Hutley, M. C. Reduction of lens reflexion by the ”moth eye” principle. Nature 244, 281–282 (1973).

    Google Scholar 

  111. 111

    Christiansen, A. B. et al. Black metal thin films by deposition on dielectric antireflective moth-eye nanostructures. Sci. Rep. 5, 10563 (2015).

    CAS  Google Scholar 

  112. 112

    Abbe, E. A contribution to the theory of the microscope and the nature of microscopic vision. Proc. Bristol Nat. Soc. 1, 200–261 (1876).

    Google Scholar 

  113. 113

    Kim, T.-H. et al. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photonics 5, 176–182 (2011).

    CAS  Google Scholar 

  114. 114

    Richner, P. et al. Full-spectrum flexible color printing at the diffraction limit. ACS Photonics 3, 754–757 (2016).

    CAS  Google Scholar 

  115. 115

    Zhu, X., Vannahme, C., Højlund-Nielsen, E., Mortensen, N. A. & Kristensen, A. Plasmonic colour laser printing. Nat. Nanotechnol. 11, 325–329 (2016).

    CAS  Google Scholar 

  116. 116

    Miyata, M., Hatada, H. & Takahara, J. Full-color subwavelength printing with gap-plasmonic optical antennas. Nano Lett. 16, 3166–3172 (2016).

    CAS  Google Scholar 

  117. 117

    Prodan, E., Radloff, C., Halas, N. J. & Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003).

    CAS  Google Scholar 

  118. 118

    Li, W.-D., Hu, J. & Chou, S. Y. Extraordinary light transmission through opaque thin metal film with subwavelength holes blocked by metal disks. Opt. Express 19, 21098–21108 (2011).

    CAS  Google Scholar 

  119. 119

    Lochbihler, H. & Ye, Y. Two-dimensional subwavelength gratings with different frontside/backside reflectance. Opt. Lett. 38, 1028–1030 (2013).

    Google Scholar 

  120. 120

    Clausen, J. S. et al. Plasmonic metasurfaces for coloration of plastic consumer products. Nano Lett. 14, 4499–4504 (2014).

    CAS  Google Scholar 

  121. 121

    James, T. D., Mulvaney, P. & Roberts, A. The plasmonic pixel: large area, wide gamut color reproduction using aluminum nanostructures. Nano Lett. 16, 3817–3823 (2016).

    CAS  Google Scholar 

  122. 122

    Huang, Y.-W. et al. Aluminum plasmonic multicolor meta-hologram. Nano Lett. 15, 3122–3127 (2015).

    CAS  Google Scholar 

  123. 123

    Højlund-Nielsen, E. et al. Polarization-dependent aluminum metasurface operating at 450 nm. Opt. Express 23, 28829–28835 (2015).

    Google Scholar 

  124. 124

    Diest, K., Dionne, J. A., Spain, M. & Atwater, H. A. Tunable color filters based on metal–insulator–metal resonators. Nano Lett. 9, 2579–2583 (2009).

    CAS  Google Scholar 

  125. 125

    Richner, P. et al. Printable nanoscopic metamaterial absorbers and images with diffraction-limited resolution. ACS Appl. Mater. Interfaces 8, 11690–11697 (2016).

    CAS  Google Scholar 

  126. 126

    Lindquist, N. C., Nagpal, P., McPeak, K. M., Norris, D. J. & Oh, S.-H. Engineering metallic nanostructures for plasmonics and nanophotonics. Rep. Prog. Phys. 75, 036501 (2012).

    Google Scholar 

  127. 127

    Henzie, J., Lee, J., Lee, M. H., Hasan, W. & Odom, T. W. Nanofabrication of plasmonic structures. Annu. Rev. Phys. Chem. 60, 147–165 (2009).

    CAS  Google Scholar 

  128. 128

    Nagpal, P., Lindquist, N. C., Oh, S.-H. & Norris, D. J. Ultrasmooth patterned metals for plasmonics and metamaterials. Science 325, 594–597 (2009).

    CAS  Google Scholar 

  129. 129

    Liddle, J. A. & Gallatin, G. M. Nanomanufacturing: a perspective. ACS Nano 10, 2995–3014 (2016).

    CAS  Google Scholar 

  130. 130

    Xia, D., Ku, Z., Lee, S. C. & Brueck, S. R. J. Nanostructures and functional materials fabricated by interferometric lithography. Adv. Mater. 23, 147–179 (2011).

    CAS  Google Scholar 

  131. 131

    Vala, M. & Homola, J. Flexible method based on four-beam interference lithography for fabrication of large areas of perfectly periodic plasmonic arrays. Opt. Express 22, 18778–18789 (2014).

    CAS  Google Scholar 

  132. 132

    Højlund-Nielsen, E., Greibe, T., Mortensen, N. A. & Kristensen, A. Single-spot e-beam lithography for defining large arrays of nano-holes. Microelectron. Eng. 121, 104–107 (2014).

    Google Scholar 

  133. 133

    Franklin, D. et al. Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces. Nat. Commun. 6, 7337 (2015).

    CAS  Google Scholar 

  134. 134

    Murthy, S. et al. Fabrication of nanostructures by roll-to-roll extrusion coating. Adv. Eng. Mater. 18 484–489 (2016).

    CAS  Google Scholar 

  135. 135

    Rezaei, M., Jiang, H. & Kaminska, B. Structural colour printing from a reusable generic nanosubstrate masked for the target image. Nanotechnology 27, 085301 (2016).

    CAS  Google Scholar 

  136. 136

    Højlund-Nielsen, E. et al. Plasmonic colors: toward mass-production of metasurfaces. Adv. Mater. Technol. 1, 1600054 (2016).

    Google Scholar 

  137. 137

    Chen, H., Bhuiya, A. M., Ding, Q., Johnson, H. T. & Toussaint, K. C. Jr Towards do-it-yourself planar optical components using plasmon-assisted etching. Nat. Commun. 7, 10468 (2016).

    CAS  Google Scholar 

  138. 138

    Chen, X., Chen, Y., Yan, M. & Qiu, M. Nanosecond photothermal effects in plasmonic nanostructures. ACS Nano 6, 2550–2557 (2012).

    CAS  Google Scholar 

  139. 139

    Wang, L. et al. Large area plasmonic color palettes with expanded gamut using colloidal self-assembly. ACS Photonics 3, 627–633 (2016).

    CAS  Google Scholar 

  140. 140

    Jacobs, K. E. & Ferreira, P. M. Painting and direct writing of silver nanostructures on phosphate glass with electron beam irradiation. Adv. Func. Mater. 25, 5261–5268 (2015).

    CAS  Google Scholar 

  141. 141

    Jacobs, K. E. & Ferreira, P. M. Direct e-beam writing of colors on (AgI)x (AgPO3)1−x glass. J. Vac. Sci. Technol. B 34, 041605 (2016).

    Google Scholar 

  142. 142

    Lee, K.-T., Lee, J. Y., Seo, S. & Guo, L. J. Colored ultrathin hybrid photovoltaics with high quantum efficiency. Light Sci. Appl. 3, e215 (2014).

    Google Scholar 

  143. 143

    Luo, F. et al. Study of micro/nanostructures formed by a nanosecond laser in gaseous environments for stainless steel surface coloring. Appl. Surf. Sci. 328, 405–409 (2015).

    CAS  Google Scholar 

  144. 144

    Li, G. et al. Femtosecond laser color marking stainless steel surface with different wavelengths. Appl. Phys. A 118, 1189–1196 (2015).

    CAS  Google Scholar 

  145. 145

    Xue, J. et al. Scalable, full-colour and controllable chromotropic plasmonic printing. Nat. Commun. 6, 8906 (2015).

    CAS  Google Scholar 

  146. 146

    Xia, Y. N. & Whitesides, G. M. Soft lithography. Annu. Rev. Mater. Sci. 28, 153–184 (1998).

    CAS  Google Scholar 

  147. 147

    Kooy, N., Mohamed, K., Pin, L. T. & Guan, O. S. A review of roll-to-roll nanoimprint lithography. Nanoscale Res. Lett. 9, 320 (2014).

    Google Scholar 

  148. 148

    Lucas, B. D., Kim, J.-S., Chin, C. & Guo, L. J. Nanoimprint lithography based approach for the fabrication of large-area, uniformly oriented plasmonic arrays. Adv. Mater. 20, 1129–1134 (2008).

    CAS  Google Scholar 

  149. 149

    Lu, B.-R., Xu, C., Liao, J., Liu, J. & Chen, Y. High-resolution plasmonic structural colors from nanohole arrays with bottom metal disks. Opt. Lett. 41, 1400–1403 (2016).

    CAS  Google Scholar 

  150. 150

    Gao, L. et al. Nanoimprinting techniques for large-area three-dimensional negative index metamaterials with operation in the visible and telecom bands. ACS Nano 8, 5535–5542 (2014).

    CAS  Google Scholar 

  151. 151

    Kaplan, A. F., Xu, T. & Guo, L. J. High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography. Appl. Phys. Lett. 99, 143111 (2011).

    Google Scholar 

  152. 152

    Kaplan, A. F., Xu, T., Wu, Y.-K. & Guo, L. J. Multilayer pattern transfer for plasmonic color filter applications. J. Vac. Sci. Technol. B 28, C6O60–C6O63 (2010).

    CAS  Google Scholar 

  153. 153

    Ahn, S. H. & Guo, L. J. Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting. ACS Nano 3, 2304–2310 (2009).

    CAS  Google Scholar 

  154. 154

    Klinkova, A., Choueiri, R. M. & Kumacheva, E. Self-assembled plasmonic nanostructures. Chem. Soc. Rev. 43, 3976–3991 (2014).

    CAS  Google Scholar 

  155. 155

    Chen, T. & Reinhard, B. M. Assembling color on the nanoscale: multichromatic switchable pixels from plasmonic atoms and molecules. Adv. Mater. 28, 3522–3527 (2016).

    CAS  Google Scholar 

  156. 156

    Yu, R. et al. Structural coloring of glass using dewetted nanoparticles and ultrathin films of metals. ACS Photonics 3, 1194–1201 (2016).

    CAS  Google Scholar 

  157. 157

    Liu, Y. J. et al. Optically tunable plasmonic color filters. Appl. Phys. A 107, 49–54 (2012).

    CAS  Google Scholar 

  158. 158

    Liu, Y. J. et al. Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays. Adv. Mater. 24, OP131–OP135 (2012).

    CAS  Google Scholar 

  159. 159

    Xu, T. et al. High-contrast and fast electrochromic switching enabled by plasmonics. Nat. Commun. 7, 10479 (2016).

    CAS  Google Scholar 

  160. 160

    Wang, G., Chen, X., Liu, S., Wong, C. & Chu, S. Mechanical chameleon through dynamic real-time plasmonic tuning. ACS Nano 10, 1788–1794 (2016).

    CAS  Google Scholar 

  161. 161

    Zhu, X., Shi, L., Liu, X., Zi, J. & Wang, Z. A mechanically tunable plasmonic structure composed of a monolayer array of metal-capped colloidal spheres on an elastomeric substrate. Nano Res. 3, 807–812 (2010).

    CAS  Google Scholar 

  162. 162

    Yoo, D., Johnson, T. W., Cherukulappurath, S., Norris, D. J. & Oh, S.-H. Template-stripped tunable plasmonic devices on stretchable and rollable substrates. ACS Nano 9, 10647–10654 (2015).

    CAS  Google Scholar 

  163. 163

    Lütolf, F., Casari, D. & Gallinet, B. Low-cost and large-area strain sensors based on plasmonic fano resonances. Adv. Opt. Mater. 4, 715–721 (2016).

    Google Scholar 

  164. 164

    Lochbihler, H. Polarizing and angle-sensitive color filter in transmittance for security feature applications. Adv. Opt. Technol. 4, 71–77 (2015).

    Google Scholar 

  165. 165

    Govorov, A. O. & Richardson, H. H. Generating heat with metal nanoparticles. Nano Today 2, 30–38 (2007).

    Google Scholar 

  166. 166

    Chen, X. et al. Ordered Au nanocrystals on a substrate formed by light-induced rapid annealing. Nanoscale 6, 1756–1762 (2014).

    CAS  Google Scholar 

  167. 167

    Zuev, D. A. et al. Fabrication of hybrid nanostructures via nanoscale laser-induced reshaping for advanced light manipulation. Adv. Mater. 28, 3087–3093 (2016).

    CAS  Google Scholar 

  168. 168

    Chichkov, B. N., Momma, C., Nolte, S., von Alvensleben, F. & Tünnermann, A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63, 109–115 (1996).

    Google Scholar 

  169. 169

    Vorobyev, A. Y. & Guoa, C. Colorizing metals with femtosecond laser pulses. Appl. Phys. Lett. 92, 041914 (2008).

    Google Scholar 

  170. 170

    Ooms, M. D., Jeyaram, Y. & Sinton, D. Disposable plasmonics: rapid and inexpensive large area patterning of plasmonic structures with CO2 laser annealing. Langmuir 31, 5252–5258 (2015).

    CAS  Google Scholar 

  171. 171

    Zijlstra, P., Chon, J. W. M. & Gu, M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459, 410–413 (2009).

    CAS  Google Scholar 

  172. 172

    Chen, H., Bhuiya, A. M., Ding, Q. & Toussaint K. C. Jr, Plasmon-assisted audio recording. Sci. Rep. 5, 9125 (2015).

    Google Scholar 

  173. 173

    Tanzid, M. et al. Imaging through plasmonic nanoparticles. Proc. Natl Acad. Sci. USA 113, 5558–5563 (2016).

    CAS  Google Scholar 

  174. 174

    Wong, H., Frank, D., Solomon, P., Wann, C. & Welser, J. Nanoscale CMOS. Proc. IEEE 87, 537–570 (1999).

    Google Scholar 

  175. 175

    Yun, H., Lee, S.-Y., Hong, K., Yeom, J. & Lee, B. Plasmonic cavity-apertures as dynamic pixels for the simultaneous control of colour and intensity. Nat. Commun. 6, 7133 (2015).

    Google Scholar 

  176. 176

    McPeak, K. M. et al. Plasmonic films can easily be better: rules and recipes. ACS Photonics 2, 326–333 (2015).

    CAS  Google Scholar 

  177. 177

    West, P. R. et al. Searching for better plasmonic materials. Laser Photonics Rev. 4, 795–808 (2010).

    CAS  Google Scholar 

  178. 178

    Naik, G. V., Shalaev, V. M. & Boltasseva, A. Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013).

    CAS  Google Scholar 

  179. 179

    Langhammer, C., Schwind, M., Kasemo, B. & Zoric´, I. Localized surface plasmon resonances in aluminum nanodisks. Nano Lett. 8, 1461–1471 (2008).

    CAS  Google Scholar 

  180. 180

    Knight, M. W. et al. Aluminum for plasmonics. ACS Nano 8, 834–840 (2014).

    CAS  Google Scholar 

  181. 181

    Zheng, B. Y., Wang, Y., Nordlander, P. & Halas, N. J. Color-selective and CMOS-compatible photodetection based on aluminum plasmonics. Adv. Mater. 26, 6318–6323 (2014).

    CAS  Google Scholar 

  182. 182

    Khurgin, J. B. How to deal with the loss in plasmonics and metamaterials. Nat. Nanotechnol. 10, 2–6 (2015).

    CAS  Google Scholar 

  183. 183

    Wang, F. & Shen, Y. R. General properties of local plasmons in metal nanostructures. Phys. Rev. Lett. 97, 206806 (2006).

    Google Scholar 

  184. 184

    Luk'yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010).

    CAS  Google Scholar 

  185. 185

    Miroshnichenko, A. E., Flach, S. & Kivshar, Y. S. Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257–2298 (2010).

    CAS  Google Scholar 

  186. 186

    Sonnefraud, Y. et al. Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities. ACS Nano 4, 1664–1670 (2010).

    CAS  Google Scholar 

  187. 187

    Sobhani, A. et al. Pronounced linewidth narrowing of an aluminum nanoparticle plasmon resonance by interaction with an aluminum metallic film. Nano Lett. 15, 6946–6951 (2015).

    CAS  Google Scholar 

  188. 188

    Lee, J. et al. Ultra sub-wavelength surface plasmon confinement using airgap, subwavelength ring resonator arrays. Sci. Rep. 6, 22305 (2016).

    CAS  Google Scholar 

  189. 189

    King, N. S. et al. Fano resonant aluminum nanoclusters for plasmonic colorimetric sensing. ACS Nano 9, 10628–10636 (2015).

    CAS  Google Scholar 

  190. 190

    Zhang, Y., McKelvie, I. D., Cattrall, R. W. & Kolev, S. D. Colorimetric detection based on localised surface plasmon resonance of gold nanoparticles: merits, inherent shortcomings and future prospects. Talanta 152, 410–422 (2016).

    CAS  Google Scholar 

  191. 191

    Chen, Q., Hu, X., Wen, L., Yu, Y. & Cumming, D. R. S. Nanophotonic image sensors. Small 12, 4922–4935 (2016).

    CAS  Google Scholar 

  192. 192

    Smith, T., Guild, J. & Donaldson, R. Colour measurement. Nature 149, 76 (1942).

    CAS  Google Scholar 

  193. 193

    Miroshnichenko, A. E. et al. Magnetic light: optical magnetism of dielectric nanoparticles. Opt. Photonics News 23, 35 (2012).

    Google Scholar 

  194. 194

    Maier, S. A. Plasmonics: Fundamentals and Applications (Springer, 2007).

    Google Scholar 

  195. 195

    Fan, X., Zheng, W. & Singh, D. J. Light scattering and surface plasmons on small spherical particles. Light Sci. Appl. 3, e179 (2014).

    CAS  Google Scholar 

  196. 196

    Søndergaard, T. & Bozhevolnyi, S. Slow-plasmon resonant nanostructures: scattering and field enhancements. Phys. Rev. B 75, 073402 (2007).

    Google Scholar 

  197. 197

    Gallinet, B., Butet, J. & Martin, O. J. F. Numerical methods for nanophotonics: standard problems and future challenges. Laser Photonics Rev. 9, 577–603 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Commission through the FP7MMP Integrated project PLAST4FUTURE (NMP2-SE-2012-314345) and the International Network Programme of the Danish Agency for Science, Technology and Innovation (ALSCIN 5132-00070B). J.K.W.Y. acknowledges financial support from A*STAR Joint Council Office (Grant No. 14302FG092), SUTD International Design Centre (IDC) and SUTD Digital Manufacturing and Design Centre (DManD). S.I.B. acknowledges financial support from the European Research Council, Grant 341054 (PLAQNAP). The Rice group acknowledges support from the Robert A. Welch Foundation under grants C-1664 (S.L.), C-1222 (P.N.) and C-1220 (N.J.H.), and the Army Research Office under grant W911NF-12-1-0407.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Anders Kristensen or N. Asger Mortensen.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kristensen, A., Yang, J., Bozhevolnyi, S. et al. Plasmonic colour generation. Nat Rev Mater 2, 16088 (2017). https://doi.org/10.1038/natrevmats.2016.88

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing