Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Material design and engineering of next-generation flow-battery technologies

Subjects

Abstract

Spatial separation of the electrolyte and electrode is the main characteristic of flow-battery technologies, which liberates them from the constraints of overall energy content and the energy/power ratio. The concept of a flowing electrolyte not only presents a cost-effective approach for large-scale energy storage, but has also recently been used to develop a wide range of new hybrid energy storage and conversion systems. The advent of flow-based lithium-ion, organic redox-active materials, metal–air cells and photoelectrochemical batteries promises new opportunities for advanced electrical energy-storage technologies. In this Review, we present a critical overview of recent progress in conventional aqueous redox-flow batteries and next-generation flow batteries, highlighting the latest innovative alternative materials. We outline their technical feasibility for use in long-term and large-scale electrical energy-storage devices, as well as the limitations that need to be overcome, providing our view of promising future research directions in the field of redox-flow batteries.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Timeline of key developments in the area of flow-battery systems.
Figure 2: Strategies to increase the catalytic activity of electrodes and porous membranes in VRFBs.
Figure 3: Lithium-based flow batteries.
Figure 4: All-organic redox-flow batteries.
Figure 5: Metal–air flow batteries.
Figure 6: Solar rechargeable flow batteries.
Figure 7: Requirements and considerations for the development of flow batteries.

References

  1. 1

    Soloveichik, G. L. Flow batteries: current status and trends. Chem. Rev. 115, 11533–11558 (2015).

    CAS  Google Scholar 

  2. 2

    Wang, W. et al. Recent progress in redox flow battery research and development. Adv. Funct. Mater. 23, 970–986 (2013).

    CAS  Google Scholar 

  3. 3

    Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016).

    CAS  Google Scholar 

  4. 4

    Zhao, Y. et al. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. Chem. Soc. Rev. 44, 7968–7996 (2015).

    CAS  Google Scholar 

  5. 5

    Dunn, B., Kamath, H. & Tarascon, J. M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

    CAS  Google Scholar 

  6. 6

    Perry, M. L. & Weber, A. Z. Advanced redox-flow batteries: a perspective. J. Electrochem. Soc. 163, A5064–A5067 (2016).

    CAS  Google Scholar 

  7. 7

    Skyllas-Kazacos, M., Cao, L., Kazacos, M., Kausar, N. & Mousa, A. Vanadium electrolyte studies for the vanadium redox battery — a review. ChemSusChem 9, 1521–1543 (2016).

    CAS  Google Scholar 

  8. 8

    Chalamala, B. R. et al. Redox flow batteries: an engineering perspective. Proc. IEEE 102, 976–999 (2014).

    CAS  Google Scholar 

  9. 9

    Steele, B. C. H. & Heinzel, A. Materials for fuel-cell technologies. Nature 414, 345–352 (2001).

    CAS  Google Scholar 

  10. 10

    Park, M., Ryu, J. & Cho, J. Nanostructured electrocatalysts for all-vanadium redox flow batteries. Chem. Asian J. 10, 2096–2110 (2015).

    CAS  Google Scholar 

  11. 11

    Noack, J., Roznyatovskaya, N., Herr, T. & Fischer, P. The chemistry of redox-flow batteries. Angew. Chem. Int. Ed. 54, 9776–9809 (2015).

    CAS  Google Scholar 

  12. 12

    Maurya, S., Shin, S.-H., Kim, Y. & Moon, S.-H. A review on recent developments of anion exchange membranes for fuel cells and redox flow batteries. RSC Adv. 5, 37206–37230 (2015).

    CAS  Google Scholar 

  13. 13

    Schwenzer, B. et al. Membrane development for vanadium redox flow batteries. ChemSusChem 4, 1388–1406 (2011).

    CAS  Google Scholar 

  14. 14

    Huang, Q. & Wang, Q. Next-generation, high-energy-density redox flow batteries. ChemPlusChem 80, 312–322 (2015).

    CAS  Google Scholar 

  15. 15

    Schon, T. B., McAllister, B. T., Li, P. F. & Seferos, D. S. The rise of organic electrode materials for energy storage. Chem. Soc. Rev.http://dx.doi.org/10.1039/C6CS00173D (2016).

  16. 16

    Yu, M. et al. Solar-powered electrochemical energy storage: an alternative to solar fuels. J. Mater. Chem. A 4, 2766–2782 (2016).

    CAS  Google Scholar 

  17. 17

    Zhao, Y. et al. 3.5 V lithium–iodine hybrid redox battery with vertically aligned carbon nanotube current collector. Nano Lett. 14, 1085–1092 (2014).

    CAS  Google Scholar 

  18. 18

    Li, W. et al. Magnetic field-controlled lithium polysulfide semiliquid battery with ferrofluidic properties. Nano Lett. 15, 7394–7399 (2015).

    CAS  Google Scholar 

  19. 19

    Chen, X. W. et al. A low-dissipation, pumpless, gravity-induced flow battery. Energy Environ. Sci. 9, 1760–1770 (2016).

    CAS  Google Scholar 

  20. 20

    Braff, W. A., Bazant, M. Z. & Buie, C. R. Membrane-less hydrogen bromine flow battery. Nat. Commun. 4, 2346 (2013).

    Google Scholar 

  21. 21

    Wedege, K., Azevedo, J., Khataee, A., Bentien, A. & Mendes, A. Direct solar charging of an organic–inorganic, stable, and aqueous alkaline redox flow battery with a hematite photoanode. Angew. Chem. Int. Ed. 55, 7142–7147 (2016).

    CAS  Google Scholar 

  22. 22

    Liao, S. et al. Integrating a dual-silicon photoelectrochemical cell into a redox flow battery for unassisted photocharging. Nat. Commun. 7, 11474 (2016).

    CAS  Google Scholar 

  23. 23

    Yu, M. et al. Aqueous lithium–iodine solar flow battery for the simultaneous conversion and storage of solar energy. J. Am. Chem. Soc. 137, 8332–8335 (2015).

    CAS  Google Scholar 

  24. 24

    Zhu, Y. G. et al. Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li–O2 battery. Chem. Commun. (Camb.) 51, 9451–9454 (2015).

    CAS  Google Scholar 

  25. 25

    Bockelmann, M., Kunz, U. & Turek, T. Electrically rechargeable zinc–oxygen flow battery with high power density. Electrochem. Commun. 69, 24–27 (2016).

    CAS  Google Scholar 

  26. 26

    Lim, H. S., Lackner, A. M., & Knechtli, R. C. Zinc–bromine secondary battery. J. Electrochem. Soc. 124, 1154–1157 (1977).

    CAS  Google Scholar 

  27. 27

    Skyllas-Kazacos, M., Rychcik, M., Robins, R. G., Fane, A. G. & Green, M. A. New all-vanadium redox flow cell. J. Electrochem. Soc. 133, 1057–1058 (1986).

    CAS  Google Scholar 

  28. 28

    Kausar, N., Howe, R. & Skyllas-Kazacos, M. Raman spectroscopy studies of concentrated vanadium redox battery positive electrolytes. J. Appl. Electrochem. 31, 1327–1332 (2001).

    CAS  Google Scholar 

  29. 29

    Lee, J. G., Park, S. J., Cho, Y. I., Shul, Y. G. A novel cathodic electrolyte based on H2C2O4 for a stable vanadium redox flow battery with high charge–discharge capacities. RSC Adv. 3, 21347–21351 (2013).

    CAS  Google Scholar 

  30. 30

    Li, L. et al. A stable vanadium redox-flow battery with high energy density for large-scale energy storage. Adv. Energy Mater. 1, 394–400 (2011).

    CAS  Google Scholar 

  31. 31

    Vijayakumar, M., Wang, W., Nie, Z., Sprenkle, V. & Hu, J. Elucidating the higher stability of vanadium(V) cations in mixed acid based redox flow battery electrolytes. J. Power Sources 241, 173–177 (2013).

    CAS  Google Scholar 

  32. 32

    Roe, S., Menictas, C. & Skyllas-Kazacos, M. A. High energy density vanadium redox flow battery with 3 M vanadium electrolyte. J. Electrochem. Soc. 163, A5023–A5028 (2016).

    CAS  Google Scholar 

  33. 33

    Ulaganathan, M. et al. Recent advancements in all-vanadium redox flow batteries. Adv. Mater. Interfaceshttp://dx.doi.org/10.1002/admi.201500309 (2016).

  34. 34

    Kim, K. J. et al. A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries. J. Mater. Chem. A 3, 16913–16933 (2015).

    CAS  Google Scholar 

  35. 35

    Park, M., Jung, Y. J., Kim, J., Lee, H. & Cho, J. Synergistic effect of carbon nanofiber/nanotube composite catalyst on carbon felt electrode for high-performance all-vanadium redox flow battery. Nano Lett. 13, 4833–4839 (2013).

    CAS  Google Scholar 

  36. 36

    Kim, K. J. et al. Novel catalytic effects of Mn3O4 for all vanadium redox flow batteries. Chem. Commun. 48, 5455–5457 (2012).

    CAS  Google Scholar 

  37. 37

    Li, B. et al. Bismuth nanoparticle decorating graphite felt as a high-performance electrode for an all-vanadium redox flow battery. Nano Lett. 13, 1330–1335 (2013).

    Google Scholar 

  38. 38

    Li, B. et al. Nanorod niobium oxide as powerful catalysts for an all vanadium redox flow battery. Nano Lett. 14, 158–165 (2014).

    CAS  Google Scholar 

  39. 39

    Wei, L., Zhao, T. S., Zhao, G., An, L. & Zeng, L. A high-performance carbon nanoparticle-decorated graphite felt electrode for vanadium redox flow batteries. Appl. Energy 176, 74–79 (2016).

    CAS  Google Scholar 

  40. 40

    Li, W. et al. Graphene-nanowall-decorated carbon felt with excellent electrochemical activity toward VO2+/VO2+ couple for all vanadium redox flow battery. Adv. Sci. 3, 1500276 (2015).

    Google Scholar 

  41. 41

    Shao, Y. et al. Nanostructured electrocatalysts for PEM fuel cells and redox flow batteries: a selected review. ACS Catal. 5, 7288–7298 (2015).

    CAS  Google Scholar 

  42. 42

    Sun, B. & Skyllas-Kazacos, M. Modification of graphite electrode materials for vanadium redox flow battery application — I. Thermal treatment. Electrochim. Acta 37, 1253–1260 (1992).

    CAS  Google Scholar 

  43. 43

    Park, J. H., Park, J. J., Park, O. O., Jin, C.-S., Yang, J. H. Highly accurate apparatus for electrochemical characterization of the felt electrodes used in redox flow batteries. J. Power Sources 310, 137–144 (2016).

    CAS  Google Scholar 

  44. 44

    Wei, X., Li, B. & Wang, W. Porous polymeric composite separators for redox flow batteries. Polymer Rev. 55, 247–272 (2015).

    CAS  Google Scholar 

  45. 45

    Li, X., Zhang, H., Mai, Z., Zhang, H. & Vankelecom, I. Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energy Environ. Sci. 4, 1147–1160 (2011).

    CAS  Google Scholar 

  46. 46

    Li, J., Zhang, Y., Zhang, S., Huang, X. & Wang, L. Novel sulfonated polyimide/ZrO2 composite membrane as a separator of vanadium redox flow battery. Polym. Adv. Technol. 25, 1610–1615 (2014).

    CAS  Google Scholar 

  47. 47

    Lin, C. H., Yang, M. C. & Wei, H. J. Amino-silica modified Nafion membrane for vanadium redox flow battery. J. Power Sources 282, 562–571 (2015).

    CAS  Google Scholar 

  48. 48

    Yin, B., Yu, L., Jiang, B., Wang, L. & Xi, J. Nano oxides incorporated sulfonated poly(ether ether ketone) membranes with improved selectivity and stability for vanadium redox flow battery. J. Solid State Electrochem. 20, 1271–1283 (2016).

    CAS  Google Scholar 

  49. 49

    Li, J., Zhang, Y. & Wang, L. Preparation and characterization of sulfonated polyimide/TiO2 composite membrane for vanadium redox flow battery. J. Solid State Electrochem. 18, 729–737 (2014).

    CAS  Google Scholar 

  50. 50

    Li, J., Zhang, Y., Zhang, S. & Huang, X. Sulfonated polyimide/s-MoS2 composite membrane with high proton selectivity and good stability for vanadium redox flow battery. J. Membrane Sci. 490, 179–189 (2015).

    CAS  Google Scholar 

  51. 51

    Jia, C. et al. Sulfonated poly(ether ether ketone)/functionalized carbon nanotube composite membrane for vanadium redox flow battery applications. Electrochim. Acta 153, 44–48 (2015).

    CAS  Google Scholar 

  52. 52

    Yu, L., Lin, F., Xu, L. & Xi, J. A recast Nafion/graphene oxide composite membrane for advanced vanadium redox flow batteries. RSC Adv. 6, 3756–3763 (2016).

    CAS  Google Scholar 

  53. 53

    Cao, L., Sun, Q., Gao, Y., Liu, L. & Shi, H. Novel acid-base hybrid membrane based on amine-functionalized reduced graphene oxide and sulfonated polyimide for vanadium redox flow battery. Electrochim. Acta 158, 24–34 (2015).

    CAS  Google Scholar 

  54. 54

    Dai, W. et al. Sulfonated poly(ether ether ketone)/graphene composite membrane for vanadium redox flow battery. Electrochim. Acta 132, 200–207 (2014).

    CAS  Google Scholar 

  55. 55

    Wei, W. et al. Hydrophobic asymmetric ultrafiltration PVDF membranes: an alternative separator for VFB with excellent stability. Phys. Chem. Chem. Phys. 15, 1766–1771 (2013).

    CAS  Google Scholar 

  56. 56

    Zhang, H., Zhang, H., Li, X., Mai, Z. & Zhang, J. Nanofiltration (NF) membranes: the next generation separators for all vanadium redox flow batteries (VRBs)? Energy Environ. Sci. 4, 1676–1679 (2011).

    CAS  Google Scholar 

  57. 57

    Maurya, S., Shin, S.-H., Lee, J.-Y., Kim, Y. & Moon, S.-H. Amphoteric nanoporous polybenzimidazole membrane with extremely low crossover for a vanadium redox flow battery. RSC Adv. 6, 5198–5204 (2016).

    CAS  Google Scholar 

  58. 58

    Luo, T., David, O., Gendel, Y. & Wessling, M. Porous poly(benzimidazole) membrane for all vanadium redox flow battery. J. Power Sources 312, 45–54 (2016).

    CAS  Google Scholar 

  59. 59

    Zhou, X. L., Zhao, T. S., An, L., Wei, L. & Zhang, C. The use of polybenzimidazole membranes in vanadium redox flow batteries leading to increased coulombic efficiency and cycling performance. Electrochim. Acta 153, 492–498 (2015).

    CAS  Google Scholar 

  60. 60

    Yuan, Z. et al. Advanced porous membranes with ultra-high selectivity and stability for vanadium flow batteries. Energy Environ. Sci. 9, 441–447 (2016).

    CAS  Google Scholar 

  61. 61

    Yuan, Z. et al. Highly ion-selective zeolite flake layer on porous membranes for flow battery applications. Angew. Chem. Int. Ed. 55, 3058–3062 (2016).

    CAS  Google Scholar 

  62. 62

    Chae, I. S. et al. Ultra-high proton/vanadium selectivity for hydrophobic polymer membranes with intrinsic nanopores for redox flow battery. Adv. Energy Mater. 6, 1600517 (2016).

    Google Scholar 

  63. 63

    Wang, W. & Sprenkle, V. Energy storage: redox flow batteries go organic. Nat. Chem. 8, 204–206 (2016).

    CAS  Google Scholar 

  64. 64

    Duduta, M. et al. Semi-solid lithium rechargeable flow battery. Adv. Energy Mater. 1, 511–516 (2011).

    CAS  Google Scholar 

  65. 65

    Hamelet, S. et al. Non-aqueous Li-based redox flow batteries. J. Electrochem. Soc. 159, A1360–A1367 (2012).

    CAS  Google Scholar 

  66. 66

    Hamelet, S., Larcher, D., Dupont, L. & Tarascon, J.-M. Silicon-based non-aqueous anolyte for Li redox-flow batteries. J. Electrochem. Soc. 160, A516–A520 (2013).

    CAS  Google Scholar 

  67. 67

    Ventosa, E. et al. Electron bottleneck in the charge/discharge mechanism of lithium titanates for batteries. ChemSusChem 8, 1737–1744 (2015).

    CAS  Google Scholar 

  68. 68

    Wei, T.-S. et al. Biphasic electrode suspensions for Li-ion semi-solid flow cells with high energy density, fast charge transport, and low-dissipation flow. Adv. Energy Mater. 5, 1500535 (2015).

    Google Scholar 

  69. 69

    Biendicho, J. J., Flox, C., Sanz, L. & Morante, J. R. Static and dynamic studies on LiNi1/3Co1/3Mn1/3O2-based suspensions for semi-solid flow batteries. ChemSusChem 9, 1938–1944 (2016).

    CAS  Google Scholar 

  70. 70

    Wang, Q., Zakeeruddin, S. M., Wang, D., Exnar, I. & Grätzel, M. Redox targeting of insulating electrode materials: a new approach to high-energy-density batteries. Angew. Chem. Int. Ed. 45, 8197–8200 (2006).

    CAS  Google Scholar 

  71. 71

    Huang, Q., Li, H., Gratzel, M. & Wang, Q. Reversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery. Phys. Chem. Chem. Phys. 15, 1793–1797 (2013).

    CAS  Google Scholar 

  72. 72

    Jia, C. et al. High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane. Sci. Adv. 1, e1500886 (2015).

    Google Scholar 

  73. 73

    Pan, F. et al. Redox targeting of anatase TiO2 for redox flow lithium-ion batteries. Adv. Energy Mater. 4, 1400567 (2014).

    Google Scholar 

  74. 74

    Huang, Q., Yang, J., Ng, C. B., Jia, C. & Wang, Q. A redox flow lithium battery based on the redox targeting reactions between LiFePO4 and iodide. Energy Environ. Sci. 9, 917–921 (2016).

    Google Scholar 

  75. 75

    Lu, Y., Goodenough, J. B. & Kim, Y. Aqueous cathode for next-generation alkali-ion batteries. J. Am. Chem. Soc. 133, 5756–5759 (2011).

    CAS  Google Scholar 

  76. 76

    Lu, Y. & Goodenough, J. B. Rechargeable alkali-ion cathode-flow battery. J. Mater. Chem. 21, 10113–10117 (2011).

    CAS  Google Scholar 

  77. 77

    Wang, Y., He, P. & Zhou, H. Li-redox flow batteries based on hybrid electrolytes: at the cross road between Li-ion and redox flow batteries. Adv. Energy Mater. 2, 770–779 (2012).

    CAS  Google Scholar 

  78. 78

    Zhao, Y., Mercier, N. B. & Byon, H. R. An aqueous lithium–iodine battery with solid polymer electrolyte-coated metallic lithium anode. ChemPlusChem 80, 344–348 (2015).

    CAS  Google Scholar 

  79. 79

    Zhao, Y., Wang, L. & Byon, H. R. High-performance rechargeable lithium–iodine batteries using triiodide/iodide redox couples in an aqueous cathode. Nat. Commun. 4, 1896 (2013).

    Google Scholar 

  80. 80

    Zhao, Y. & Byon, H. R. High-performance lithium–iodine flow battery. Adv. Energy Mater. 3, 1630–1635 (2013).

    CAS  Google Scholar 

  81. 81

    Zhao, Y. et al. A reversible Br2/Br redox couple in the aqueous phase as a high-performance catholyte for alkali-ion batteries. Energy Environ. Sci. 7, 1990–1995 (2014).

    CAS  Google Scholar 

  82. 82

    Chen, H. N. & Lu, Y. C. A high-energy-density multiple redox semi-solid-liquid flow battery. Adv. Energy Mater. 6, 1502183 (2016).

    Google Scholar 

  83. 83

    Li, J., Yang, L., Yang, S. & Lee, J. Y. The application of redox targeting principles to the design of rechargeable Li–S flow batteries. Adv. Energy Mater. 5, 1501808 (2015).

    Google Scholar 

  84. 84

    Li, C. et al. Polysulfide-blocking microporous polymer membrane tailored for hybrid Li–sulfur flow batteries. Nano Lett. 15, 5724–5729 (2015).

    CAS  Google Scholar 

  85. 85

    Chen, H. et al. Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries. Nat. Commun. 6, 5877 (2015).

    CAS  Google Scholar 

  86. 86

    Fan, F. Y. et al. Polysulfide flow batteries enabled by percolating nanoscale conductor networks. Nano Lett. 14, 2210–2218 (2014).

    CAS  Google Scholar 

  87. 87

    Dong, K., Wang, S. & Yu, J. A lithium/polysulfide semi-solid rechargeable flow battery with high output performance. RSC Adv. 4, 47517–47520 (2014).

    CAS  Google Scholar 

  88. 88

    Yu, X. & Manthiram, A. A class of polysulfide catholytes for lithium–sulfur batteries: energy density, cyclability, and voltage enhancement. Phys. Chem. Chem. Phys. 17, 2127–2136 (2015).

    CAS  Google Scholar 

  89. 89

    Pan, H. et al. On the way toward understanding solution chemistry of lithium polysulfides for high energy Li–S redox flow batteries. Adv. Energy Mater. 5, 1500113 (2015).

    Google Scholar 

  90. 90

    Li, N. et al. An aqueous dissolved polysulfide cathode for lithium–sulfur batteries. Energy Environ. Sci. 7, 3307–3312 (2014).

    CAS  Google Scholar 

  91. 91

    Han, K. et al. Free-standing nitrogen-doped graphene paper as electrodes for high-performance lithium/dissolved polysulfide batteries. ChemSusChem 7, 2545–2553 (2014).

    CAS  Google Scholar 

  92. 92

    Yang, Y., Zheng, G. Y. & Cui, Y. A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage. Energy Environ. Sci. 6, 1552–1558 (2013).

    CAS  Google Scholar 

  93. 93

    Zhang, S., Ueno, K., Dokko, K. & Watanabe, M. Recent advances in electrolytes for lithium–sulfur batteries. Adv. Energy Mater. 5, 1500117 (2015).

    Google Scholar 

  94. 94

    Urbonaite, S., Poux, T. & Novák, P. Progress towards commercially viable Li–S battery cells. Adv. Energy Mater. 5, 1500118 (2015).

    Google Scholar 

  95. 95

    Pope, M. A. & Aksay, I. A. Structural design of cathodes for Li–S batteries. Adv. Energy Mater. 5, 1500124 (2015).

    Google Scholar 

  96. 96

    Song, Z. & Zhou, H. Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy Environ. Sci. 6, 2280–2301 (2013).

    CAS  Google Scholar 

  97. 97

    Häupler, B., Wild, A. & Schubert, U. S. Carbonyls: powerful organic materials for secondary batteries. Adv. Energy Mater. 5, 1402034 (2015).

    Google Scholar 

  98. 98

    Song, Z., Zhan, H. & Zhou, Y. Polyimides: promising energy-storage materials. Angew. Chem. Int. Ed. 49, 8444–8448 (2010).

    CAS  Google Scholar 

  99. 99

    Liang, Y., Tao, Z. & Chen, J. Organic electrode materials for rechargeable lithium batteries. Adv. Energy Mater. 2, 742–769 (2012).

    CAS  Google Scholar 

  100. 100

    Armand, M. et al. Conjugated dicarboxylate anodes for Li-ion batteries. Nat. Mater. 8, 120–125 (2009).

    CAS  Google Scholar 

  101. 101

    Huang, W. et al. Quasi-solid-state rechargeable lithium-ion batteries with a calix[4]quinone cathode and gel polymer electrolyte. Angew. Chem. Int. Ed. 125, 9332–9336 (2013).

    Google Scholar 

  102. 102

    Wang, W. et al. Anthraquinone with tailored structure for a nonaqueous metal–organic redox flow battery. Chem. Commun. 48, 6669–6671 (2012).

    CAS  Google Scholar 

  103. 103

    Wei, X. et al. TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries. Adv. Mater. 26, 7649–7653 (2014).

    CAS  Google Scholar 

  104. 104

    Takechi, K., Kato, Y. & Hase, Y. A highly concentrated catholyte based on a solvate ionic liquid for rechargeable flow batteries. Adv. Mater. 27, 2501–2506 (2015).

    CAS  Google Scholar 

  105. 105

    Huang, J. H. et al. Liquid catholyte molecules for nonaqueous redox flow batteries. Adv. Energy Mater. 5, 1401782 (2015).

    Google Scholar 

  106. 106

    Ding, Y. & Yu, G. A. Bio-inspired, heavy-metal-free, dual-electrolyte liquid battery towards sustainable energy storage. Angew. Chem. Int. Ed. 55, 4772–4776 (2016).

    CAS  Google Scholar 

  107. 107

    Sevov, C. S. et al. Evolutionary design of low molecular weight organic anolyte materials for applications in nonaqueous redox flow batteries. J. Am. Chem. Soc. 137, 14465–14472 (2015).

    CAS  Google Scholar 

  108. 108

    Liu, T., Wei, X., Nie, Z., Sprenkle, V. & Wang, W. A. Total organic aqueous redox flow battery employing a low cost and sustainable methyl viologen anolyte and 4-HO-TEMPO catholyte. Adv. Energy Mater. 6, 1501449 (2016).

    Google Scholar 

  109. 109

    Zhao, Y. et al. Sustainable electrical energy storage through the ferrocene/ferrocenium redox reaction in aprotic electrolyte. Angew. Chem. Int. Ed. 53, 11036–11040 (2014).

    CAS  Google Scholar 

  110. 110

    Ding, Y., Zhao, Y. & Yu, G. A. Membrane-free ferrocene-based high-rate semiliquid battery. Nano Lett. 15, 4108–4113 (2015).

    CAS  Google Scholar 

  111. 111

    Shin, S.-H., Yun, S.-H. & Moon, S.-H. A review of current developments in non-aqueous redox flow batteries: characterization of their membranes for design perspective. RSC Adv. 3, 9095– 9116 (2013).

    CAS  Google Scholar 

  112. 112

    Li, Z. et al. Electrochemical properties of an all-organic redox flow battery using 2,2,6,6-tetramethyl-1-piperidinyloxy and N-methylphthalimide. Electrochem. Solid-State Lett. 14, A171–A173 (2011).

    CAS  Google Scholar 

  113. 113

    Kaur, A. P., Holubowitch, N. E., Ergun, S., Elliott, C. F. & Odom, S. A. A highly soluble organic catholyte for non-aqueous redox flow batteries. Energy Technol. 3, 476–480 (2015).

    CAS  Google Scholar 

  114. 114

    Oh, S. H. et al. A metal-free and all-organic redox flow battery with polythiophene as the electroactive species. J. Mater. Chem. A 2, 19994–19998 (2014).

    CAS  Google Scholar 

  115. 115

    Brushett, F. R., Vaughey, J. T. & Jansen, A. N. An all-organic non-aqueous lithium-ion redox flow battery. Adv. Energy Mater. 2, 1390–1396 (2012).

    CAS  Google Scholar 

  116. 116

    Park, S.-K. et al. Electrochemical properties of a non-aqueous redox battery with all-organic redox couples. Electrochem. Commun. 59, 68–71 (2015).

    CAS  Google Scholar 

  117. 117

    Wei, X. et al. Radical compatibility with nonaqueous electrolytes and its impact on an all-organic redox flow battery. Angew. Chem. Int. Ed. 54, 8684–8687 (2015).

    CAS  Google Scholar 

  118. 118

    Xu, Y. et al. Novel organic redox flow batteries using soluble quinonoid compounds as positive materials. IEEEhttp://ieeexplore.ieee.org/document/5335870/ (2009).

  119. 119

    Yang, B., Hoober-Burkhardt, L., Wang, F., Surya Prakash, G. K. & Narayanan, S. R. An inexpensive aqueous flow battery for large-scale electrical energy storage based on water-soluble organic redox couples. J. Electrochem. Soc. 161, A1371–A1380 (2014).

    CAS  Google Scholar 

  120. 120

    Huskinson, B. et al. A metal-free organic–inorganic aqueous flow battery. Nature 505, 195–198 (2014).

    CAS  Google Scholar 

  121. 121

    Chen, Q., Eisenach, L. & Aziz, M. J. Cycling analysis of a quinone–bromide redox flow battery. J. Electrochem. Soc. 163, A5057–A5063 (2016).

    CAS  Google Scholar 

  122. 122

    Huskinson, B., Marshak, M. P., Gerhardt, M. R. & Aziz, M. J. Cycling of a quinone–bromide flow battery for large-scale electrochemical energy storage. ECS Trans. 61, 27–30 (2014).

    CAS  Google Scholar 

  123. 123

    Lin, K. et al. Alkaline quinone flow battery. Science 349, 1529–1532 (2015).

    CAS  Google Scholar 

  124. 124

    Janoschka, T. et al. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature 527, 78–81 (2015).

    CAS  Google Scholar 

  125. 125

    Nagarjuna, G. et al. Impact of redox-active polymer molecular weight on the electrochemical properties and transport across porous separators in nonaqueous solvents. J. Am. Chem. Soc. 136, 16309–16316 (2014).

    CAS  Google Scholar 

  126. 126

    Sukegawa, T., Masuko, I., Oyaizu, K. & Nishide, H. Expanding the dimensionality of polymers populated with organic robust radicals toward flow cell application: synthesis of TEMPO-crowded bottlebrush polymers using anionic polymerization and ROMP. Macromolecules 47, 8611–8617 (2014).

    CAS  Google Scholar 

  127. 127

    Lee, J.-S. et al. Metal–air batteries with high energy density: Li–air versus Zn–air. Adv. Energy Mater. 1, 34–50 (2011).

    CAS  Google Scholar 

  128. 128

    Cao, R., Lee, J.-S., Liu, M. & Cho, J. Recent progress in non-precious catalysts for metal–air batteries. Adv. Energy Mater. 2, 816–829 (2012).

    CAS  Google Scholar 

  129. 129

    Rahman, M. A., Wang, X. & Wen, C. High energy density metal–air batteries: a review. J. Electrochem. Soc. 160, A1759–A1771 (2013).

    CAS  Google Scholar 

  130. 130

    grosse Austing, J., Nunes Kirchner, C., Komsiyska, L. & Wittstock, G. Investigation of crossover processes in a unitized bidirectional vanadium/air redox flow battery. J. Power Sources 306, 692–701 (2016).

    CAS  Google Scholar 

  131. 131

    grosse Austing, J., Nunes Kirchner, C., Hammer, E.-M., Komsiyska, L. & Wittstock, G. Study of an unitised bidirectional vanadium/air redox flow battery comprising a two-layered cathode. J. Power Sources 273, 1163–1170 (2015).

    CAS  Google Scholar 

  132. 132

    Hosseiny, S. S., Saakes, M. & Wessling, M. A polyelectrolyte membrane-based vanadium/air redox flow battery. Electrochem. Commun. 13, 751–754 (2011).

    CAS  Google Scholar 

  133. 133

    Wen, Y. H., Cheng, J., Xun, Y., Ma, P. H. & Yang, Y. S. Bifunctional redox flow battery: 2. V(III)/V(II)–l-cystine(O2) system. Electrochim. Acta 53, 6018–6023 (2008).

    CAS  Google Scholar 

  134. 134

    Wen, Y. H., Cheng, J., Ma, P. H. & Yang, Y. S. Bifunctional redox flow battery-1 V(III)/V(II)–glyoxal(O2) system. Electrochim. Acta 53, 3514–3522 (2008).

    CAS  Google Scholar 

  135. 135

    Noack, J., Cremers, C., Bayer, D., Tübke, J. & Pinkwart, K. Development and characterization of a 280 cm2 vanadium/oxygen fuel cell. J. Power Sources 253, 397–403 (2014).

    CAS  Google Scholar 

  136. 136

    Menictas, C. & Skyllas-Kazacos, M. Performance of vanadium–oxygen redox fuel cell. J. Appl. Electrochem. 41, 1223–1232 (2011).

    CAS  Google Scholar 

  137. 137

    Zhang, J., Zhao, Z., Xia, Z. & Dai, L. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 10, 444–452 (2015).

    CAS  Google Scholar 

  138. 138

    Pan, J. et al. Preliminary study of alkaline single flowing Zn–O2 battery. Electrochem. Commun. 11, 2191–2194 (2009).

    CAS  Google Scholar 

  139. 139

    Smedley, S. & Zhang, X. G. in Encyclopedia of Electrochemical Power Sources (ed. Garche, J. ) 393–403 (Elsevier, 2009).

    Google Scholar 

  140. 140

    Smedley, S. I. & Zhang, X. G. A regenerative zinc–air fuel cell. J. Power Sources 165, 897–904 (2007).

    CAS  Google Scholar 

  141. 141

    Savaskan, G., Huh, T. & Evans, J. W. Further studies of a zinc–air cell employing a packed bed anode part I: discharge. J. Appl. Electrochem. 22, 909–915 (1992).

    CAS  Google Scholar 

  142. 142

    Naybour, R. D. The effect of electrolyte flow on the morphology of zinc electrodeposited from aqueous alkaline solution containing zincate ions. J. Electrochem. Soc. 116, 520–524 (1969).

    CAS  Google Scholar 

  143. 143

    Wang, K. et al. Morphology control of zinc regeneration for zinc–air fuel cell and battery. J. Power Sources 271, 65–75 (2014).

    CAS  Google Scholar 

  144. 144

    Christensen, J. et al. A critical review of Li/air batteries. J. Electrochem. Soc. 159, R1–R30 (2011).

    Google Scholar 

  145. 145

    Abraham, K. M. & Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1–5 (1996).

    CAS  Google Scholar 

  146. 146

    Girishkumar, G., McCloskey, B., Luntz, A. C., Swanson, S. & Wilcke, W. Lithium–air battery: promise and challenges. J. Phys. Chem. Lett. 1, 2193–2203 (2010).

    CAS  Google Scholar 

  147. 147

    Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).

    CAS  Google Scholar 

  148. 148

    Chen, X. J. et al. A high-rate rechargeable Li–air flow battery. J. Electrochem. Soc. 160, A1619–A1623 (2013).

    CAS  Google Scholar 

  149. 149

    Ruggeri, I., Arbizzani, C. & Soavi, F. A novel concept of semi-solid, Li redox flow air (O2) battery: a breakthrough towards high energy and power batteries. Electrochim. Acta 206, 291–300 (2016).

    CAS  Google Scholar 

  150. 150

    Schmidt, D., Hager, M. D. & Schubert, U. S. Photo-rechargeable electric energy storage systems. Adv. Energy Mater. 6, 1500369 (2016).

    Google Scholar 

  151. 151

    Liu, D., Liu, F. Q. & Liu, J. G. Effect of vanadium redox species on photoelectrochemical behavior of TiO2 and TiO2/WO3 photo-electrodes. J. Power Sources 213, 78–82 (2012).

    CAS  Google Scholar 

  152. 152

    Liu, D. et al. Ultra-long electron lifetime induced efficient solar energy storage by an all-vanadium photoelectrochemical storage cell using methanesulfonic acid. J. Mater. Chem. A 3, 20322–20329 (2015).

    CAS  Google Scholar 

  153. 153

    Wei, Z., Liu, D., Hsu, C. & Liu, F. All-vanadium redox photoelectrochemical cell: an approach to store solar energy. Electrochem. Commun. 45, 79–82 (2014).

    CAS  Google Scholar 

  154. 154

    Liu, D. et al. Reversible electron storage in an all-vanadium photoelectrochemical storage cell: synergy between vanadium redox and hybrid photocatalyst. ACS Catalysis 5, 2632–2639 (2015).

    CAS  Google Scholar 

  155. 155

    Wei, Z. et al. Geometry-enhanced ultra-long TiO2 nanobelts in an all-vanadium photoelectrochemical cell for efficient storage of solar energy. Nano Energy 26, 200–207 (2016).

    CAS  Google Scholar 

  156. 156

    Peimanifard, Z. & Rashid-Nadimi, S. Glassy carbon/multi walled carbon nanotube/cadmium sulphide photoanode for light energy storage in vanadium photoelectrochemical cell. J. Power Sources 300, 395–401 (2015).

    CAS  Google Scholar 

  157. 157

    Yan, N. F., Li, G. R. & Gao, X. P. Solar rechargeable redox flow battery based on Li2WO4/LiI couples in dual-phase electrolytes. J. Mater. Chem. A 1, 7012–7015 (2013).

    CAS  Google Scholar 

  158. 158

    Liu, P. et al. Solar rechargeable flow battery based on photoregeneration of two soluble redox couples. ChemSusChem 6, 802–806 (2013).

    CAS  Google Scholar 

  159. 159

    Yan, N. F., Li, G. R. & Gao, X. P. Electroactive organic compounds as anode-active materials for solar rechargeable redox flow battery in dual-phase electrolytes. J. Electrochem. Soc. 161, A736–A741 (2014).

    CAS  Google Scholar 

  160. 160

    Ventosa, E. et al. Non-aqueous semi-solid flow battery based on Na-ion chemistry. P2-type NaxNi0.22Co0.11Mn0.66O2–NaTi2(PO4)3 . Chem. Commun. 51, 7298–7301 (2015).

    CAS  Google Scholar 

  161. 161

    Shamie, J. S., Liu, C., Shaw, L. L. & Sprenkle, V. L. Room temperature, hybrid sodium-based flow batteries with multi-electron transfer redox reactions. Sci. Rep. 5, 11215 (2015).

    Google Scholar 

  162. 162

    Liu, C., Shamie, J. S., Shaw, L. L. & Sprenkle, V. L. An ambient temperature molten sodium–vanadium battery with aqueous flowing catholyte. ACS Appl. Mater. Interfaces 8, 1545–1552 (2016).

    CAS  Google Scholar 

  163. 163

    Winsberg, J. et al. Polymer/zinc hybrid-flow battery using block copolymer micelles featuring a TEMPO corona as catholyte. Polymer Chem. 7, 1711–1718 (2016).

    CAS  Google Scholar 

  164. 164

    Winsberg, J. et al. Poly(TEMPO)/zinc hybrid-flow battery: a novel, “green,” high voltage, and safe energy storage system. Adv. Mater. 28, 2238–2243 (2016).

    CAS  Google Scholar 

  165. 165

    Schaltin, S. et al. Towards an all-copper redox flow battery based on a copper-containing ionic liquid. Chem. Commun. 52, 414–417 (2016).

    CAS  Google Scholar 

  166. 166

    Sanz, L., Lloyd, D., Magdalena, E., Palma, J. & Kontturi, K. Description and performance of a novel aqueous all-copper redox flow battery. J. Power Sources 268, 121–128 (2014).

    CAS  Google Scholar 

  167. 167

    Gong, K. et al. All-soluble all-iron aqueous redox-flow battery. ACS Energy Letters, 89–93 (2016).

    CAS  Google Scholar 

  168. 168

    Tucker, M. C., Phillips, A. & Weber, A. Z. All-iron redox flow battery tailored for off-grid portable applications. ChemSusChem 8, 3996–4004 (2015).

    CAS  Google Scholar 

  169. 169

    Miller, M. A. et al. Kinetic study of electrochemical treatment of carbon fiber microelectrodes leading to in situ enhancement of vanadium flow battery efficiency. J. Electrochem. Soc. 163, A2095–A2102 (2016).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the 2016 Research Fund (1.160033.01) of Ulsan National Institute of Science and Technology (UNIST). W.W. acknowledges the financial support from the US Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) under Contract No.57558 and US DOE Office of Advanced Research Projects Agency-Energy (ARPA-E) through Award DE-AR0000686. Pacific Northwest National Laboratory (PNNL) is operated by Battelle for the DOE under Contract DE-AC05-76RL01830.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Wei Wang or Jaephil Cho.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, M., Ryu, J., Wang, W. et al. Material design and engineering of next-generation flow-battery technologies. Nat Rev Mater 2, 16080 (2017). https://doi.org/10.1038/natrevmats.2016.80

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing