Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Metal–organic frameworks for membrane-based separations

Abstract

As research into metal–organic frameworks (MOFs) enters its third decade, efforts are naturally shifting from fundamental studies to applications, utilizing the unique features of these materials. Engineered forms of MOFs, such as membranes and films, are being investigated to transform laboratory-synthesized MOF powders to industrially viable products for separations, chemical sensors and catalysts. Following encouraging demonstrations of gas separations using MOF-based membranes, liquid-phase separations are now being explored in an effort to build effective membranes for these settings. In this Review, we highlight MOF applications that are in their nascent stages, specifically liquid-phase separations using MOF-based mixed-matrix membranes. We also highlight the analytical techniques that provide important insights into these materials, particularly at surfaces and interfaces, to better understand MOFs and their interactions with other materials, which will ultimately lead to their use in advanced technologies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Comparison of hard-to-soft microporous materials.
Figure 2: Schematic illustrations for filtration and pervaporation methods.
Figure 3: Fabrication methods for pure MOF films or membranes.
Figure 4: Fabrication of MOF mixed-matrix membranes.
Figure 5: Postsynthetic polymerization of MOFs.
Figure 6: Confocal laser scanning microscopy for MOF analysis.

References

  1. 1

    Farha, O. K. et al. De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nat. Chem. 2, 944–948 (2010).

    CAS  Google Scholar 

  2. 2

    Hoskins, B. F. & Robson, R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the Zn(CN)2 and Cd(CN)2 structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4′′,4′′′-tetracyanotetraphenylmethane] BF4·x C6H5NO2 . J. Am. Chem. Soc. 112, 1546–1554 (1990).

    CAS  Google Scholar 

  3. 3

    Yaghi, O. M. & Li, H. Hydrothermal synthesis of a metal–organic framework containing large rectangular channels. J. Am. Chem. Soc. 117, 10401–10402 (1995).

    CAS  Google Scholar 

  4. 4

    Liu, J. et al. Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 43, 6011–6061 (2014).

    CAS  Google Scholar 

  5. 5

    Furukawa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    Google Scholar 

  6. 6

    Horcajada, P. et al. Metal–organic frameworks in biomedicine. Chem. Rev. 112, 1232–1268 (2012).

    CAS  Google Scholar 

  7. 7

    Jacoby, M. Heading to market with MOFs. Chem. Eng. News 86, 13–16 (2008).

    Google Scholar 

  8. 8

    Van de Voorde, B., Bueken, B., Denayer, J. & De Vos, D. Adsorptive separation on metal–organic frameworks in the liquid phase. Chem. Soc. Rev. 43, 5766–5788 (2014).

    CAS  Google Scholar 

  9. 9

    Liu, J., Thallapally, P. K., McGrail, B. P., Brown, D. R. & Liu, J. Progress in adsorption-based CO2 capture by metal–organic frameworks. Chem. Soc. Rev. 41, 2308–2322 (2012).

    CAS  Google Scholar 

  10. 10

    Sumida, K. et al. Carbon dioxide capture in metal–organic frameworks. Chem. Rev. 112, 724–781 (2012).

    CAS  Google Scholar 

  11. 11

    Baig, F. U. in Advanced Membrane Technology and Applications (eds Li, N. N., Fane, A. G., Winston Ho, W. S. & Matsuura, T. ) 469–488 (John Wiley & Sons, 2008).

    Google Scholar 

  12. 12

    Kubota, N., Hashimoto, T. & Mori, Y. in Advanced Membrane Technology and Applications (eds Li, N. N., Fane, A. G., Winston Ho, W. S. & Matsuura, T. ) 101–129 (John Wiley & Sons, 2008).

    Google Scholar 

  13. 13

    Rangnekar, N., Mittal, N., Elyassi, B., Caro, J. & Tsapatsis, M. Zeolite membranes — a review and comparison with MOFs. Chem. Soc. Rev. 44, 7128–7154 (2015).

    CAS  Google Scholar 

  14. 14

    Burtch, N. C., Jasuja, H. & Walton, K. S. Water stability and adsorption in metal–organic frameworks. Chem. Rev. 114, 10575–10612 (2014).

    CAS  Google Scholar 

  15. 15

    Herm, Z. R. et al. Separation of hexane isomers in a metal–organic framework with triangular channels. Science 340, 960–964 (2013).

    CAS  Google Scholar 

  16. 16

    Farha, O. K. et al. Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J. Am. Chem. Soc. 134, 15016–15021 (2012).

    CAS  Google Scholar 

  17. 17

    Cohen, S. M. Postsynthetic methods for the functionalization of metal–organic frameworks. Chem. Rev. 112, 970–1000 (2012).

    CAS  Google Scholar 

  18. 18

    Shah, M., McCarthy, M. C., Sachdeva, S., Lee, A. K. & Jeong, H.-K. Current status of metal–organic framework membranes for gas separations: promises and challenges. Ind. Eng. Chem. Res. 51, 2179–2199 (2012).

    CAS  Google Scholar 

  19. 19

    Robeson, L. M. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 62, 165–185 (1991).

    CAS  Google Scholar 

  20. 20

    Robeson, L. M. The upper bound revisited. J. Membr. Sci. 320, 390–400 (2008).

    CAS  Google Scholar 

  21. 21

    Robeson, L. M., Liu, Q., Freeman, B. D. & Paul, D. R. Comparison of transport properties of rubbery and glassy polymers and the relevance to the upper bound relationship. J. Membr. Sci. 476, 421–431 (2015).

    CAS  Google Scholar 

  22. 22

    Kim, S. & Lee, Y. M. Rigid and microporous polymers for gas separation membranes. Prog. Polym. Sci. 43, 1–32 (2015).

    CAS  Google Scholar 

  23. 23

    Chen, X. Y., Vinh-Thang, H., Ramirez, A. A., Rodrigue, D. & Kaliaguine, S. Membrane gas separation technologies for biogas upgrading. RSC Adv. 5, 24399–24448 (2015).

    CAS  Google Scholar 

  24. 24

    Sanders, D. F. et al. Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer 54, 4729–4761 (2013).

    CAS  Google Scholar 

  25. 25

    McKeown, N. B. & Budd, P. M. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 35, 675–683 (2006).

    CAS  Google Scholar 

  26. 26

    Swaidan, R., Ghanem, B. & Pinnau, I. Fine-tuned intrinsically ultramicroporous polymers redefine the permeability/selectivity upper bounds of membrane-based air and hydrogen separations. ACS Macro Lett. 4, 947–951 (2015).

    CAS  Google Scholar 

  27. 27

    Freeman, B. D. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules 32, 375–380 (1999).

    CAS  Google Scholar 

  28. 28

    Swaidan, R., Ghanem, B., Litwiller, E. & Pinnau, I. Physical aging, plasticization and their effects on gas permeation in “rigid” polymers of intrinsic microporosity. Macromolecules 48, 6553–6561 (2015).

    CAS  Google Scholar 

  29. 29

    Li, W., Zhang, Y., Li, Q. & Zhang, G. Metal–organic framework composite membranes: synthesis and separation applications. Chem. Eng. Sci. 135, 232–257 (2015).

    CAS  Google Scholar 

  30. 30

    Zacher, D., Shekhah, O., Woll, C. & Fischer, R. A. Thin films of metal–organic frameworks. Chem. Soc. Rev. 38, 1418–1429 (2009).

    CAS  Google Scholar 

  31. 31

    Stock, N. & Biswas, S. Synthesis of metal–organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933–969 (2012).

    CAS  Google Scholar 

  32. 32

    Bétard, A. & Fischer, R. A. Metal–organic framework thin films: from fundamentals to applications. Chem. Rev. 112, 1055–1083 (2012).

    Google Scholar 

  33. 33

    Qiu, S. L., Xue, M. & Zhu, G. S. Metal–organic framework membranes: from synthesis to separation application. Chem. Soc. Rev. 43, 6116–6140 (2014).

    CAS  Google Scholar 

  34. 34

    Venna, S. R. & Carreon, M. A. Metal organic framework membranes for carbon dioxide separation. Chem. Eng. Sci. 124, 3–19 (2015).

    CAS  Google Scholar 

  35. 35

    Erucar, I., Yilmaz, G. & Keskin, S. Recent advances in metal–organic framework-based mixed matrix membranes. Chem. Asian J. 8, 1692–1704 (2013).

    CAS  Google Scholar 

  36. 36

    Zornoza, B., Tellez, C., Coronas, J., Gascon, J. & Kapteijn, F. Metal organic framework based mixed matrix membranes: an increasingly important field of research with a large application potential. Microporous Mesoporous Mater. 166, 67–78 (2013).

    CAS  Google Scholar 

  37. 37

    Seoane, B. et al. Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture? Chem. Soc. Rev. 44, 2421–2454 (2015).

    CAS  Google Scholar 

  38. 38

    Shekhah, O., Liu, J., Fischer, R. A. & Woll, C. MOF thin films: existing and future applications. Chem. Soc. Rev. 40, 1081–1106 (2011).

    CAS  Google Scholar 

  39. 39

    Aguado, S. & Farrusseng, D. in Metal–Organic Frameworks: Applications from Catalysis to Gas Storage (ed Farrusseng, D. ) 121–149 (Wiley-VCH, 2011).

    Google Scholar 

  40. 40

    Yeo, Z. Y., Chai, S.-P., Zhu, P. W. & Mohamed, A. R. An overview: synthesis of thin films/membranes of metal organic frameworks and its gas separation performances. RSC Adv. 4, 54322–54334 (2014).

    CAS  Google Scholar 

  41. 41

    Adatoz, E., Avci, A. K. & Keskin, S. Opportunities and challenges of MOF-based membranes in gas separations. Sep. Purif. Technol. 152, 207–237 (2015).

    CAS  Google Scholar 

  42. 42

    Liu, B. & Fischer, R. A. Liquid-phase epitaxy of metal organic framework thin films. Sci. China Chem. 54, 1851–1866 (2011).

    CAS  Google Scholar 

  43. 43

    Zacher, D., Schmid, R., Woll, C. & Fischer, R. A. Surface chemistry of metal–organic frameworks at the liquid–solid interface. Angew. Chem. Int. Ed. 50, 176–199 (2011).

    CAS  Google Scholar 

  44. 44

    Cui, X. et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science 353, 141–144 (2016).

    CAS  Google Scholar 

  45. 45

    Cadiau, A., Adil, K., Bhatt, P. M., Belmabkhout, Y. & Eddaoudi, M. A metal–organic framework-based splitter for separating propylene from propane. Science 353, 137–140 (2016).

    CAS  Google Scholar 

  46. 46

    Li, B., Wen, H.-M., Zhou, W. & Chen, B. Porous metal–organic frameworks for gas storage and separation: what, how, and why? J. Phys. Chem. Lett. 5, 3468–3479 (2014).

    CAS  Google Scholar 

  47. 47

    Rui, Z., James, J. B., Kasik, A. & Lin, Y. S. Novel metal–organic framework membrane process for high purity CO2 production. AIChE J. 62, 3836–3841 (2016).

    CAS  Google Scholar 

  48. 48

    Venna, S. R. et al. Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles. J. Mater. Chem. A 3, 5014–5022 (2015).

    CAS  Google Scholar 

  49. 49

    Wang, N., Mundstock, A., Liu, Y., Huang, A. & Caro, J. Amine-modified Mg-MOF-74/CPO-27-Mg membrane with enhanced H2/CO2 separation. Chem. Eng. Sci. 124, 27–36 (2015).

    CAS  Google Scholar 

  50. 50

    Carta, M. et al. An efficient polymer molecular sieve for membrane gas separations. Science 339, 303–307 (2013).

    CAS  Google Scholar 

  51. 51

    Feng, C., Khulbe, K. C., Matsuura, T., Farnood, R. & Ismail, A. F. Recent progress in zeolite/zeotype membranes. J. Membr. Sci. Res. 1, 49–72 (2015).

    Google Scholar 

  52. 52

    Ordoñez, M. J. C., Balkus, K. J. Jr, Ferraris, J. P. & Musselman, I. H. Molecular sieving realized with ZIF-8/Matrimidâ mixed-matrix membranes. J. Membr. Sci. 361, 28–37 (2010).

    Google Scholar 

  53. 53

    Zhu, Y. et al. Synthesis and seawater desalination of molecular sieving zeolitic imidazolate framework membranes. Desalination 385, 75–82 (2016).

    CAS  Google Scholar 

  54. 54

    Sorribas, S., Gorgojo, P., Téllez, C., Coronas, J. & Livingston, A. G. High flux thin film nanocomposite membranes based on metal–organic frameworks for organic solvent nanofiltration. J. Am. Chem. Soc. 135, 15201–15208 (2013).

    CAS  Google Scholar 

  55. 55

    Khayet, M. in Advanced Membrane Technology and Applications (eds Li, N. N., Fane, A. G., Winston Ho, W. S. & Matsuura, T. ) 297–369 (John Wiley & Sons, 2008).

    Google Scholar 

  56. 56

    Lipnizki, F., Hausmanns, S., Ten, P.-K., Field, R. W. & Laufenberg, G. Organophilic pervaporation: prospects and performance. Chem. Eng. J. 73, 113–129 (1999).

    CAS  Google Scholar 

  57. 57

    Sorribas, S. et al. Pervaporation and membrane reactor performance of polyimide based mixed matrix membranes containing MOF HKUST-1. Chem. Eng. Sci. 124, 37–44 (2015).

    CAS  Google Scholar 

  58. 58

    Jonquières, A. et al. Industrial state-of-the-art of pervaporation and vapour permeation in the western countries. J. Membr. Sci. 206, 87–117 (2002).

    Google Scholar 

  59. 59

    Morigami, Y., Kondo, M., Abe, J., Kita, H. & Okamoto, K. The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane. Sep. Purif. Technol. 25, 251–260 (2001).

    CAS  Google Scholar 

  60. 60

    Atci, E. & Keskin, S. Understanding the potential of zeolite imidazolate framework membranes in gas separations using atomically detailed calculations. J. Phys. Chem. C 116, 15525–15537 (2012).

    CAS  Google Scholar 

  61. 61

    Gupta, K. M., Qiao, Z., Zhang, K. & Jiang, J. Seawater pervaporation through zeolitic imidazolate framework membranes: atomistic simulation study. ACS Appl. Mater. Interfaces 8, 13392–13399 (2016).

    CAS  Google Scholar 

  62. 62

    Adatoz, E. & Keskin, S. Application of MD simulations to predict membrane properties of MOFs. J. Nanomater. 2015, 136867 (2015).

    Google Scholar 

  63. 63

    Liu, X., Demir, N. K., Wu, Z. & Li, K. Highly water-stable zirconium metal–organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. J. Am. Chem. Soc. 137, 6999–7002 (2015).

    CAS  Google Scholar 

  64. 64

    Valenzano, L. et al. Disclosing the complex structure of UiO-66 metal organic framework: a synergic combination of experiment and theory. Chem. Mater. 23, 1700–1718 (2011).

    CAS  Google Scholar 

  65. 65

    Vandichel, M. et al. Active site engineering in UiO-66 type metal–organic frameworks by intentional creation of defects: a theoretical rationalization. CrystEngComm 17, 395–406 (2015).

    CAS  Google Scholar 

  66. 66

    Ghosh, P., Colon, Y. J. & Snurr, R. Q. Water adsorption in UiO-66: the importance of defects. Chem. Commun. 50, 11329–11331 (2014).

    CAS  Google Scholar 

  67. 67

    Trickett, C. A. et al. Definitive molecular level characterization of defects in UiO-66 crystals. Angew. Chem. Int. Ed. 127, 11314–11319 (2015).

    Google Scholar 

  68. 68

    Schneemann, A. et al. Flexible metal–organic frameworks. Chem. Soc. Rev. 43, 6062–6096 (2014).

    CAS  Google Scholar 

  69. 69

    Kolokolov, D. I., Stepanov, A. G. & Jobic, H. Mobility of the 2-methylimidazolate linkers in ZIF-8 probed by 2H NMR: saloon doors for the guests. J. Phys. Chem. C 119, 27512–27520 (2015).

    CAS  Google Scholar 

  70. 70

    Wu, Y.-N. et al. Electrospun fibrous mats as skeletons to produce free-standing MOF membranes. J. Mater. Chem. 22, 16971–16978 (2012).

    CAS  Google Scholar 

  71. 71

    Kasik, A., Dong, X. & Lin, Y. S. Synthesis and stability of zeolitic imidazolate framework-68 membranes. Microporous Mesoporous Mater. 204, 99–105 (2015).

    CAS  Google Scholar 

  72. 72

    Hermes, S., Zacher, D., Baunemann, A., Wöll, C. & Fischer, R. A. Selective growth and MOCVD loading of small single crystals of MOF-5 at alumina and silica surfaces modified with organic self-assembled monolayers. Chem. Mater. 19, 2168–2173 (2007).

    CAS  Google Scholar 

  73. 73

    Zacher, D., Baunemann, A., Hermes, S. & Fischer, R. A. Deposition of microcrystalline [Cu3(btc)2] and [Zn2(bdc)2(dabco)] at alumina and silica surfaces modified with patterned self assembled organic monolayers: evidence of surface selective and oriented growth. J. Mater. Chem. 17, 2785–2792 (2007).

    CAS  Google Scholar 

  74. 74

    Shekhah, O. et al. The liquid phase epitaxy approach for the successful construction of ultra-thin and defect-free ZIF-8 membranes: pure and mixed gas transport study. Chem. Commun. 50, 2089–2092 (2014).

    CAS  Google Scholar 

  75. 75

    Ameloot, R. et al. Interfacial synthesis of hollow metal–organic framework capsules demonstrating selective permeability. Nat. Chem. 3, 382–387 (2011).

    CAS  Google Scholar 

  76. 76

    Yao, J. et al. Contra-diffusion synthesis of ZIF-8 films on a polymer substrate. Chem. Commun. 47, 2559–2561 (2011).

    CAS  Google Scholar 

  77. 77

    Campbell, J., Davies, R. P., Braddock, D. C. & Livingston, A. G. Improving the permeance of hybrid polymer/metal–organic framework (MOF) membranes for organic solvent nanofiltration (OSN)–development of MOF thin films via interfacial synthesis. J. Mater. Chem. A 3, 9668–9674 (2015).

    CAS  Google Scholar 

  78. 78

    Huang, K. et al. A ZIF-71 hollow fiber membrane fabricated by contra-diffusion. ACS Appl. Mater. Interfaces 7, 16157–16160 (2015).

    CAS  Google Scholar 

  79. 79

    Brown, A. J. et al. Interfacial microfluidic processing of metal–organic framework hollow fiber membranes. Science 345, 72–75 (2014).

    CAS  Google Scholar 

  80. 80

    Denny, M. S. & Cohen, S. M. In situ modification of metal–organic frameworks in mixed-matrix membranes. Angew. Chem. Int. Ed. 54, 9029–9032 (2015).

    CAS  Google Scholar 

  81. 81

    Mondloch, J. E. et al. Vapor-phase metalation by atomic layer deposition in a metal–organic framework. J. Am. Chem. Soc. 135, 10294–10297 (2013).

    CAS  Google Scholar 

  82. 82

    Sotto, A., Orcajo, G., Arsuaga, J. M., Calleja, G. & Landaburu-Aguirre, J. Preparation and characterization of MOF-PES ultrafiltration membranes. J. Appl. Polym. Sci. 132, 41633 (2015).

    Google Scholar 

  83. 83

    Basu, S. et al. Solvent resistant nanofiltration (SRNF) membranes based on metal–organic frameworks. J. Membr. Sci. 344, 190–198 (2009).

    CAS  Google Scholar 

  84. 84

    Amirilargani, M. & Sadatnia, B. Poly(vinyl alcohol)/zeolitic imidazolate frameworks (ZIF-8) mixed matrix membranes for pervaporation dehydration of isopropanol. J. Membr. Sci. 469, 1–10 (2014).

    CAS  Google Scholar 

  85. 85

    Duan, J. et al. High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8. J. Membr. Sci. 476, 303–310 (2015).

    CAS  Google Scholar 

  86. 86

    DeCoste, J. B., Denny, M. S., Peterson, G. W., Mahle, J. J. & Cohen, S. M. Enhanced aging properties of HKUST-1 in hydrophobic mixed-matrix membranes for ammonia adsorption. Chem. Sci. 7, 2711–2716, (2016).

    CAS  Google Scholar 

  87. 87

    Bachman, J. E., Smith, Z. P., Li, T., Xu, T. & Long, J. R. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal–organic framework nanocrystals. Nat. Mater. 15, 845–849 (2016).

    CAS  Google Scholar 

  88. 88

    Song, Q. L. et al. Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy Environ. Sci. 5, 8359–8369 (2012).

    CAS  Google Scholar 

  89. 89

    Zhang, R. et al. Coordination-driven in situ self-assembly strategy for the preparation of metal–organic framework hybrid membranes. Angew. Chem. Int. Ed. 53, 9775–9779 (2014).

    CAS  Google Scholar 

  90. 90

    Wang, L. et al. The influence of dispersed phases on polyamide/ZIF-8 nanofiltration membranes for dye removal from water. RSC Adv. 5, 50942–50954 (2015).

    CAS  Google Scholar 

  91. 91

    Zhang, Y. et al. Photoinduced postsynthetic polymerization of a metal–organic framework toward a flexible stand-alone membrane. Angew. Chem. Int. Ed. 54, 4259–4263 (2015).

    CAS  Google Scholar 

  92. 92

    Lin, L. et al. Membrane adsorber with metal organic frameworks for sulphur removal. RSC Adv. 3, 9889–9896 (2013).

    CAS  Google Scholar 

  93. 93

    Wee, L. H. et al. Submicrometer-sized ZIF-71 filled organophilic membranes for improved bioethanol recovery: mechanistic insights by Monte Carlo simulation and FTIR spectroscopy. Adv. Funct. Mater. 25, 516–525 (2015).

    CAS  Google Scholar 

  94. 94

    Yan, H. et al. Sonication-enhanced in situ assembly of organic/inorganic hybrid membranes: evolution of nanoparticle distribution and pervaporation performance. J. Membr. Sci. 481, 94–105 (2015).

    CAS  Google Scholar 

  95. 95

    Liu, X.-L. et al. An organophilic pervaporation membrane derived from metal–organic framework nanoparticles for efficient recovery of bio-alcohols. Angew. Chem. Int. Ed. 50, 10636–10639 (2011).

    CAS  Google Scholar 

  96. 96

    Fan, H. et al. Simultaneous spray self-assembly of highly loaded ZIF-8–PDMS nanohybrid membranes exhibiting exceptionally high biobutanol-permselective pervaporation. Angew. Chem. Int. Ed. 53, 5578–5582 (2014).

    CAS  Google Scholar 

  97. 97

    Shi, G. M., Yang, T. & Chung, T. S. Polybenzimidazole (PBI)/zeolitic imidazolate frameworks (ZIF-8) mixed matrix membranes for pervaporation dehydration of alcohols. J. Membr. Sci. 415416, 577–586 (2012).

    Google Scholar 

  98. 98

    Ying, Y. et al. Recovery of acetone from aqueous solution by ZIF-7/PDMS mixed matrix membranes. RSC Adv. 5, 28394–28400 (2015).

    CAS  Google Scholar 

  99. 99

    Liu, J. et al. In situ growth of continuous thin metal–organic framework film for capacitive humidity sensing. J. Mater. Chem. 21, 3775–3778 (2011).

    CAS  Google Scholar 

  100. 100

    Vankelecom, I. F. J. et al. Silylation to improve incorporation of zeolites in polyimide films. J. Phys. Chem. 100, 3753–3758 (1996).

    CAS  Google Scholar 

  101. 101

    Marti, A., Tran, D. & Balkus, K. Jr. Fabrication of a substituted imidazolate material 1 (SIM-1) membrane using post synthetic modification (PSM) for pervaporation of water/ethanol mixtures. J. Porous Mater. 22, 1275–1284 (2015).

    CAS  Google Scholar 

  102. 102

    Yao, B.-J., Jiang, W.-L., Dong, Y., Liu, Z.-X. & Dong, Y.-B. Post-synthetic polymerization of UiO-66-NH2 nanoparticles and polyurethane oligomer toward stand-alone membranes for dye removal and separation. Chem. Eur. J. 22, 10565–10571 (2016).

    CAS  Google Scholar 

  103. 103

    McGuire, C. V. & Forgan, R. S. The surface chemistry of metal–organic frameworks. Chem. Commun. 51, 5199–5217 (2015).

    CAS  Google Scholar 

  104. 104

    Patterson, J. P. et al. Observing the growth of metal–organic frameworks by in situ liquid cell transmission electron microscopy. J. Am. Chem. Soc. 137, 7322–7328 (2015).

    CAS  Google Scholar 

  105. 105

    Ma, M. Y. et al. Use of confocal fluorescence microscopy to compare different methods of modifying metal–organic framework (MOF) crystals with dyes. CrystEngComm 13, 2828–2832 (2011).

    CAS  Google Scholar 

  106. 106

    Gadzikwa, T. et al. Selective bifunctional modification of a non-catenated metal–organic framework material via “click” chemistry. J. Am. Chem. Soc. 131, 13613–13615 (2009).

    CAS  Google Scholar 

  107. 107

    Gadzikwa, T. et al. Covalent surface modification of a metal–organic framework: selective surface engineering via CuI-catalyzed Huisgen cycloaddition. Chem. Commun. 2008, 5493–5495 (2008).

    Google Scholar 

  108. 108

    Kondo, M., Furukawa, S., Hirai, K. & Kitagawa, S. Coordinatively immobilized monolayers on porous coordination polymer crystals. Angew. Chem. Int. Ed. 49, 5327–5330 (2010).

    CAS  Google Scholar 

  109. 109

    Yanai, N. & Granick, S. Directional self-assembly of a colloidal metal–organic framework. Angew. Chem. Int. Ed. 51, 5638–5641 (2012).

    CAS  Google Scholar 

  110. 110

    Yanai, N., Sindoro, M., Yan, J. & Granick, S. Electric field-induced assembly of monodisperse polyhedral metal–organic framework crystals. J. Am. Chem. Soc. 135, 34–37 (2013).

    CAS  Google Scholar 

  111. 111

    Jung, S. et al. Bio-functionalization of metal–organic frameworks by covalent protein conjugation. Chem. Commun. 47, 2904–2906 (2011).

    CAS  Google Scholar 

  112. 112

    Morris, W., Briley, W. E., Auyeung, E., Cabezas, M. D. & Mirkin, C. A. Nucleic acid–metal organic framework (MOF) nanoparticle conjugates. J. Am. Chem. Soc. 136, 7261–7264 (2014).

    CAS  Google Scholar 

  113. 113

    Silverstein, R. M. & Webster, F. X. Spectrometric Identification of Organic Compounds, 6th Edition (John Wiley & Sons, 1998).

    Google Scholar 

  114. 114

    Liu, X. L. et al. Improvement of hydrothermal stability of zeolitic imidazolate frameworks. Chem. Commun. 49, 9140–9142 (2013).

    CAS  Google Scholar 

  115. 115

    Chi, W. S. et al. Mixed matrix membranes consisting of SEBS block copolymers and size-controlled ZIF-8 nanoparticles for CO2 capture. J. Membr. Sci. 495, 479–488 (2015).

    CAS  Google Scholar 

  116. 116

    Huth, F. et al. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Lett. 12, 3973–3978 (2012).

    CAS  Google Scholar 

  117. 117

    Bordiga, S. et al. Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by IR. Phys. Chem. Chem. Phys. 9, 2676–2685 (2007).

    CAS  Google Scholar 

  118. 118

    Tian, F. Y. et al. Surface and stability characterization of a nanoporous ZIF-8 thin film. J. Phys. Chem. C 118, 14449–14456 (2014).

    CAS  Google Scholar 

  119. 119

    Chizallet, C. & Bats, N. External surface of zeolite imidazolate fameworks viewed ab initio : multifunctionality at the organic–inorganic interface. J. Phys. Chem. Lett. 1, 349–353 (2010).

    CAS  Google Scholar 

  120. 120

    Lu, G. & Hupp, J. T. Metal–organic frameworks as sensors: a ZIF-8 based Fabry–Perot device as a selective sensor for chemical vapors and gases. J. Am. Chem. Soc. 132, 7832–7833 (2010).

    CAS  Google Scholar 

  121. 121

    Heinke, L., Gu, Z. G. & Woll, C. The surface barrier phenomenon at the loading of metal–organic frameworks. Nat. Commun. 5, 4562 (2014).

    CAS  Google Scholar 

  122. 122

    Liu, B., Tu, M. & Fischer, R. A. Metal–organic framework thin films: crystallite orientation dependent adsorption. Angew. Chem. Int. Ed. 52, 3402–3405 (2013).

    CAS  Google Scholar 

  123. 123

    Liu, B. et al. Chemistry of SURMOFs: layer-selective installation of functional groups and post-synthetic covalent modification probed by fluorescence microscopy. J. Am. Chem. Soc. 133, 1734–1737 (2011).

    CAS  Google Scholar 

  124. 124

    Tian, F. Y. et al. In situ Measurement of CO2 and H2O adsorption by ZIF-8 films. J. Phys. Chem. C 119, 15248–15253 (2015).

    CAS  Google Scholar 

  125. 125

    Cussler, E. L. Membranes containing selective flakes. J. Membr. Sci. 52, 275–288 (1990).

    CAS  Google Scholar 

  126. 126

    Jeong, B. H. et al. Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J. Membr. Sci. 294, 1–7 (2007).

    CAS  Google Scholar 

  127. 127

    Peterson, R. J. Composite reverse osmosis and nanofiltration membranes. J. Membr. Sci. 83, 81–150 (1993).

    Google Scholar 

  128. 128

    Hudiono, Y. C., Carlisle, T. K., LaFrate, A. L., Gin, D. L. & Noble, R. D. Novel mixed matrix membranes based on polymerizable room-temperature ionic liquids and SAPO-34 particles to improve CO2 separation. J. Membr. Sci. 370, 141–148 (2011).

    CAS  Google Scholar 

  129. 129

    Hod, I. et al. Directed growth of electroactive metal–organic framework thin films using electrophoretic deposition. Adv. Mater. 26, 6295–6300 (2014).

    CAS  Google Scholar 

  130. 130

    Zhang, Z., Nguyen, H. T. H., Miller, S. A. & Cohen, S. M. polyMOFs: a class of interconvertible polymer–metal–organic-framework hybrid materials. Angew. Chem. Int. Ed. 54, 6152–6157 (2015).

    CAS  Google Scholar 

  131. 131

    Zhang, Z. et al. Polymer–metal–organic frameworks (polyMOFs) as water tolerant materials for selective carbon dioxide separations. J. Am. Chem. Soc. 138, 920–925 (2016).

    CAS  Google Scholar 

  132. 132

    Zhukhovitskiy, A. V. et al. Highly branched and loop-rich gels via formation of metal–organic cages linked by polymers. Nat. Chem. 8, 33–41 (2016).

    CAS  Google Scholar 

  133. 133

    Wilmer, C. E. et al. Large-scale screening of hypothetical metal–organic frameworks. Nat. Chem. 4, 83–89 (2012).

    CAS  Google Scholar 

  134. 134

    Shoaee, M., Anderson, M. W. & Attfield, M. P. Crystal growth of the nanoporous metal–organic framework HKUST-1 revealed by in situ atomic force microscopy. Angew. Chem. Int. Ed. 47, 8525–8528 (2008).

    CAS  Google Scholar 

  135. 135

    Moh, P. Y., Cubillas, P., Anderson, M. W. & Attfield, M. P. Revelation of the molecular assembly of the nanoporous metal organic framework ZIF-8. J. Am. Chem. Soc. 133, 13304–13307 (2011).

    CAS  Google Scholar 

  136. 136

    Cubillas, P., Anderson, M. W. & Attfield, M. P. Materials discovery and crystal growth of zeolite A type zeolitic–imidazolate frameworks revealed by atomic force microscopy. Chem. Eur. J. 19, 8236–8243 (2013).

    CAS  Google Scholar 

  137. 137

    Cubillas, P., Anderson, M. W. & Attfield, M. P. Crystal growth mechanisms and morphological control of the prototypical metal–organic framework MOF-5 revealed by atomic force microscopy. Chem. Eur. J. 18, 15406–15415 (2012).

    CAS  Google Scholar 

  138. 138

    John, N. S. et al. Single layer growth of sub-micron metal–organic framework crystals observed by in situ atomic force microscopy. Chem. Commun. 6294–6296 (2009).

  139. 139

    Hermes, S., Schroder, F., Chelmowski, R., Woll, C. & Fischer, R. A. Selective nucleation and growth of metal–organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111). J. Am. Chem. Soc. 127, 13744–13745 (2005).

    CAS  Google Scholar 

  140. 140

    Cravillon, J. et al. Fast nucleation and growth of ZIF-8 nanocrystals monitored by time-resolved in situ small-angle and wide-angle X-ray scattering. Angew. Chem. Int. Ed. 50, 8067–8071 (2011).

    CAS  Google Scholar 

Download references

Acknowledgements

L.B. was supported by the National Science Foundation under award number DMR-1255326 and Henry Luce Foundation's Clare Boothe Luce Program. S.M.C. was supported for work on MOF MMMs by the Army Research Office under award number W911NF-15-1-0497 (STIR) and the National Science Foundation under award number DMR-1506059. M.S.D. is the recipient of an ARCS Foundation Fellowship.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Lauren Benz or Seth M. Cohen.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Denny, M., Moreton, J., Benz, L. et al. Metal–organic frameworks for membrane-based separations. Nat Rev Mater 1, 16078 (2016). https://doi.org/10.1038/natrevmats.2016.78

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing