Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanomaterials for optical data storage

Abstract

The growing amount of data that is generated every year creates an urgent need for new and improved data storage methods. Nanomaterials, which have unique mechanical, electronic and optical properties owing to the strong confinement of electrons, photons and phonons at the nanoscale, are enabling the development of disruptive methods for optical data storage with ultra-high capacity, ultra-long lifetime and ultra-low energy consumption. In this Review, we survey recent advancements in nanomaterials technology towards the next generation of optical data storage systems, focusing on metallic nanoparticles, graphene and graphene oxide, semiconductor quantum dots and rare-earth-doped nanocrystals. We conclude by discussing the use of nanomaterials in data storage systems that do not rely on optical mechanisms and by surveying the future prospects for the field.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Capacity of nanomaterial-based data storage technologies.
Figure 2: Technological roadmap of optical data storage devices.
Figure 3: Metallic nanoparticles.
Figure 4: Graphene and graphene oxide.
Figure 5: Semiconductor quantum dots.
Figure 6: Rare-earth-doped nanocrystals.

References

  1. Arbesman, S. Stop hyping big data and start paying attention to ‘long data’. Wiredhttp://www.wired.com/opinion/2013/01/forget-big-data-think-long-data/ (2013).

  2. Abbott, B. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).

    CAS  Article  Google Scholar 

  3. Hoover, J. Obama brain mapping project tests big data limits. InformationWeekhttp://www.informationweek.com/software/information-management/obama-brain-mapping-project-tests-big-data-limits/d/d-id/1109355? (2013).

  4. Delforge, P. America's data centers consuming and wasting growing amounts of energy. NRDChttps://www.nrdc.org/resources/americas-data-centers-consuming-and-wasting-growing-amounts-energy#sthash.r80KPIec.dpuf (2015).

  5. Gu, M., Li, X. P. & Cao, Y. Y. Optical storage arrays: a perspective for future big data storage. Light Sci. Appl. 3, e177 (2014).

    CAS  Article  Google Scholar 

  6. Sarid, D. & Schechtman, B. H. A roadmap for optical data storage applications. Opt. Photonics News 18, 32–37 (2007).

    Article  Google Scholar 

  7. Curtis, K., Dhar, L., Hill, A., Wilson, W. & Ayres, M. Holographic Data Storage: From Theory to Practical Systems (John Wiley & Sons, 2010).

    Book  Google Scholar 

  8. Betzig, E. et al. Near-field magneto-optics and high density data storage. App. Phys. Lett. 61, 142–144 (1992).

    CAS  Article  Google Scholar 

  9. Terris, B., Mamin, H., Rugar, D., Studenmund, W. & Kino, G. Near-field optical data storage using a solid immersion lens. App. Phys. Lett. 65, 388–390 (1994).

    Article  Google Scholar 

  10. Srituravanich, W. et al. Flying plasmonic lens in the near field for high-speed nanolithography. Nat. Nanotechnol. 3, 733–737 (2008).

    CAS  Article  Google Scholar 

  11. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated-emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994). The first paper to propose the idea of stimulated-emission-depletion fluorescence microscopy.

    CAS  Article  Google Scholar 

  12. Stohr, R. J. et al. Super-resolution fluorescence quenching microscopy of graphene. ACS Nano 6, 9175–9181 (2012).

    Article  CAS  Google Scholar 

  13. Wang, P. et al. Far-field imaging of non-fluorescent species with subdiffraction resolution. Nat. Photonics 7, 449–453 (2013).

    Article  CAS  Google Scholar 

  14. Hanne, J. et al. STED nanoscopy with fluorescent quantum dots. Nat. Commun. 6, 7127 (2015). This paper demonstrated the possibility of implementing super-resolution microscopy using commercial semiconductor quantum dots.

    CAS  Article  Google Scholar 

  15. Kolesov, R. et al. Super-resolution upconversion microscopy of praseodymium-doped yttrium aluminum garnet nanoparticles. Phys. Rev. B 84, 153413 (2011).

    Article  CAS  Google Scholar 

  16. Gan, Z. S., Cao, Y. Y., Evans, R. A. & Gu, M. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat. Commun. 4, 2061 (2013).

    Article  CAS  Google Scholar 

  17. Li, L. J., Gattass, R. R., Gershgoren, E., Hwang, H. & Fourkas, J. T. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization. Science 324, 910–913 (2009). Appeared simultaneously with references 18 and 19. These papers were the first to demonstrate two-beam super-resolution optical lithography.

    CAS  Article  Google Scholar 

  18. Andrew, T. L., Tsai, H. Y. & Menon, R. Confining light to deep subwavelength dimensions to enable optical nanopatterning. Science 324, 917–921 (2009).

    CAS  Article  Google Scholar 

  19. Scott, T. F., Kowalski, B. A., Sullivan, A. C., Bowman, C. N. & McLeod, R. R. Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography. Science 324, 913–917 (2009).

    CAS  Article  Google Scholar 

  20. Gan, Z., Turner, M. D. & Gu, M. Biomimetic gyroid nanostructures exceeding their natural origins. Sci. Adv. 2, e1600084 (2016).

    Article  CAS  Google Scholar 

  21. Shiozawa, M. et al. Simultaneous multi-bit recording and driveless reading for permanent storage in fused silica. J. Laser Micro/Nanoeng. 1, 10–11 (2014).

    Google Scholar 

  22. Zhang, J. Y., Gecevicius, M., Beresna, M. & Kazansky, P. G. Seemingly unlimited lifetime data storage in nanostructured glass. Phys. Rev. Lett. 112, 033901 (2014).

    Article  CAS  Google Scholar 

  23. Lu, Y. Q. et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nat. Photonics 8, 33–37 (2014). This paper demonstrated lifetime multiplexing with rare-earth-doped nanocrystals for the first time.

    Google Scholar 

  24. Huang, X. H., El-Sayed, I. H., Qian, W. & El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115–2120 (2006).

    CAS  Article  Google Scholar 

  25. El-Sayed, I. H., Huang, X. H. & El-Sayed, M. A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett. 5, 829–834 (2005).

    CAS  Article  Google Scholar 

  26. Sönnichsen, C. et al. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett. 88, 077402 (2002).

    Article  CAS  Google Scholar 

  27. Ditlbacher, H., Krenn, J. R., Lamprecht, B., Leitner, A. & Aussenegg, F. R. Spectrally coded optical data storage by metal nanoparticles. Opt. Lett. 25, 563–565 (2000).

    CAS  Article  Google Scholar 

  28. Nikoobakht, B. & El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15, 1957–1962 (2003).

    CAS  Article  Google Scholar 

  29. Zijlstra, P., Bullen, C., Chon, J. W. M. & Gu, M. High-temperature seedless synthesis of gold nanorods. J. Phys. Chem. B 110, 19315–19318 (2006).

    CAS  Article  Google Scholar 

  30. Bouhelier, A. et al. Surface plasmon characteristics of tunable photoluminescence in single gold nanorods. Phys. Rev. Lett. 95, 267405 (2005).

    CAS  Article  Google Scholar 

  31. Voisin, C., Del Fatti, N., Christofilos, D. & Vallee, F. Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles. J. Phys. Chem. B 105, 2264–2280 (2001).

    CAS  Article  Google Scholar 

  32. Hu, M. & Hartland, G. V. Heat dissipation for Au particles in aqueous solution: relaxation time versus size. J. Phys. Chem. B 106, 7029–7033 (2002).

    CAS  Article  Google Scholar 

  33. Zijlstra, P., Chon, J. W. M. & Gu, M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459, 410–413 (2009). This paper demonstrated spectral and polarization multiplexing in single data bits with metallic nanoparticles for the first time.

    CAS  Article  Google Scholar 

  34. Ren, H., Li, X., Zhang, Q. & Gu, M. On-chip noninterference angular momentum multiplexing of broadband light. Science 352, 805–809 (2016).

    CAS  Article  Google Scholar 

  35. Chu, S. W. et al. Measurement of a saturated emission of optical radiation from gold nanoparticles: application to an ultrahigh resolution microscope. Phys. Rev. Lett. 112, 017402 (2014).

    Article  CAS  Google Scholar 

  36. Zhang, P., Lee, S., Yu, H., Fang, N. & Kang, S. H. Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation. Sci. Rep. 5, 11447 (2015).

    Article  Google Scholar 

  37. Chang, W. S. et al. Tuning the acoustic frequency of a gold nanodisk through its adhesion layer. Nat. Commun. 6, 7022 (2015).

    CAS  Article  Google Scholar 

  38. Petrova, H. et al. On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating. Phys. Chem. Chem. Phys. 8, 814–821 (2006).

    CAS  Article  Google Scholar 

  39. Liu, Y., Mills, E. N. & Composto, R. J. Tuning optical properties of gold nanorods in polymer films through thermal reshaping. J. Mater. Chem. 19, 2704–2709 (2009).

    CAS  Article  Google Scholar 

  40. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Article  Google Scholar 

  41. Zhu, Y. et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010).

    CAS  Article  Google Scholar 

  42. The rise and rise of graphene [Editorial]. Nat. Nanotechnol. 5, 755 (2010).

  43. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    CAS  Article  Google Scholar 

  44. Wallace, P. R. The band theory of graphite. Phys. Rev. 71, 622–634 (1947).

    CAS  Article  Google Scholar 

  45. Nair, R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).

    CAS  Article  Google Scholar 

  46. Bao, Q. L. et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 19, 3077–3083 (2009).

    CAS  Article  Google Scholar 

  47. Dean, J. J. & van Driel, H. M. Second harmonic generation from graphene and graphitic films. Appl. Phys. Lett. 95, 261910 (2009).

    Article  CAS  Google Scholar 

  48. Hendry, E., Hale, P. J., Moger, J., Savchenko, A. K. & Mikhailov, S. A. Coherent nonlinear optical response of graphene. Phys. Rev. Lett. 105, 097401 (2010).

    CAS  Article  Google Scholar 

  49. Pei, S. & Cheng, H.-M. The reduction of graphene oxide. Carbon 50, 3210–3228 (2012). A comprehensive review of the reduction process of graphene oxide.

    CAS  Article  Google Scholar 

  50. Hummers, W. S. Jr & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    CAS  Article  Google Scholar 

  51. Dreyer, D. R., Park, S., Bielawski, C. W. & Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010).

    CAS  Article  Google Scholar 

  52. He, H., Klinowski, J., Forster, M. & Lerf, A. A new structural model for graphite oxide. Chem. Phys. Lett. 287, 53–56 (1998).

    CAS  Article  Google Scholar 

  53. Gokus, T. et al. Making graphene luminescent by oxygen plasma treatment. ACS Nano 3, 3963–3968 (2009).

    CAS  Article  Google Scholar 

  54. Eda, G. et al. Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 22, 505–509 (2010).

    CAS  Article  Google Scholar 

  55. Li, J. L. et al. Graphene oxide nanoparticles as a nonbleaching optical probe for two-photon luminescence imaging and cell therapy. Angew. Chem. Int. Ed. 51, 1830–1834 (2012).

    CAS  Article  Google Scholar 

  56. Park, S. et al. Hydrazine-reduction of graphite- and graphene oxide. Carbon 49, 3019–3023 (2011).

    CAS  Article  Google Scholar 

  57. Song, L. et al. Effect of high-temperature thermal treatment on the structure and adsorption properties of reduced graphene oxide. Carbon 52, 608–612 (2013).

    CAS  Article  Google Scholar 

  58. Cote, L. J., Cruz-Silva, R. & Huang, J. X. Flash reduction and patterning of graphite oxide and its polymer composite. J. Am. Chem. Soc. 131, 11027–11032 (2009).

    CAS  Article  Google Scholar 

  59. Williams, G., Seger, B. & Kamat, P. V. TiO2–graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2, 1487–1491 (2008).

    CAS  Article  Google Scholar 

  60. El-Kady, M. F., Strong, V., Dubin, S. & Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326–1330 (2012).

    CAS  Article  Google Scholar 

  61. Zhang, Y. L. et al. Photoreduction of graphene oxides: methods, properties, and applications. Adv. Opt. Mater. 2, 10–28 (2014).

    Article  CAS  Google Scholar 

  62. Li, X. P. et al. Athermally photoreduced graphene oxides for three-dimensional holographic images. Nat. Commun. 6, 6984 (2015).

    Article  Google Scholar 

  63. Li, X. P., Zhang, Q. M., Chen, X. & Gu, M. Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording. Sci. Rep. 3, 2819 (2013).

    Article  Google Scholar 

  64. Huang, L. B. et al. Ultrafast transient absorption microscopy studies of carrier dynamics in epitaxial graphene. Nano Lett. 10, 1308–1313 (2010).

    CAS  Article  Google Scholar 

  65. Treossi, E. et al. High-contrast visualization of graphene oxide on dye-sensitized glass, quartz, and silicon by fluorescence quenching. J. Am. Chem. Soc. 131, 15576–15577 (2009).

    CAS  Article  Google Scholar 

  66. Förster, T. Zwischenmolekulare energiewanderung und fluoreszenz. Annalen Physik 437, 55–75 (in German) (1948).

    Article  Google Scholar 

  67. Jeong, H. K. et al. Thermal stability of graphite oxide. Chem. Phys. Lett. 470, 255–258 (2009).

    CAS  Article  Google Scholar 

  68. Biju, V., Itoh, T., Anas, A., Sujith, A. & Ishikawa, M. Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications. Anal. Bioanal. Chem. 391, 2469–2495 (2008).

    CAS  Article  Google Scholar 

  69. Chon, J. W. M., Zijlstra, P., Gu, M., van Embden, J. & Mulvaney, P. Two-photon-induced photoenhancement of densely packed CdSe/ZnSe/ZnS nanocrystal solids and its application to multilayer optical data storage. Appl. Phys. Lett. 85, 5514–5516 (2004).

    CAS  Article  Google Scholar 

  70. Dallari, W. et al. Light-induced inhibition of photoluminescence emission of core/shell semiconductor nanorods and its application for optical data storage. J. Phys. Chem. C 116, 25576–25580 (2012).

    CAS  Article  Google Scholar 

  71. Kimura, J., Maenosono, S. & Yamaguchi, Y. Near-field optical recording on a CdSe nanocrystal thin film. Nanotechnology 14, 69–72 (2003).

    CAS  Article  Google Scholar 

  72. Kawata, Y., Ishitobi, H. & Kawata, S. Use of two-photon absorption in a photorefractive crystal for three-dimensional optical memory. Opt. Lett. 23, 756–758 (1998).

    CAS  Article  Google Scholar 

  73. Day, D., Gu, M. & Smallridge, A. Use of two-photon excitation for erasable–rewritable three-dimensional bit optical data storage in a photorefractive polymer. Opt. Lett. 24, 948–950 (1999).

    CAS  Article  Google Scholar 

  74. Day, D., Gu, M. & Smallridge, A. Rewritable 3D bit optical data storage in a PMMA-based photorefractive polymer. Adv. Mater. 13, 1005–1007 (2001).

    CAS  Article  Google Scholar 

  75. Li, X., Bullen, C., Chon, J. W., Evans, R. A. & Gu, M. Two-photon-induced three-dimensional optical data storage in CdS quantum-dot doped photopolymer. Appl. Phys. Lett. 90, 161116 (2007).

    Article  CAS  Google Scholar 

  76. Parthenopoulos, D. A. & Rentzepis, P. M. Three-dimensional optical storage memory. Science 245, 843–845 (1989).

    CAS  Article  Google Scholar 

  77. Hamada, E., Fujii, T., Tomizawa, Y. & Iimura, S. High density optical recording on dye material discs: an approach for achieving 4.7 GB density. Jpn. J. Appl. Phys. 36, 593 (1997).

    CAS  Article  Google Scholar 

  78. Li, X. P., Chon, J. W. M., Evans, R. A. & Gu, M. Two-photon energy transfer enhanced three-dimensional optical memory in quantum-dot and azo-dye doped polymers. Appl. Phys. Lett. 92, 063309 (2008).

    Article  CAS  Google Scholar 

  79. Li, X. P., Chon, J. W. M., Evans, R. A. & Gu, M. Quantum-rod dispersed photopolymers for multi-dimensional photonic applications. Opt. Express 17, 2954–2961 (2009).

    CAS  Article  Google Scholar 

  80. Irvine, S. E., Staudt, T., Rittweger, E., Engelhardt, J. & Hell, S. W. Direct light-driven modulation of luminescence from Mn-doped ZnSe quantum dots. Angew. Chem. Int. Ed. 47, 2685–2688 (2008).

    CAS  Article  Google Scholar 

  81. Lesoine, M. D. et al. Subdiffraction, luminescence-depletion imaging of isolated, giant, CdSe/CdS nanocrystal quantum dots. J. Phys. Chem. C 117, 3662–3667 (2013).

    CAS  Article  Google Scholar 

  82. Haase, M. & Schä fer, H. Upconverting nanoparticles. Angew. Chem. Int. Ed. 50, 5808–5829 (2011).

    CAS  Article  Google Scholar 

  83. Chang, H. et al. Rare earth ion-doped upconversion nanocrystals: synthesis and surface modification. Nanomaterials 5, 1–25 (2014).

    CAS  Article  Google Scholar 

  84. Wang, M., Abbineni, G., Clevenger, A., Mao, C. & Xu, S. Upconversion nanoparticles: synthesis, surface modification and biological applications. Nanomedicine 7, 710–729 (2011).

    CAS  Article  Google Scholar 

  85. Wang, F. et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463, 1061–1065 (2010).

    CAS  Article  Google Scholar 

  86. Song, Z. et al. Background free imaging of upconversion nanoparticle distribution in human skin. J. Biomed. Opt. 18, 061215 (2012).

    Article  Google Scholar 

  87. Auzel, F. Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev. 104, 139–174 (2004).

    CAS  Article  Google Scholar 

  88. Maniloff, E. S., Johnson, A. E. & Mossberg, T. W. Spectral data storage using rare-earth-doped crystals. MRS Bull. 24, 46–50 (1999).

    CAS  Article  Google Scholar 

  89. Bjorklund, G. C. et al. Persistent Spectral Hole-Burning: Science and Applications Vol. 44 (Springer, 2012).

    Google Scholar 

  90. Lin, H., Wang, T. & Mossberg, T. Demonstration of 8-Gbit/in.2 areal storage density based on swept-carrier frequency-selective optical memory. Opt. Lett. 20, 1658–1660 (1995).

    CAS  Article  Google Scholar 

  91. Zhao, J. B. et al. Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size. Nanoscale 5, 944–952 (2013).

    CAS  Article  Google Scholar 

  92. Zhang, C. et al. Luminescence modulation of ordered upconversion nanopatterns by a photochromic diarylethene: rewritable optical storage with nondestructive readout. Adv. Mater. 22, 633–637 (2010).

    CAS  Article  Google Scholar 

  93. Weller, D. et al. High Ku materials approach to 100 Gbits/in2. IEEE Trans. Magn. 36, 10–15 (2000).

    CAS  Article  Google Scholar 

  94. Park, J. H. et al. Co/Pt multilayer based magnetic tunnel junctions using perpendicular magnetic anisotropy. J. Appl. Phys. 103, 07A917 (2008).

    Article  CAS  Google Scholar 

  95. Weller, D. & Moser, A. Thermal effect limits in ultrahigh-density magnetic recording. IEEE Trans. Magn. 35, 4423–4439 (1999).

    CAS  Article  Google Scholar 

  96. Yang, J. K. W. et al. Fabrication and characterization of bit-patterned media beyond 1.5 Tbit/in2. Nanotechnology 22, 385301 (2011).

    Article  CAS  Google Scholar 

  97. Sun, S., Murray, C., Weller, D., Folks, L. & Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 (2000).

    CAS  Article  Google Scholar 

  98. Natterer, F. D. et al. Reading and writing single-atom magnets. Preprint at http://arxiv.org/abs/1607.03977 (2016).

  99. Bornholt, J. et al. in Proc. 21st Int. Conf. Architectural Support for Programming Languages and Operating Systems (ASPLOS '16). (ed. Conte, T. ) 637–649 (Association for Computing Machinery, 2016).

    Google Scholar 

  100. Church, G. M., Gao, Y. & Kosuri, S. Next-generation digital information storage in DNA. Science 337, 1628 (2012).

    CAS  Article  Google Scholar 

  101. Zakeri, B. & Lu, T. K. DNA nanotechnology: new adventures for an old warhorse. Curr. Opin. Chem. Biol. 28, 9–14 (2015).

    CAS  Article  Google Scholar 

  102. Goldman, N. et al. Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Nature 494, 77–80 (2013).

    CAS  Article  Google Scholar 

  103. Hasani, A. et al. Visible light-assisted photoreduction of graphene oxide using CdS nanoparticles and gas sensing properties. J. Nanomater. 2015, 930306 (2015).

    Article  CAS  Google Scholar 

  104. Goldstein, A., Echer, C. & Alivisatos, A. Melting in semiconductor nanocrystals. Science 256, 1425–1427 (1992).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

M.G. thanks the Australian Research Council (ARC) for support through a Laureate Fellowship project (FL100100099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Gu.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gu, M., Zhang, Q. & Lamon, S. Nanomaterials for optical data storage. Nat Rev Mater 1, 16070 (2016). https://doi.org/10.1038/natrevmats.2016.70

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2016.70

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing