Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Covalent organic frameworks: a materials platform for structural and functional designs

Abstract

Covalent organic frameworks (COFs) are a class of crystalline porous polymer that allows the atomically precise integration of organic units into extended structures with periodic skeletons and ordered nanopores. One important feature of COFs is that they are designable; that is, the geometry and dimensions of the building blocks can be controlled to direct the topological evolution of structural periodicity. The diversity of building blocks and covalent linkage topology schemes make COFs an emerging materials platform for structural control and functional design. Indeed, COF architectures offer confined molecular spaces for the interplay of photons, excitons, electrons, holes, ions and guest molecules, thereby exhibiting unique properties and functions. In this Review, we summarize the major progress in the field of COFs and recent achievements in developing new design principles and synthetic strategies. We highlight cutting-edge functional designs and identify fundamental issues that need to be addressed in conjunction with future research directions from chemistry, physics and materials perspectives.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diversity of linkages for the formation of COFs.
Figure 2: Typical building blocks used to synthesize boronate ester and boroxine-linked COFs.
Figure 3: Typical building blocks used to form imine-, hydrazone-, azine-, squaraine- and phenazine-linked COFs.
Figure 4: Methods to control stability and crystallinity.
Figure 5: Pore design in COFs.
Figure 6: Functional exploration of skeletons in COFs.
Figure 7: Complementary design of pores and skeletons in COFs.

Similar content being viewed by others

References

  1. Feng, X., Ding, X. & Jiang, D. Covalent organic frameworks. Chem. Soc. Rev. 41, 6010–6022 (2012).

    Article  CAS  Google Scholar 

  2. Ding, S.-Y. & Wang, W. Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev. 42, 548–568 (2013).

    Article  CAS  Google Scholar 

  3. Dogru, M. & Bein, T. On the road towards electroactive covalent organic frameworks. Chem. Commun. 50, 5531–5546 (2014).

    Article  CAS  Google Scholar 

  4. Waller, P. J., Gándara, F. & Yaghi, O. M. Chemistry of covalent organic frameworks. Acc. Chem. Res. 48, 3053–3063 (2015).

    Article  CAS  Google Scholar 

  5. Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005). The first example of COFs was described in this study using a boronate ester linkage.

    Article  Google Scholar 

  6. El-Kaderi, H. M. et al. Designed synthesis of 3D covalent organic frameworks. Science 316, 268–272 (2007).

    Article  CAS  Google Scholar 

  7. Wan, S., Guo, J., Kim, J., Ihee, H. & Jiang, D. A belt-shaped, blue luminescent, and semiconducting covalent organic framework. Angew. Chem. Int. Ed. 47, 8826–8830 (2008). The first example of semiconducting COFs.

    Article  CAS  Google Scholar 

  8. Wan, S., Guo, J., Kim, J., Ihee, H. & Jiang, D. A photoconductive covalent organic framework: self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation. Angew. Chem. Int. Ed. 48, 5439–5442 (2009).

    Article  CAS  Google Scholar 

  9. Wan, S. et al. Covalent organic frameworks with high charge carrier mobility. Chem. Mater. 23, 4094–4097 (2011).

    Article  CAS  Google Scholar 

  10. Ding, X. et al. An n-channel two-dimensional covalent organic framework. J. Am. Chem. Soc. 133, 14510–14513 (2011).

    Article  CAS  Google Scholar 

  11. Feng, X. et al. High-rate charge-carrier transport in porphyrin covalent organic frameworks: switching from hole to electron to ambipolar conduction. Angew. Chem. Int. Ed. 51, 2618–2622 (2012). Porphyrin-based COFs were demonstrated to conduct charge carriers.

    Article  CAS  Google Scholar 

  12. Feng, X. et al. An ambipolar conducting covalent organic framework with self-sorted and periodic electron donor–acceptor ordering. Adv. Mater. 24, 3026–3031 (2012).

    Article  CAS  Google Scholar 

  13. Guo, J. et al. Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds. Nat. Commun. 4, 2736 (2013).

    Article  Google Scholar 

  14. Dogru, M. et al. A photoconductive thienothiophene-based covalent organic framework showing charge transfer towards included fullerene. Angew. Chem. Int. Ed. 52, 2920–2924 (2013). A photoinduced electron-transferring COF was exemplified to show potential use in solar cells.

    Article  CAS  Google Scholar 

  15. Jin, S. et al. Two-dimensional tetrathiafulvalene covalent organic frameworks: towards latticed conductive organic salts. Chem. Eur. J. 20, 14608–14613 (2014).

    Article  CAS  Google Scholar 

  16. Ding, H. et al. A tetrathiafulvalene-based electroactive covalent organic framework. Chem. Eur. J. 20, 14614–14618 (2014).

    Article  CAS  Google Scholar 

  17. Cai, S.-L. et al. Tunable electrical conductivity in oriented thin films of tetrathiafulvalene-based covalent organic framework. Chem. Sci. 5, 4693–4700 (2014).

    Article  CAS  Google Scholar 

  18. Chen, L. et al. Photoelectric covalent organic frameworks: converting open lattices into ordered donor–acceptor heterojunctions. J. Am. Chem. Soc. 136, 9806–9809 (2014).

    Article  CAS  Google Scholar 

  19. Duhovic´, S. & Dincaˇ, M. Synthesis and electrical properties of covalent organic frameworks with heavy chalcogens. Chem. Mater. 27, 5487–5490 (2015).

    Article  Google Scholar 

  20. Dalapati, S. et al. Rational design of crystalline supermicroporous covalent organic frameworks with triangular topologies. Nat. Commun. 6, 7786 (2015).

    Article  CAS  Google Scholar 

  21. Feldblyum, J. I. et al. Few-layer, large-area, 2D covalent organic framework semiconductor thin films. Chem. Commun. 51, 13894–13897 (2015).

    Article  CAS  Google Scholar 

  22. Li, Z. et al. A 2D azine-linked covalent organic framework for gas storage applications. Chem. Commun. 50, 13825–13828 (2014).

    Article  CAS  Google Scholar 

  23. Huang, N., Krishna, R. & Jiang, D. Tailor-made pore surface engineering in covalent organic frameworks: systematic functionalization for performance screening. J. Am. Chem. Soc. 137, 7079–7082 (2015).

    Article  CAS  Google Scholar 

  24. Huang, N., Chen, X., Krishna, R. & Jiang, D. Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization. Angew. Chem. Int. Ed. 54, 2986–2990 (2015).

    Article  CAS  Google Scholar 

  25. Chandra, S. et al. Phosphoric acid loaded azo (–N=N–) based covalent organic framework for proton conduction. J. Am. Chem. Soc. 136, 6570–6573 (2014).

    Article  CAS  Google Scholar 

  26. Xu, H., Tao, S. & Jiang, D. Proton conduction in crystalline and porous covalent organic frameworks. Nat. Mater. 15, 722–726 (2016).

    Article  CAS  Google Scholar 

  27. Ma, H. et al. Cationic covalent organic frameworks: a simple platform of anionic exchange for porosity tuning and proton conduction. J. Am. Chem. Soc. 138, 5897–5903 (2016).

    Article  CAS  Google Scholar 

  28. Chandra, S. et al. Interplaying intrinsic and extrinsic proton conductivities in covalent organic frameworks. Chem. Mater. 28, 1489–1494 (2016).

    Article  CAS  Google Scholar 

  29. Dalapati, S. et al. An azine-linked covalent organic framework. J. Am. Chem. Soc. 135, 17310–17313 (2013). Azine linkage was developed for the synthesis of COFs.

    Article  CAS  Google Scholar 

  30. Ding, S.-Y. et al. Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury(II). J. Am. Chem. Soc. 138, 3031–3037 (2016).

    Article  CAS  Google Scholar 

  31. Dalapati, S., Jin, E., Addicoat, M., Heine, T. & Jiang, D. Highly emissive covalent organic frameworks. J. Am. Chem. Soc. 138, 5797–5800 (2016).

    Article  CAS  Google Scholar 

  32. Ding, S.-Y. et al. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction. J. Am. Chem. Soc. 133, 19816–19822 (2011). First demonstration of catalytic COFs.

    Article  CAS  Google Scholar 

  33. Nagai, A. et al. A squaraine-linked mesoporous covalent organic framework. Angew. Chem. Int. Ed. 52, 3770–3774 (2013).

    Article  CAS  Google Scholar 

  34. Pachfule, P. et al. Multifunctional and robust covalent organic framework–nanoparticle hybrids. J. Mater. Chem. A 2, 7944–7952 (2014).

    Article  CAS  Google Scholar 

  35. Shinde, D. B., Kandambeth, S., Pachfule, P., Kumar, R. R. & Banerjee, R. Bifunctional covalent organic frameworks with two dimensional organocatalytic micropores. Chem. Commun. 51, 310–313 (2015).

    Article  CAS  Google Scholar 

  36. Xu, H., Gao, J. & Jiang, D. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat. Chem. 7, 905–912 (2015).

    Article  CAS  Google Scholar 

  37. Lin, S. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015).

    Article  CAS  Google Scholar 

  38. Thote, J. et al. A covalent organic framework–cadmium sulfide hybrid as a prototype photocatalyst for visible-light-driven hydrogen production. Chem. Eur. J. 20, 15961–15965 (2014).

    Article  CAS  Google Scholar 

  39. Stegbauer, L., Schwinghammer, K. & Lotsch, B. V. A hydrazone-based covalent organic framework for photocatalytic hydrogen production. Chem. Sci. 5, 2789–2793 (2014).

    Article  CAS  Google Scholar 

  40. Vyas, V. S. et al. A tunable azine covalent organic framework platform for visible light-induced hydrogen generation. Nat. Commun. 6, 8508 (2015).

    Article  CAS  Google Scholar 

  41. DeBlase, C. R., Silberstein, K. E., Truong, T.-T., Abruña, H. D. & Dichtel, W. R. β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. J. Am. Chem. Soc. 135, 16821–16824 (2013).

    Article  CAS  Google Scholar 

  42. Xu, F. et al. Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage. Sci. Rep. 5, 8225 (2015).

    Article  CAS  Google Scholar 

  43. Xu, F. et al. Radical covalent organic frameworks: a general strategy to immobilize open-accessible polyradicals for high-performance capacitive energy storage. Angew. Chem. Int. Ed. 54, 6814–6818 (2015).

    Article  CAS  Google Scholar 

  44. Tilford, R. W., Gemmill, W. R., zur Loye, H.-C. & Lavigne, J. J. Facile synthesis of a highly crystalline, covalently linked porous boronate network. Chem. Mater. 18, 5296–5301 (2006).

    Article  CAS  Google Scholar 

  45. Côté, A. P., El-Kaderi, H. M., Furukawa, H., Hunt, J. R. & Yaghi, O. M. Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. J. Am. Chem. Soc. 129, 12914–12915 (2007).

    Article  Google Scholar 

  46. Tilford, R. W., Mugavero, S. J., Pellechia, P. J. & Lavigne, J. J. Tailoring microporosity in covalent organic frameworks. Adv. Mater. 20, 2741–2746 (2008).

    Article  CAS  Google Scholar 

  47. Dogru, M., Sonnauer, A., Gavryushin, A., Knochel, P. & Bein, T. A covalent organic framework with 4 nm open pores. Chem. Commun. 47, 1707–1709 (2011).

    Article  CAS  Google Scholar 

  48. Spitler, E. L. et al. A 2D covalent organic framework with 4.7-nm pores and insight into its interlayer stacking. J. Am. Chem. Soc. 133, 19416–19421 (2011).

    Article  CAS  Google Scholar 

  49. Yu, J.-T., Chen, Z., Sun, J., Huang, Z.-T. & Zheng, Q.-Y. Cyclotricatechylene based porous crystalline material: synthesis and applications in gas storage. J. Mater. Chem. 22, 5369–5373 (2012).

    Article  CAS  Google Scholar 

  50. Kahveci, Z., Islamoglu, T., Shar, G. A., Ding, R. & El-Kaderi, H. M. Targeted synthesis of a mesoporous triptycene-derived covalent organic framework. CrystEngComm 15, 1524–1527 (2013).

    Article  CAS  Google Scholar 

  51. Bertrand, G. H. V., Michaelis, V. K., Ong, T.-C., Griffin, R. G. & Dincaˇ, M. Thiophene-based covalent organic frameworks. Proc. Natl Acad. Sci. USA 110, 4923–4928 (2013).

    Article  CAS  Google Scholar 

  52. Feng, X., Dong, Y. & Jiang, D. Star-shaped two-dimensional covalent organic frameworks. CrystEngComm 15, 1508–1511 (2013).

    Article  CAS  Google Scholar 

  53. Zhang, J. et al. A novel azobenzene covalent organic framework. CrystEngComm 16, 6547–6551 (2014).

    Article  CAS  Google Scholar 

  54. Fang, Q. et al. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks. Nat. Commun. 5, 4503 (2014).

    Article  Google Scholar 

  55. Song, J.-R., Sun, J., Liu, J., Huang, Z.-T. & Zheng, Q.-Y. Thermally/hydrolytically stable covalent organic frameworks from a rigid macrocyclic host. Chem. Commun. 50, 788–791 (2014).

    Article  CAS  Google Scholar 

  56. Das, G. et al. Chemical sensing in two dimensional porous covalent organic nanosheets. Chem. Sci. 6, 3931–3939 (2015).

    Article  CAS  Google Scholar 

  57. Yang, H. et al. Mesoporous 2D covalent organic frameworks based on shape-persistent arylene-ethynylene macrocycles. Chem. Sci. 6, 4049–4053 (2015).

    Article  CAS  Google Scholar 

  58. Biswal, B. P. et al. Pore surface engineering in porous, chemically stable covalent organic frameworks for water adsorption. J. Mater. Chem. A 3, 23664–23669 (2015).

    Article  CAS  Google Scholar 

  59. Baldwin, L. A., Crowe, J. W., Shannon, M. D., Jaroniec, C. P. & McGrier, P. L. 2D covalent organic frameworks with alternating triangular and hexagonal pores. Chem. Mater. 27, 6169–6172 (2015).

    Article  CAS  Google Scholar 

  60. Lin, S. et al. A triazine-based covalent organic framework/palladium hybrid for one-pot silicon-based cross-coupling of silanes and aryl iodides. RSC Adv. 5, 41017–41024 (2015).

    Article  CAS  Google Scholar 

  61. Li, Z., Zhang, Y., Xia, H., Mu, Y. & Liu, X. A robust and luminescent covalent organic framework as a highly sensitive and selective sensor for the detection of Cu2+ ions. Chem. Commun. 52, 6613–6616 (2016).

    Article  CAS  Google Scholar 

  62. Zhen, J. et al. Preparation of a series of aCTV-based covalent organic frameworks and substituent effects on their properties. CrystEngComm 18, 1039–1045 (2016).

    Article  CAS  Google Scholar 

  63. Lohse, M. S. et al. Sequential pore wall modification in a covalent organic framework for application in lactic acid adsorption. Chem. Mater. 28, 626–631 (2016).

    Article  CAS  Google Scholar 

  64. Li, Z.-J., Ding, S.-Y., Xue, H.-D., Cao, W. & Wang, W. Synthesis of –C=N– linked covalent organic frameworks via the direct condensation of acetals and amines. Chem. Commun. 52, 7217–7220 (2016).

    Article  CAS  Google Scholar 

  65. Lohse, M. S. et al. From benzodithiophene to diethoxy-benzodithiophene covalent organic frameworks — structural investigations. CrystEngComm 18, 4295–4302 (2016).

    Article  CAS  Google Scholar 

  66. Kuhn, P., Antonietti, M. & Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 47, 3450–3453 (2008).

    Article  CAS  Google Scholar 

  67. Jackson, K. T., Reich, T. E. & El-Kaderi, H. M. Targeted synthesis of a porous borazine-linked covalent organic framework. Chem. Commun. 48, 8823–8825 (2012).

    Article  CAS  Google Scholar 

  68. Xie, Y.-F., Ding, S.-Y., Liu, J.-M., Wang, W. & Zheng, Q.-Y. Triazatruxene based covalent organic framework and its quick-response fluorescence-on nature towards electron rich arenes. J. Mater. Chem. C 3, 10066–10069 (2015).

    Article  CAS  Google Scholar 

  69. de la Peña Ruigómez, A. et al. Direct on-surface patterning of a crystalline laminar covalent organic framework synthesized at room temperature. Chem. Eur. J. 21, 10666–10670 (2015).

    Article  Google Scholar 

  70. Kaleeswaran, D., Vishnoi, P. & Murugavel, R. [3 + 3] Imine and β-ketoenamine tethered fluorescent covalent-organic frameworks for CO2 uptake and nitroaromatic sensing. J. Mater. Chem. C 3, 7159–7171 (2015).

    Article  CAS  Google Scholar 

  71. Xu, L. et al. Highly crystalline covalent organic frameworks from flexible building blocks. Chem. Commun. 52, 4706–4709 (2016).

    Article  CAS  Google Scholar 

  72. Spitler, E. L. & Dichtel, W. R. Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nat. Chem. 2, 672–677 (2010).

    Article  CAS  Google Scholar 

  73. Feng, X., Chen, L., Dong, Y. & Jiang, D. Porphyrin-based two-dimensional covalent organic frameworks: synchronized synthetic control of macroscopic structures and pore parameters. Chem. Commun. 47, 1979–1981 (2011).

    Article  CAS  Google Scholar 

  74. Ding, X. et al. Synthesis of metallophthalocyanine covalent organic frameworks that exhibit high carrier mobility and photoconductivity. Angew. Chem. Int. Ed. 50, 1289–1293 (2011).

    Article  CAS  Google Scholar 

  75. Ding, X. et al. Conducting metallophthalocyanine 2D covalent organic frameworks: the role of central metals in controlling π-electronic functions. Chem. Commun. 48, 8952–8954 (2012).

    Article  CAS  Google Scholar 

  76. Neti, V. S. P. K. et al. Synthesis of a phthalocyanine 2D covalent organic framework. CrystEngComm 15, 7157–7160 (2013).

    Article  CAS  Google Scholar 

  77. Neti, V. S. P. K., Wu, X., Deng, S. & Echegoyen, L. Synthesis of a phthalocyanine and porphyrin 2D covalent organic framework. CrystEngComm 15, 6892–6895 (2013).

    Article  CAS  Google Scholar 

  78. Chen, X., Gao, J. & Jiang, D. Designed synthesis of porphyrin-based two-dimensional covalent organic frameworks with highly ordered structures. Chem. Lett. 44, 1257–1259 (2015).

    Article  CAS  Google Scholar 

  79. Chen, X. et al. Towards covalent organic frameworks with predesignable and aligned open docking sites. Chem. Commun. 50, 6161–6163 (2014).

    Article  CAS  Google Scholar 

  80. Wu, Y., Xu, H., Chen, X., Gao, J. & Jiang, D. A π-electronic covalent organic framework catalyst: π-walls as catalytic beds for Diels–Alder reactions under ambient conditions. Chem. Commun. 51, 10096–10098 (2015).

    Article  CAS  Google Scholar 

  81. Zhou, T.-Y., Xu, S.-Q., Wen, Q., Pang, Z.-F. & Zhao, X. One-step construction of two different kinds of pores in a 2D covalent organic framework. J. Am. Chem. Soc. 136, 15885–15888 (2014).

    Article  CAS  Google Scholar 

  82. Alahakoon, S. B. et al. An azine-linked hexaphenylbenzene based covalent organic framework. Chem. Commun. 52, 2843–2845 (2016).

    Article  CAS  Google Scholar 

  83. Xu, S.-Q., Zhan, T.-G., Wen, Q., Pang, Z.-F. & Zhao, X. Diversity of covalent organic frameworks (COFs): a 2D COF containing two kinds of triangular micropores of different sizes. ACS Macro Lett. 5, 99–102 (2016).

    Article  CAS  Google Scholar 

  84. Pang, Z.-F. et al. Construction of covalent organic frameworks bearing three different kinds of pores through the heterostructural mixed linker strategy. J. Am. Chem. Soc. 138, 4710–4713 (2016).

    Article  CAS  Google Scholar 

  85. Zhu, Y., Wan, S., Jin, Y. & Zhang, W. Desymmetrized vertex design for the synthesis of covalent organic frameworks with periodically heterogeneous pore structures. J. Am. Chem. Soc. 137, 13772–13775 (2015).

    Article  CAS  Google Scholar 

  86. Spitler, E. L., Giovino, M. R., White, S. L. & Dichtel, W. R. A mechanistic study of Lewis acid-catalyzed covalent organic framework formation. Chem. Sci. 2, 1588–1593 (2011).

    Article  CAS  Google Scholar 

  87. Uribe-Romo, F. J. et al. A crystalline imine-linked 3D porous covalent organic framework. J. Am. Chem. Soc. 131, 4570–4571 (2009). Imine linkage was developed for the synthesis of COFs.

    Article  CAS  Google Scholar 

  88. Uribe-Romo, F. J., Doonan, C. J., Furukawa, H., Oisaki, K. & Yaghi, O. M. Crystalline covalent organic frameworks with hydrazone linkages. J. Am. Chem. Soc. 133, 11478–11481 (2011).

    Article  CAS  Google Scholar 

  89. Zeng, Y. et al. Covalent organic frameworks formed with two types of covalent bonds based on orthogonal reactions. J. Am. Chem. Soc. 137, 1020–1023 (2015).

    Article  CAS  Google Scholar 

  90. Chen, X. et al. Designed synthesis of double-stage two-dimensional covalent organic frameworks. Sci. Rep. 5, 14650 (2015).

    Article  CAS  Google Scholar 

  91. Zhang, W., Jiang, P., Wang, Y., Zhang, J. & Zhang, P. Bottom-up approach to engineer two covalent porphyrinic frameworks as effective catalysts for selective oxidation. Catal. Sci. Technol. 5, 101–104 (2015).

    Article  CAS  Google Scholar 

  92. Du, Y. et al. Ionic covalent organic frameworks with spiroborate linkage. Angew. Chem. Int. Ed. 55, 1737–1741 (2016).

    Article  CAS  Google Scholar 

  93. Nath, B. et al. A new azodioxy-linked porphyrin-based semiconductive covalent organic framework with I2 doping-enhanced photoconductivity. CrystEngComm 18, 4259–4263 (2016).

    Article  CAS  Google Scholar 

  94. Bojdys, M. J., Jeromenok, J., Thomas, A. & Antonietti, M. Rational extension of the family of layered, covalent, triazine-based frameworks with regular porosity. Adv. Mater. 22, 2202–2205 (2010).

    Article  CAS  Google Scholar 

  95. Kuecken, S., Schmidt, J., Zhi, L. & Thomas, A. Conversion of amorphous polymer networks to covalent organic frameworks under ionothermal conditions: a facile synthesis route for covalent triazine frameworks. J. Mater. Chem. A 3, 24422–24427 (2015).

    Article  CAS  Google Scholar 

  96. Campbell, N. L., Clowes, R., Ritchie, L. K. & Cooper, A. I. Rapid microwave synthesis and purification of porous covalent organic frameworks. Chem. Mater. 21, 204–206 (2009).

    Article  CAS  Google Scholar 

  97. Ren, S. et al. Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis. Adv. Mater. 24, 2357–2361 (2012).

    Article  CAS  Google Scholar 

  98. Dogru, M. et al. Facile synthesis of a mesoporous benzothiadiazole-COF based on a transesterification process. CrystEngComm 15, 1500–1502 (2013).

    Article  CAS  Google Scholar 

  99. Wei, H. et al. The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity. Chem. Commun. 51, 12178–12181 (2015).

    Article  CAS  Google Scholar 

  100. Biswal, B. P. et al. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J. Am. Chem. Soc. 135, 5328–5331 (2013).

    Article  CAS  Google Scholar 

  101. Chandra, S. et al. Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination. J. Am. Chem. Soc. 135, 17853–17861 (2013).

    Article  CAS  Google Scholar 

  102. Das, G., Balaji Shinde, D., Kandambeth, S., Biswal, B. P. & Banerjee, R. Mechanosynthesis of imine, ß-ketoenamine, and hydrogen-bonded imine-linked covalent organic frameworks using liquid-assisted grinding. Chem. Commun. 50, 12615–12618 (2014).

    Article  CAS  Google Scholar 

  103. Blunt, M. O., Russell, J. C., Champness, N. R. & Beton, P. H. Templating molecular adsorption using a covalent organic framework. Chem. Commun. 46, 7157–7159 (2010).

    Article  CAS  Google Scholar 

  104. Marele, A. C. et al. Formation of a surface covalent organic framework based on polyester condensation. Chem. Commun. 48, 6779–6781 (2012).

    Article  CAS  Google Scholar 

  105. Gutzler, R. et al. Surface mediated synthesis of 2D covalent organic frameworks: 1,3,5-tris(4-bromophenyl)benzene on graphite(001), Cu(111), and Ag(110). Chem. Commun. 2009, 4456–4458 (2009).

    Article  Google Scholar 

  106. Zwaneveld, N. A. A. et al. Organized formation of 2D extended covalent organic frameworks at surfaces. J. Am. Chem. Soc. 130, 6678–6679 (2008).

    Article  CAS  Google Scholar 

  107. Larrea, C. R. & Baddeley, C. J. Fabrication of a high-quality, porous, surface-confined covalent organic framework on a reactive metal surface. ChemPhysChem 17, 971–975 (2016).

    Article  CAS  Google Scholar 

  108. Hao, D. et al. Fabrication of a COF-5 membrane on a functionalized α-Al2O3 ceramic support using a microwave irradiation method. Chem. Commun. 50, 1462–1464 (2014).

    Article  CAS  Google Scholar 

  109. Colson, J. W. et al. Oriented 2D covalent organic framework thin films on single-layer graphene. Science 332, 228–231 (2011). A method to prepare COF films on graphene was demonstrated in this study.

    Article  CAS  Google Scholar 

  110. Spitler, E. L. et al. Lattice expansion of highly oriented 2D phthalocyanine covalent organic framework films. Angew. Chem. Int. Ed. 51, 2623–2627 (2012).

    Article  CAS  Google Scholar 

  111. Xu, L. et al. Surface-confined single-layer covalent organic framework on single-layer graphene grown on copper foil. Angew. Chem. Int. Ed. 53, 9564–9568 (2014).

    Article  CAS  Google Scholar 

  112. Zha, Z. et al. 3D graphene functionalized by covalent organic framework thin film as capacitive electrode in alkaline media. ACS Appl. Mater. Interfaces 7, 17837–17843 (2015).

    Article  CAS  Google Scholar 

  113. Colson, J. W., Mann, J. A., DeBlase, C. R. & Dichtel, W. R. Patterned growth of oriented 2D covalent organic framework thin films on single-layer graphene. J. Polym. Sci. Part A: Polym. Chem. 53, 378–384 (2015).

    Article  CAS  Google Scholar 

  114. Yue, J.-Y., Liu, X.-H., Sun, B. & Wang, D. The on-surface synthesis of imine-based covalent organic frameworks with non-aromatic linkage. Chem. Commun. 51, 14318–14321 (2015).

    Article  CAS  Google Scholar 

  115. Medina, D. D. et al. Oriented thin films of a benzodithiophene covalent organic framework. ACS Nano 8, 4042–4052 (2014).

    Article  CAS  Google Scholar 

  116. Gou, X. et al. Preparation and engineering of oriented 2D covalent organic framework thin films. RSC Adv. 6, 39198–39203 (2016).

    Article  CAS  Google Scholar 

  117. Chen, Y. et al. Surface growth of highly oriented covalent organic framework thin film with enhanced photoresponse speed. RSC Adv. 5, 92573–92576 (2015).

    Article  CAS  Google Scholar 

  118. Medina, D. D. et al. Room temperature synthesis of covalent-organic framework films through vapor-assisted conversion. J. Am. Chem. Soc. 137, 1016–1019 (2015).

    Article  CAS  Google Scholar 

  119. Hunt, J. R., Doonan, C. J., LeVangie, J. D., Côté, A. P. & Yaghi, O. M. Reticular synthesis of covalent organic borosilicate frameworks. J. Am. Chem. Soc. 130, 11872–11873 (2008).

    Article  CAS  Google Scholar 

  120. Bunck, D. N. & Dichtel, W. R. Internal functionalization of three-dimensional covalent organic frameworks. Angew. Chem. Int. Ed. 51, 1885–1889 (2012).

    Article  CAS  Google Scholar 

  121. Bunck, D. N. & Dichtel, W. R. Postsynthetic functionalization of 3D covalent organic frameworks. Chem. Commun. 49, 2457–2459 (2013).

    Article  CAS  Google Scholar 

  122. Zhang, Y.-B. et al. Single-crystal structure of a covalent organic framework. J. Am. Chem. Soc. 135, 16336–16339 (2013).

    Article  CAS  Google Scholar 

  123. Fang, Q. et al. 3D Microporous base-functionalized covalent organic frameworks for size-selective catalysis. Angew. Chem. Int. Ed. 53, 2878–2882 (2014).

    Article  CAS  Google Scholar 

  124. Fang, Q. et al. 3D porous crystalline polyimide covalent organic frameworks for drug delivery. J. Am. Chem. Soc. 137, 8352–8355 (2015).

    Article  CAS  Google Scholar 

  125. Lin, G., Ding, H., Yuan, D., Wang, B. & Wang, C. A pyrene-based, fluorescent three-dimensional covalent organic framework. J. Am. Chem. Soc. 138, 3302–3305 (2016).

    Article  CAS  Google Scholar 

  126. Liu, Y. et al. Weaving of organic threads into a crystalline covalent organic framework. Science 351, 365–369 (2016).

    Article  CAS  Google Scholar 

  127. Chen, X., Addicoat, M., Irle, S., Nagai, A. & Jiang, D. Control of crystallinity and porosity of covalent organic frameworks by managing interlayer interactions based on self-complementary π-electronic force. J. Am. Chem. Soc. 135, 546–549 (2013).

    Article  CAS  Google Scholar 

  128. Kandambeth, S. et al. Enhancement of chemical stability and crystallinity in porphyrin-containing covalent organic frameworks by intramolecular hydrogen bonds. Angew. Chem. Int. Ed. 52, 13052–13056 (2013).

    Article  CAS  Google Scholar 

  129. Chen, X. et al. Locking covalent organic frameworks with hydrogen bonds: general and remarkable effects on crystalline structure, physical properties, and photochemical activity. J. Am. Chem. Soc. 137, 3241–3247 (2015).

    Article  CAS  Google Scholar 

  130. Kandambeth, S. et al. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 134, 19524–19527 (2012). A unique imine-based COF (TpPa-1) with enol-to-keto tautomerization-induced structural stabilization.

    Article  CAS  Google Scholar 

  131. Ascherl, L. et al. Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks. Nat. Chem. 8, 310–316 (2016).

    Article  CAS  Google Scholar 

  132. Yu, S.-B. et al. A polycationic covalent organic framework: a robust adsorbent for anionic dye pollutants. Polym. Chem. 7, 3392–3397 (2016).

    Article  CAS  Google Scholar 

  133. Jin, S. et al. Large pore donor–acceptor covalent organic frameworks. Chem. Sci. 4, 4505–4511 (2013).

    Article  CAS  Google Scholar 

  134. Furukawa, H. & Yaghi, O. M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 131, 8875–8883 (2009).

    Article  CAS  Google Scholar 

  135. Doonan, C. J., Tranchemontagne, D. J., Glover, T. G., Hunt, J. R. & Yaghi, O. M. Exceptional ammonia uptake by a covalent organic framework. Nat. Chem. 2, 235–238 (2010).

    Article  CAS  Google Scholar 

  136. Zeng, Y., Zou, R. & Zhao, Y. Covalent organic frameworks for CO2 capture. Adv. Mater. 28, 2855–2873 (2016).

    Article  CAS  Google Scholar 

  137. Zhao, Y., Yao, K. X., Teng, B., Zhang, T. & Han, Y. A perfluorinated covalent triazine-based framework for highly selective and water-tolerant CO2 capture. Energy Environ. Sci. 6, 3684–3692 (2013).

    Article  CAS  Google Scholar 

  138. Rabbani, M. G. et al. A 2D mesoporous imine-linked covalent organic framework for high pressure gas storage applications. Chem. Eur. J. 19, 3324–3328 (2013).

    Article  CAS  Google Scholar 

  139. Gomes, R., Bhanja, P. & Bhaumik, A. A triazine-based covalent organic polymer for efficient CO2 adsorption. Chem. Commun. 51, 10050–10053 (2015).

    Article  CAS  Google Scholar 

  140. Gao, Q. et al. Synthesis of microporous nitrogen-rich covalent-organic framework and its application in CO2 capture. Chin. J. Chem. 33, 90–94 (2015).

    Article  CAS  Google Scholar 

  141. Zhao, S. et al. Channel-wall functionalization in covalent organic frameworks for the enhancement of CO2 uptake and CO2/N2 selectivity. RSC Adv. 6, 38774–38781 (2016).

    Article  CAS  Google Scholar 

  142. Li, Z. et al. An azine-linked covalent organic framework: synthesis, characterization and efficient gas storage. Chem. Eur. J. 21, 12079–12084 (2015).

    Article  CAS  Google Scholar 

  143. Gomes, R. & Bhaumik, A. A new triazine functionalized luminescent covalent organic framework for nitroaromatic sensing and CO2 storage. RSC Adv. 6, 28047–28054 (2016).

    Article  CAS  Google Scholar 

  144. Dong, B. et al. Immobilization of ionic liquids to covalent organic frameworks for catalyzing the formylation of amines with CO2 and phenylsilane. Chem. Commun. 52, 7082–7085 (2016).

    Article  CAS  Google Scholar 

  145. Li, L., Yang, J., Li, J., Chen, Y. & Li, J. Separation of CO2/CH4 and CH4/N2 mixtures by M/DOBDC: a detailed dynamic comparison with MIL-100(Cr) and activated carbon. Micropor. Mesopor. Mater. 198, 236–246 (2014).

    Article  CAS  Google Scholar 

  146. Wu, X. et al. Microwave synthesis and characterization of MOF-74 (M = Ni, Mg) for gas separation. Micropor. Mesopor. Mater. 180, 114–122 (2013).

    Article  CAS  Google Scholar 

  147. Mason, J. A. et al. Application of a high-throughput analyzer in evaluating solid adsorbents for post-combustion carbon capture via multicomponent adsorption of CO2, N2, and H2O. J. Am. Chem. Soc. 137, 4787–4803 (2015).

    Article  CAS  Google Scholar 

  148. Li, L. et al. High gas storage capacities and stepwise adsorption in a UiO type metal–organic framework incorporating Lewis basic bipyridyl sites. Chem. Commun. 50, 2304–2307 (2014).

    Article  CAS  Google Scholar 

  149. Nagai, A. et al. Pore surface engineering in covalent organic frameworks. Nat. Commun. 2, 536 (2011). A general and practical strategy for the functionalization of pore walls of various COFs.

    Article  Google Scholar 

  150. Pachfule, P., Kandambeth, S., Diaz Diaz, D. & Banerjee, R. Highly stable covalent organic framework–Au nanoparticles hybrids for enhanced activity for nitrophenol reduction. Chem. Commun. 50, 3169–3172 (2014).

    Article  CAS  Google Scholar 

  151. Leng, W., Ge, R., Dong, B., Wang, C. & Gao, Y. Bimetallic docked covalent organic frameworks with high catalytic performance towards tandem reactions. RSC Adv. 6, 37403–37406 (2016).

    Article  CAS  Google Scholar 

  152. Leng, W. et al. Sophisticated design of covalent organic frameworks with controllable bimetallic docking for a cascade reaction. Chem. Eur. J. 22, 9087–9091 (2016).

    Article  CAS  Google Scholar 

  153. Xu, H. et al. Catalytic covalent organic frameworks via pore surface engineering. Chem. Commun. 50, 1292–1294 (2014).

    Article  CAS  Google Scholar 

  154. Díaz, R., Orcajo, M. G., Botas, J. A., Calleja, G. & Palma, J. Co8-MOF-5 as electrode for supercapacitors. Mater. Lett. 68, 126–128 (2012).

    Article  Google Scholar 

  155. Li, S.-L. & Xu, Q. Metal–organic frameworks as platforms for clean energy. Energy Environ. Sci. 6, 1656–1683 (2013).

    Article  CAS  Google Scholar 

  156. Lee, D. Y. et al. Unusual energy storage and charge retention in Co-based metal–organic-frameworks. Micropor. Mesopor. Mater. 153, 163–165 (2012).

    Article  CAS  Google Scholar 

  157. Gao, Y. et al. Synthesis of nickel oxalate/zeolitic imidazolate framework-67 (NiC2O4/ZIF-67) as a supercapacitor electrode. New J. Chem. 39, 94–97 (2015).

    Article  CAS  Google Scholar 

  158. Liao, H., Ding, H., Li, B., Ai, X. & Wang, C. Covalent–organic frameworks: potential host materials for sulfur impregnation in lithium–sulfur batteries. J. Mater. Chem. A 2, 8854–8858 (2014).

    Article  CAS  Google Scholar 

  159. Yang, X. et al. Sulfur impregnated in a mesoporous covalent organic framework for high performance lithium–sulfur batteries. RSC Adv. 5, 86137–86143 (2015).

    Article  CAS  Google Scholar 

  160. Sun, M.-H. et al. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem. Soc. Rev. 45, 3479–3563 (2016).

    Article  CAS  Google Scholar 

  161. Kitamura, T. et al. Electroactive supramolecular self-assembled fibers comprised of doped tetrathiafulvalene-based gelators. J. Am. Chem. Soc. 127, 14769–14775 (2005).

    Article  CAS  Google Scholar 

  162. Braga, D. & Horowitz, G. High-performance organic field-effect transistors. Adv. Mater. 21, 1473–1486 (2009).

    Article  CAS  Google Scholar 

  163. Pisula, W., Feng, X. & Müllen, K. Charge-carrier transporting graphene-type molecules. Chem. Mater. 23, 554–567 (2011).

    Article  CAS  Google Scholar 

  164. Jin, S. et al. Charge dynamics in a donor–acceptor covalent organic framework with periodically ordered bicontinuous heterojunctions. Angew. Chem. Int. Ed. 52, 2017–2021 (2013).

    Article  CAS  Google Scholar 

  165. Jin, S. et al. Creation of superheterojunction polymers via direct polycondensation: segregated and bicontinuous donor–acceptor π-columnar arrays in covalent organic frameworks for long-lived charge separation. J. Am. Chem. Soc. 137, 7817–7827 (2015).

    Article  CAS  Google Scholar 

  166. Jiménez, Á. J., Calderón, R. M. K., Rodríguez-Morgade, M. S., Guldi, D. M. & Torres, T. Synthesis, characterization and photophysical properties of a melamine-mediated hydrogen-bound phthalocyanine–perylenediimide assembly. Chem. Sci. 4, 1064–1074 (2013).

    Article  Google Scholar 

  167. Calik, M. et al. Extraction of photogenerated electrons and holes from a covalent organic framework integrated heterojunction. J. Am. Chem. Soc. 136, 17802–17807 (2014).

    Article  CAS  Google Scholar 

  168. Gole, B., Bar, A. K., Mallick, A., Banerjee, R. & Mukherjee, P. S. An electron rich porous extended framework as a heterogeneous catalyst for Diels–Alder reactions. Chem. Commun. 49, 7439–7441 (2013).

    Article  CAS  Google Scholar 

  169. Costentin, C., Robert, M. & Saveant, J.-M. Catalysis of the electrochemical reduction of carbon dioxide. Chem. Soc. Rev. 42, 2423–2436 (2013).

    Article  CAS  Google Scholar 

  170. Kumar, B. et al. Photochemical and photoelectrochemical reduction of CO2 . Annu. Rev. Phys. Chem. 63, 541–569 (2012).

    Article  CAS  Google Scholar 

  171. DeBlase, C. R. et al. Rapid and efficient redox processes within 2D covalent organic framework thin films. ACS Nano 9, 3178–3183 (2015).

    Article  CAS  Google Scholar 

  172. Wu, H. et al. Flexible and binder-free organic cathode for high-performance lithium–ion batteries. Adv. Mater. 26, 3338–3343 (2014).

    Article  CAS  Google Scholar 

  173. Meng, Y., Wu, H., Zhang, Y. & Wei, Z. A flexible electrode based on a three-dimensional graphene network-supported polyimide for lithium–ion batteries. J. Mater. Chem. A 2, 10842–10846 (2014).

    Article  CAS  Google Scholar 

  174. Shinde, D. B. et al. A mechanochemically synthesized covalent organic framework as a proton-conducting solid electrolyte. J. Mater. Chem. A 4, 2682–2690 (2016).

    Article  CAS  Google Scholar 

  175. Guldi, D. M., Gouloumis, A., Vázquez, P. & Torres, T. Charge-transfer states in strongly coupled phthalocyanine fullerene ensembles. Chem. Commun. 2002, 2056–2057 (2002).

    Article  Google Scholar 

  176. Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency tables (version 47). Prog. Photovolt. Res. Appl. 24, 3–11 (2016).

    Google Scholar 

  177. Schwinghammer, K. et al. Triazine-based carbon nitrides for visible-light-driven hydrogen evolution. Angew. Chem. Int. Ed. 52, 2435–2439 (2013).

    Article  CAS  Google Scholar 

  178. Zhang, J. et al. Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angew. Chem. Int. Ed. 49, 441–444 (2010).

    Article  CAS  Google Scholar 

  179. Nguyen, N. T. T. et al. Three-dimensional metal-catecholate frameworks and their ultrahigh proton conductivity. J. Am. Chem. Soc. 137, 15394–15397 (2015).

    Article  CAS  Google Scholar 

  180. Yoon, M. et al. High and highly anisotropic proton conductivity in organic molecular porous materials. Angew. Chem. Int. Ed. 50, 7870–7873 (2011).

    Article  CAS  Google Scholar 

  181. Bureekaew, S. et al. One-dimensional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity. Nat. Mater. 8, 831–836 (2009).

    Article  CAS  Google Scholar 

  182. Hurd, J. A. et al. Anhydrous proton conduction at 150 °C in a crystalline metal–organic framework. Nat. Chem. 1, 705–710 (2009).

    Article  CAS  Google Scholar 

  183. Wang, P. et al. Synthesis of conjugated covalent organic frameworks/graphene composite for supercapacitor electrodes. RSC Adv. 5, 27290–27294 (2015).

    Article  CAS  Google Scholar 

  184. Huang, Y.-B., Pachfule, P., Sun, J.-K. & Xu, Q. From covalent–organic frameworks to hierarchically porous B-doped carbons: a molten-salt approach. J. Mater. Chem. A 4, 4273–4279 (2016).

    Article  CAS  Google Scholar 

  185. Yang, H. et al. High conductive two-dimensional covalent organic framework for lithium storage with large capacity. ACS Appl. Mater. Interfaces 8, 5366–5375 (2016).

    Article  CAS  Google Scholar 

  186. Bai, L. et al. Nanoscale covalent organic frameworks as smart carriers for drug delivery. Chem. Commun. 52, 4128–4131 (2016).

    Article  CAS  Google Scholar 

  187. Mitra, S. et al. Self-exfoliated guanidinium-based ionic covalent organic nanosheets (iCONs). J. Am. Chem. Soc. 138, 2823–2828 (2016).

    Article  CAS  Google Scholar 

  188. Smith, B. J. & Dichtel, W. R. Mechanistic studies of two-dimensional covalent organic frameworks rapidly polymerized from initially homogenous conditions. J. Am. Chem. Soc. 136, 8783–8789 (2014).

    Article  CAS  Google Scholar 

  189. Smith, B. J., Hwang, N., Chavez, A. D., Novotney, J. L. & Dichtel, W. R. Growth rates and water stability of 2D boronate ester covalent organic frameworks. Chem. Commun. 51, 7532–7535 (2015).

    Article  CAS  Google Scholar 

  190. Smith, B. J., Overholts, A. C., Hwang, N. & Dichtel, W. R. Insight into the crystallization of amorphous imine-linked polymer networks to 2D covalent organic frameworks. Chem. Commun. 52, 3690–3693 (2016).

    Article  CAS  Google Scholar 

  191. Huang, W. et al. Solvothermal synthesis of microporous, crystalline covalent organic framework nanofibers and their colorimetric nanohybrid structures. ACS Appl. Mater. Interfaces 5, 8845–8849 (2013).

    Article  CAS  Google Scholar 

  192. Yi, J. et al. Green, scalable and morphology controlled synthesis of nanofibrous covalent organic frameworks and their nanohybrids through a vapor-assisted solid-state approach. J. Mater. Chem. A 2, 8201–8204 (2014).

    Article  Google Scholar 

  193. Pachfule, P., Kandmabeth, S., Mallick, A. & Banerjee, R. Hollow tubular porous covalent organic framework (COF) nanostructures. Chem. Commun. 51, 11717–11720 (2015).

    Article  CAS  Google Scholar 

  194. Kandambeth, S. et al. Self-templated chemically stable hollow spherical covalent organic framework. Nat. Commun. 6, 6786 (2015).

    Article  CAS  Google Scholar 

  195. Yang, C.-X., Liu, C., Cao, Y.-M. & Yan, X.-P. Facile room-temperature solution-phase synthesis of a spherical covalent organic framework for high-resolution chromatographic separation. Chem. Commun. 51, 12254–12257 (2015).

    Article  CAS  Google Scholar 

  196. Huang, N., Ding, X., Kim, J., Ihee, H. & Jiang, D. A photoresponsive smart covalent organic framework. Angew. Chem. Int. Ed. 54, 8704–8707 (2015).

    Article  CAS  Google Scholar 

  197. Dong, W.-l. et al. Substrate orientation effect in the on-surface synthesis of tetrathiafulvalene-integrated single-layer covalent organic frameworks. Langmuir 31, 11755–11759 (2015).

    Article  CAS  Google Scholar 

  198. Liu, C., Zhang, W., Zeng, Q. & Lei, S. A photoresponsive surface covalent organic framework: surface-confined synthesis, isomerization, and controlled guest capture and release. Chem. Eur. J. 22, 6768–6773 (2016).

    Article  CAS  Google Scholar 

  199. Kissel, P., Murray, D. J., Wulftange, W. J., Catalano, V. J. & King, B. T. A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization. Nat. Chem. 6, 774–778 (2014).

    Article  CAS  Google Scholar 

  200. Kory, M. J. et al. Gram-scale synthesis of two-dimensional polymer crystals and their structure analysis by X-ray diffraction. Nat. Chem. 6, 779–784 (2014).

    Article  CAS  Google Scholar 

  201. Cai, S.-L. et al. The organic flatland — recent advances in synthetic 2D organic layers. Adv. Mater. 27, 5762–5770 (2015).

    Article  CAS  Google Scholar 

  202. Kang, Z. et al. Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation. Chem. Mater. 28, 1277–1285 (2016).

    Article  CAS  Google Scholar 

  203. Biswal, B. P., Chaudhari, H. D., Banerjee, R. & Kharul, U. K. Chemically stable covalent organic framework (COF)-polybenzimidazole hybrid membranes: enhanced gas separation through pore modulation. Chem. Eur. J. 22, 4695–4699 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donglin Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, N., Wang, P. & Jiang, D. Covalent organic frameworks: a materials platform for structural and functional designs. Nat Rev Mater 1, 16068 (2016). https://doi.org/10.1038/natrevmats.2016.68

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2016.68

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing