Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Materials and technologies for soft implantable neuroprostheses

Abstract

Implantable neuroprostheses are engineered systems designed to restore or substitute function for individuals with neurological deficits or disabilities. These systems involve at least one uni- or bidirectional interface between a living neural tissue and a synthetic structure, through which information in the form of electrons, ions or photons flows. Despite a few notable exceptions, the clinical dissemination of implantable neuroprostheses remains limited, because many implants display inconsistent long-term stability and performance, and are ultimately rejected by the body. Intensive research is currently being conducted to untangle the complex interplay of failure mechanisms. In this Review, we emphasize the importance of minimizing the physical and mechanical mismatch between neural tissues and implantable interfaces. We explore possible materials solutions to design and manufacture neurointegrated prostheses, and outline their immense therapeutic potential.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and anatomy of the nervous system.
Figure 2: Mechanical mismatch between the nervous tissues and man-made implantable electrodes.
Figure 3: Compliant and multimodal neural interfaces for the brain.
Figure 4: Compliant and multimodal interfaces for the spinal cord and the peripheral nerves.
Figure 5: Mechanosensitivity and foreign body reaction in the central nervous system.
Figure 6: Functions with compliant neural interfaces.

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

References

  1. Hochberg, L. R. et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485, 372–375 (2012).

    Article  CAS  Google Scholar 

  2. Bouton, C. E. et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature 533, 247–250 (2016).

    Article  CAS  Google Scholar 

  3. Barrese, J. C. et al. Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates. J. Neural Engineer. 10, 066014 (2013).

    Article  Google Scholar 

  4. Barrese, J. C., Aceros, J. & Donoghue, J. P. Scanning electron microscopy of chronically implanted intracortical microelectrode arrays in non-human primates. J. Neural Engineer. 13, 026003 (2016).

    Article  Google Scholar 

  5. Sanchez, J. C., Alba, N., Batich, C. & Carney, P. R. Structural modifications in chronic microwire electrodes for cortical neuroprosthetics: a case study. IEEE Trans. Neural Syst. Rehabil. Eng. 14, 217–212 (2006).

    Article  Google Scholar 

  6. Sankar, V. et al. Electrode impedance analysis of chronic tungsten microwire neural implants: understanding abiotic vs. biotic contributions. Front. Neuroeng. 7, http://dx.doi.org/10.3389/fneng.2014.00013 (2014).

  7. Jorfi, M., Skousen, J. L., Weder, C. & Capadona, J. R. Progress towards biocompatible intracortical microelectrodes for neural interfacing applications. J. Neural Eng. 12, 011001 (2015).

    Article  Google Scholar 

  8. Jeong, J.-W. et al. Soft materials in neuroengineering for hard problems in neuroscience. Neuron 86, 175–186 (2015).

    Article  CAS  Google Scholar 

  9. Lee, J. H., Kim, H., Kim, J. H. & Lee, S.-H. Soft implantable microelectrodes for future medicine: prosthetics, neural signal recording and neuromodulation. Lab Chip 16, 959–976 (2016).

    Article  CAS  Google Scholar 

  10. Prodanov, D. & Delbeke, J. Mechanical and biological interactions of implants with the brain and their impact on implant design. Front. Neurosci. 10, http://dx.doi.org/10.3389/fnins.2016.00011 (2016).

  11. Jones, E. G. & Rakic, P. Radial columns in cortical architecture: it is the composition that counts. Cerebral Cortex 20, 2261–2264 (1984).

    Article  Google Scholar 

  12. Bailey, S. A., Zidell, R. H. & Perry, R. W. Relationships between organ weight and body/brain weight in the rat: what is the best analytical endpoint? Toxicol. Pathol. 32, 448–466 (2004).

    Article  Google Scholar 

  13. Koo, B. B. et al. Age-related effects on cortical thickness patterns of the rhesus monkey brain. Neurobiol. Aging 33, 200.e23–200.e31 (2012).

    Article  Google Scholar 

  14. Herculano-Houzel, S. in In The Light of Evolution: Volume VI: Brain and Behavior Ch. 8 (eds Striedter, G. F., Avise, J. C. & Ayala, F. J. ) 127–148 (National Academies Press, 2013).

    Google Scholar 

  15. Tallinen, T. et al. On the growth and form of cortical convolutions. Nat. Phys. 12, 588–593 (2016).

    Article  CAS  Google Scholar 

  16. Wagshul, M. E., Eide, P. K. & Madsen, J. R. The pulsating brain: a review of experimental and clinical studies of intracranial pulsatility. Fluids Barriers CNS 8, http://dx.doi.org/10.1186/2045-8118-8-5 (2011).

  17. Harrison, D. E., Cailliet, R., Harrison, D. D., Troyanovich, S. J. & Harrison, S. O. A review of biomechanics of the central nervous system — Part I: spinal canal deformations resulting from changes in posture. J. Manipulative Physiol. Ther. 22, 227–234 (1999).

    Article  CAS  Google Scholar 

  18. Bashkatov, A. N. et al. Glucose and mannitol doffusion in human dura mater. Biophys. J. 85, 3310–3318 (2003).

    Article  CAS  Google Scholar 

  19. Galasha, F. O. et al. A new type of recording chamber with an easy-toexchange microdrive array for chronic recordings in macaque monkeys. J. Neurophysiol. 105, 3092–3105 (2011).

    Article  Google Scholar 

  20. Minev, I. R. et al. Biomaterials. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).

    Article  CAS  Google Scholar 

  21. Nicholson, K. J. & Winkelstein, B. A. in Neural Tissue Biomechanics Ch. 10 (ed. Bilston, L. E. ) 203–229 (Springer, 2011).

    Google Scholar 

  22. Polikov, V. S., Tresco, P. A. & Reichert, W. M. Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 148, 1–18 (2005).

    Article  Google Scholar 

  23. Franze, K., Janmey, P. A. & Guck, J. Mechanics in neuronal development and repair. Annu. Rev. Biomed. Eng. 15, 227–251 (2013).

    Article  CAS  Google Scholar 

  24. Ulrich, T. & Kumar, S. in Mechanobiology Handbook 391–411 (CRC Press, 2011).

    Google Scholar 

  25. Bernick, K. B., Prevost, T. P., Suresh, S. & Socrate, S. Biomechanics of single cortical neurons. Acta Biomater. 7, 1210–1219 (2011).

    Article  Google Scholar 

  26. Lu, Y.-B. et al. Viscoelastic properties of individual glial cells and neurons in the CNS. Proc. Natl Acad. Sci. USA 103, 17759–17764 (2006).

    Article  CAS  Google Scholar 

  27. Zou, S. et al. Force spectroscopy measurements show that cortical neurons exposed to excitotoxic agonists stiffen before showing evidence of bleb damage. PLoS One 8, e73499 (2013).

    Article  CAS  Google Scholar 

  28. Grevesse, T., Dabiri, B. E., Parker, K. K. & Gabriele, S. Opposite rheological properties of neuronal microcompartments predict axonal vulnerability in brain injury. Sci. Rep. 5, 9475 (2015).

    Article  CAS  Google Scholar 

  29. Bray, D. Mechanical tension produced by nerve cells in tissue culture. J. Cell Sci. 37, 391–410 (1979).

    Article  CAS  Google Scholar 

  30. Dennerll, T. J., Joshi, H. C., Steel, V. L., Buxbaum, R. E. & Heidemann, S. R. Tension and compression in the cytoskeleton of PC-12 neurites. II: Quantitative measurements. J. Cell Biol. 107, 665–674 (1988).

    Article  CAS  Google Scholar 

  31. Dennerll, T. J., Lamoureux, P., Buxbaum, R. E. & Heidemann, S. R. The cytomechanics of axonal elongation and retraction. J. Cell Biol. 109, 3073–3083 (1989).

    Article  CAS  Google Scholar 

  32. Bernal, R., Pullarkat, P. A. & Melo, F. Mechanical properties of axons. Phys. Rev. Lett. 99, 018301 (2007).

    Article  Google Scholar 

  33. MacDonald, R. B. et al. Müller glia provide essential tensile strength to the developing retina. J. Cell Biol. 210, 1075–1083 (2015).

    Article  CAS  Google Scholar 

  34. O'Toole, M., Lamoureux, P. & Miller, K. E. A physical model of axonal elongation: force, viscosity, and adhesions govern the mode of outgrowth. Biophys. J. 94, 2610–2620 (2008).

    Article  CAS  Google Scholar 

  35. Jagielska, A. et al. Mechanical environment modulates biological properties of oligodendrocyte progenitor cells. Stem Cells Dev. 21, 2905–2914 (2012).

    Article  CAS  Google Scholar 

  36. Lu, Y.-B. et al. Reactive glial cells: increased stiffness correlates with increased intermediate filament expression. FASEB J. 25, 624–631 (2011).

    Article  CAS  Google Scholar 

  37. Vergara, D. et al. Biomechanical and proteomic analysis of INF- β-treated astrocytes. Nanotechnology 20, 455106 (2009).

    Article  Google Scholar 

  38. Miller, W. J. et al. Mechanically induced reactive gliosis causes ATP-mediated alterations in astrocyte stiffness. J. Neurotrauma 26, 789–797 (2009).

    Article  Google Scholar 

  39. Novak, U. & Kaye, A. H. Extracellular matrix and the brain: components and function. J. Clin. Neurosci. 7, 280–290 (2000).

    Article  CAS  Google Scholar 

  40. Galtrey, C. M., Kwok, J. C. F., Carulli, D., Rhodes, K. E. & Fawcett, J. W. Distribution and synthesis of extracellular matrix proteoglycans, hyaluronan, link proteins and tenascin-R in the rat spinal cord. Eur. J. Neurosci. 27, 1373–1390 (2008).

    Article  Google Scholar 

  41. Barros, C. S., Franco, S. J. & Müller, U. Extracellular matrix: functions in the nervous system. Cold Spring Harb. Perspect. Biol. 3, a005108 (2011).

    Article  Google Scholar 

  42. Gaudet, A. D. & Popovich, P. G. Extracellular matrix regulation of inflammation in the healthy and injured spinal cord. Exp. Neurol. 258, 24–34 (2014).

    Article  CAS  Google Scholar 

  43. Swift, J. et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013).

    Article  Google Scholar 

  44. Syková, E. & Nicholson, C. Diffusion in brain extracellular space. Physiol. Rev. 88, 1277–1340 (2008).

    Article  Google Scholar 

  45. Hemphill, M. A., Dauth, S., Yu, C. J., Dabiri, B. E. & Parker, K. K. Traumatic brain injury and the neuronal microenvironment: a potential role for neuropathological mechanotransduction. Neuron 85, 1177–1192 (2015).

    Article  CAS  Google Scholar 

  46. Pogoda, K. et al. Compression stiffening of brain and its effect on mechanosensing by glioma cells. New J. Phys. 16, 075002 (2014).

    Article  Google Scholar 

  47. Javid, S., Rezaei, A. & Karami, G. A micromechanical procedure for viscoelastic characterization of the axons and ECM of the brainstem. J. Mechan. Behav. Biomed. Mater. 30, 290–299 (2014).

    Article  Google Scholar 

  48. Cheng, S., Clarke, E. C. & Bilston, L. E. Rheological properties of the tissues of the central nervous system: a review. Med. Eng. Phys. 30, 1318–1337 (2008).

    Article  Google Scholar 

  49. Goriely, A. et al. Mechanics of the brain: perspectives, challenges, and opportunities. Biomech. Model. Mechanobiol. 14, 931–965 (2015).

    Article  Google Scholar 

  50. Fallenstein, G. T., Hulce, V. D. & Melvin, J. W. Dynamic mechanical properties of human brain tissue. J. Biomech. 2, 217–226 (1969).

    Article  CAS  Google Scholar 

  51. Ommaya, A. K. Mechanical properties of tissues of the nervous system. J. Biomech. 1, 137–138 (1968).

    Article  Google Scholar 

  52. Chatelin, S., Constantinesco, A. & Willinger, R. Fifty years of brain tissue mechanical testing: from in vitro to in vivo investigations. Biorheology 47, 255–276 (2010).

    Article  Google Scholar 

  53. Koser, D. E., Moeendarbary, E., Hanne, J., Kuerten, S. & Franze, K. CNS cell distribution and axon orientation determine local spinal cord mechanical properties. Biophys. J. 108, 2137–2147 (2015).

    Article  CAS  Google Scholar 

  54. Franze, K. et al. Spatial mapping of the mechanical properties of the living retina using scanning force microscopy. Soft Matter 7, 3147–3154 (2011).

    Article  CAS  Google Scholar 

  55. Budday, S. et al. Mechanical properties of gray and white matter brain tissue by indentation. J. Mechan. Behav. Biomed. Mater. 46, 318–330 (2015).

    Article  Google Scholar 

  56. Elkin, B. S., Azeloglu, E. U., Costa, K. D. & Morrison, B. Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation. J. Neurotrauma 24, 812–822 (2007).

    Article  Google Scholar 

  57. Elkin, B. S., Ilankovan, A. I. & Morrison, B. A detailed viscoelastic characterization of the p17 and adult rat brain. J. Neurotrauma 28, 2235–2244 (2011).

    Article  Google Scholar 

  58. MacManus, D. B., Pierrat, B., Murphy, J. G. & Gilchrist, M. D. Dynamic mechanical properties of murine brain tissue using micro-indentation. J. Biomech. 48, 3213–3218 (2015).

    Article  CAS  Google Scholar 

  59. Prange, M. T. & Margulies, S. S. Regional, directional, and age-dependent properties of the brain undergoing large deformation. J. Biomech. Eng. 124, 244–252 (2002).

    Article  Google Scholar 

  60. Christ, A. F. et al. Mechanical difference between white and gray matter in the rat cerebellum measured by scanning force microscopy. J. Biomech. 43, 2986–2992 (2010).

    Article  Google Scholar 

  61. Ichihara, K., Taguchi, T. & Shimada, Y. Gray matter of the bovine cervical spinal cord is mechanically more rigid and fragile than the white matter. J. Neurotrauma 18, 361–367 (2001).

    Article  CAS  Google Scholar 

  62. Shreiber, D. I., Hao, H. & Elias, R. A. Probing the influence of myelin and glia on the tensile properties of the spinal cord. Biomech. Model. Mechanobiol. 8, 311–321 (2009).

    Article  Google Scholar 

  63. Schregel, K. K. et al. Demyelination reduces brain parenchymal stiffness quantified in vivo by magnetic resonance elastography. Proc. Natl Acad. Sci. USA 109, 6650–6655 (2012).

    Article  CAS  Google Scholar 

  64. Elkin, B. S., Ilankovan, A. & Morrison, B. Age-dependent regional mechanical properties of the rat hippocampus and cortex. J. Biomech. Eng. 132, 011010 (2010).

    Article  Google Scholar 

  65. Sack, I. et al. The impact of aging and gender on brain viscoelasticity. Neuroimage 46, 652–657 (2009).

    Article  Google Scholar 

  66. de Rooij, R. & Kuhl, E. Constitutive modeling of brain tissue: current perspectives. Appl. Mech. Rev. 68, 010801–010823 (2016).

    Article  Google Scholar 

  67. McKee, C. T., Last, J. A. & Russell, P. Indentation versus tensile measurements of Young's modulus for soft biological tissues. Tissue Eng. Part B Rev. 17, 155–164 (2011).

    Article  Google Scholar 

  68. Sridharan, A., Rajan, S. D. & Muthuswamy, J. Long-term changes in the material properties of brain tissue at the implant–tissue interface. J. Neural Eng. 10, 066001 (2013).

    Article  Google Scholar 

  69. Saxena, T., Gilbert, J., Stelzner, D. & Hasenwinkel, J. Mechanical characterization of the injured spinal cord after lateral spinal hemisection injury in the rat. J. Neurotrauma 29, 1747–1757 (2012).

    Article  Google Scholar 

  70. Estes, M. S. & McElhaney, J. H. Response of brain tissue of compressive loading. Mech. Eng. 92, 58–61 (1970).

    Google Scholar 

  71. Goldstein, S. R. & Salcman, M. Mechanical factors in the design of chronic recording intracortical microelectrodes. IEEE Trans. Biomed. Eng. 20, 260–269 (1973).

    Article  CAS  Google Scholar 

  72. Chew, D. J. et al. A microchannel neuroprosthesis for bladder control after spinal cord injury in rat. Sci. Transl. Med. 5, 210ra155 (2013).

    Article  Google Scholar 

  73. Sharp, A. A., Ortega, A. M., Restrepo, D., Curran-Everett, D. & Gall, K. In vivo penetration mechanics and mechanical properties of mouse brain tissue at micrometer scales. IEEE Trans.Biomed. Eng. 56, 45–53 (2009).

    Article  Google Scholar 

  74. Hyunjung, L., Ravi, V. B., Wei, S. & Marc, E. L. Biomechanical analysis of silicon microelectrode-induced strain in the brain. J. Neural Engineer. 2, 81–89 (2005).

    Article  Google Scholar 

  75. Suo, Z., Ma, W. Y., Gleskova, H. & Wagner, S. Mechanics of rollable and foldable film-on-foil electronics. Appl. Phys. Lett. 74, 1177–1179 (1999).

    Article  CAS  Google Scholar 

  76. Kim, D.-H. et al. Dissolvable films of silk fibroin for ultrathin conformable biointegrated electronics. Nat. Mater. 9, 511–517 (2010).

    Article  CAS  Google Scholar 

  77. Matsuo, T. et al. Intrasulcal electrocorticography in macaque monkeys with minimally invasive neurosurgical protocols. Front. Syst. Neurosci. 5, 34 (2011).

    Article  Google Scholar 

  78. Guo, C. F. Sun, T. Liu, Q. Suo, Z. & Ren, Z. Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography. Nat. Commun. 5, 3121 (2014).

    Article  Google Scholar 

  79. Fan, J. A. et al. Fractal design concepts for stretchable electronics. Nat. Commun. 5, 3266 (2014).

    Article  Google Scholar 

  80. Xu, L. et al. 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nat. Commun. 5, 3329 (2014).

    Article  Google Scholar 

  81. Minev, I. R., Wenger, N., Courtine, G. & Lacour, S. P. Research update: platinum-elastomer mesocomposite as neural electrode coating. APL Mater. 3, 014701 (2015).

    Article  Google Scholar 

  82. Kang, S.-K. et al. Bioresorbable silicon electronic sensors for the brain. Nature 530, 71–76 (2016).

    Article  CAS  Google Scholar 

  83. Yu, K. J., Kuzum, D., Hwang, S. W., Kim, B. H. & Juul, H. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. http://dx.doi.org/10.1038/nmat4624 (2016).

  84. Edell, D. J., Toi, V. V., McNeil, V. M. & Clark, L. D. Factors influencing the biocompatibility of insertable silicon microshafts in cerebral cortex. IEEE Trans. Biomed. Eng. 39, 635–643 (1992).

    Article  CAS  Google Scholar 

  85. Bjornsson, C. S. et al. Effects of insertion conditions on tissue strain and vascular damage during neuroprosthetic device insertion. J. Neural Engineer. 3, 196–207 (2006).

    Article  CAS  Google Scholar 

  86. Dryg, I. D. et al. Magnetically inserted neural electrodes: tissue response and functional lifetime. IEEE Trans. Neural Syst. Rehab. 23, 562–571 (2015).

    Article  Google Scholar 

  87. Kim, T. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 12, 211–216 (2013).

    Article  Google Scholar 

  88. Lee, K. et al. Polyimide based neural implants with stiffness improvement. Sens. Actuators B 102, 67–72 (2004).

    Article  CAS  Google Scholar 

  89. Ware, T. et al. Three-dimensional flexible electronics enabled by shape memory polymer substrates for responsive neural interfaces. Macromol. Mater. Eng. 297, 1193–1202 (2012).

    Article  CAS  Google Scholar 

  90. Capadona, J. et al. A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nat. Nanotechnol. 2, 765–769 (2007).

    Article  CAS  Google Scholar 

  91. Sridharan, A., Nguyen, J. K., Capadona, J. R. & Muthuswamy, J. Compliant intracortical implants reduce strains and strain rates in brain tissue in vivo. J. Neural Eng. 12, 036002 (2015).

    Article  Google Scholar 

  92. Nguyen, J. K. et al. Mechanically-compliant intracortical implants reduce the neuroinflammatory response. J. Neural Eng. 11, 056014 (2014).

    Article  Google Scholar 

  93. Karnaushenko, D. et al. Biomimetic microelectronics for regenerative neuronal cuff implants. Adv. Mater. 27, 6797–6805 (2015).

    Article  CAS  Google Scholar 

  94. Takashi, D. et al. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat. Mater. 11, 1065–1073 (2012).

    Article  Google Scholar 

  95. Canales, A. et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33, 277–284 (2015).

    Article  CAS  Google Scholar 

  96. Lu, C. et al. Polymer fiber probes enable optical control of spinal cord and muscle function in vivo. Adv. Funct. Mater. 24, 6594–6600 (2014).

    Article  CAS  Google Scholar 

  97. Liu, J. et al. Syringe-injectable electronics. Nat. Nanotechnol. 10, 629636 (2015).

    Article  Google Scholar 

  98. Xie, C. et al. Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nat. Mater. 14, 1286–1292 (2015).

    Article  CAS  Google Scholar 

  99. Thomas, J. et al. Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity. Nat. Biotechnol. 34, 320–327 (2016).

    Article  Google Scholar 

  100. Discher, D. E., Janmey, P. & Wang, Y. L. Cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    Article  CAS  Google Scholar 

  101. Georges, P. C., Miller, W. J., Meaney, D. F., Sawyer, E. S. & Janmey, P. A. Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophys. J. 90, 3012–3018 (2006).

    Article  CAS  Google Scholar 

  102. Moshayedi, P. et al. The relationship between glial cell mechanosensitivity and foreign body reactions in the central nervous system. Biomaterials 35, 3919–3925 (2014).

    Article  CAS  Google Scholar 

  103. Bollmann, L. et al. Microglia mechanics: immune activation alters traction forces and durotaxis. Front. Cell. Neurosci. 9, 363 (2015).

    Article  Google Scholar 

  104. Franze, K. & Guck, J. The biophysics of neuronal growth. Rep. Progress Phys. 73, 094601 (2010).

    Article  Google Scholar 

  105. Janmey, P. A. & Miller, R. T. Mechanisms of mechanical signaling in development and disease. J. Cell Sci. 124, 9–18 (2011).

    Article  CAS  Google Scholar 

  106. McWhorter, F. Y., Davis, C. T. & Liu, W. F. Physical and mechanical regulation of macrophage phenotype and function. Cell. Mol. Life Sci. 72, 1303–1316 (2015).

    Article  CAS  Google Scholar 

  107. Kozai, T. D. Y., Jaquins-Gerstl, A. S., Vazquez, A. L., Michael, A. C. & Cui, X. T. Dexamethasone retrodialysis attenuates microglial response to implanted probes in vivo. Biomaterials 87, 157–169 (2016).

    Article  CAS  Google Scholar 

  108. Chikar, J. A. et al. The use of a dual PEDOT and RGD-functionalized alginate hydrogel coating to provide sustained drug delivery and improved cochlear implant function. Biomaterials 33, 1982–1990 (2012).

    Article  CAS  Google Scholar 

  109. Aregueta-Robles, U. A. Woolley, A. J. Poole-Warren, L. A. Lovell, N. H. & Green, R. A. Organic electrode coatings for next-generation neural interfaces. Front. Neuroeng. 7, 15 (2014).

    Article  CAS  Google Scholar 

  110. Khodagholy, D. et al. In vivo recordings of brain activity using organic transistors. Nat. Commun. 4, 1575 (2013).

    Article  Google Scholar 

  111. Rivnay, J., Owens, R. s. n. M. & Malliaras, G. G. The rise of organic bioelectronics. Chem. Mater. 26, 679–685 (2014).

    Article  CAS  Google Scholar 

  112. Williamson, A. et al. Controlling epileptiform activity with organic electronic ion pumps. Adv. Mater. 27, 3138–3144 (2015).

    Article  CAS  Google Scholar 

  113. Jonsson, A. et al. Therapy using implanted organic bioelectronics. Sci. Adv. 1, e1500039 (2015).

    Article  Google Scholar 

  114. Rylie, A. Green, Baek, Sungchul Poole-Warren, L. A. & Martens, P. J. Conducting polymer-hydrogels for medical electrode applications. Sci. Tech. Adv. Mater. 11, 014107 (2010).

    Article  Google Scholar 

  115. Montgomery, K. L., Iyer, S. M., Christensen, A. J., Deisseroth, K. & Delp, S. L. Beyond the brain: optogenetic control in the spinal cord and peripheral nervous system. Sci. Transl. Med. 8, 337rv5 (2016).

    Article  Google Scholar 

  116. Grosenick, L., Marshel, J. H. & Deisseroth, K. Closed-loop and activity-guided optogenetic control. Neuron 86, 106–139 (2015).

    Article  CAS  Google Scholar 

  117. Jeong, J.-W. et al. Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell 162, 1–13 (2015).

    Article  Google Scholar 

  118. Courtine, G. et al. Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat. Neurosci. 12, 1333–1342 (2009).

    Article  CAS  Google Scholar 

  119. Wenger, N. et al. Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury. Nat. Med. 22, 138–145 (2016).

    Article  CAS  Google Scholar 

  120. McIntyre, C. C., Chaturvedi, A., Shamir, R. R. & Lempka, S. F. Engineering the next generation of clinical deep brain stimulation technology. Brain Stimul. 8, 21–26 (2015).

    Article  Google Scholar 

  121. Courtine, G. & Bloch, J. Defining ecological strategies in neuroprosthetics. Neuron 86, 29–33 (2015).

    Article  CAS  Google Scholar 

  122. Borton, D., Micera, S., Millan, J. d. R. & Courtine, G. Personalized neuroprosthetics. Sci. Transl. Med. 5, 210rv212 (2013).

    Article  Google Scholar 

  123. Branner, A. & Normann, R. A. A multielectrode array for intrafascicular recording and stimulation in sciatic nerve of cats. Brain Res. Bull. 51, 293–306 (2000).

    Article  CAS  Google Scholar 

  124. Rubehn, B., Bosman, C., Oostenveld, R., Fries, P. & Stiegltiz, T. S. A. MEMS-based flexible multichannel ECoG-electrode array. J. Neural Eng. 6, 036003 (2009).

    Article  Google Scholar 

  125. Stieglitz, T., Beutel, H., Schuettler, M. & Meyer, J. U. Micromachined, polyimide-based devices for flexible neural interfaces. Biomed. Microdevices 2, 283–294 (2000).

    Article  Google Scholar 

  126. Towne, C., Montgomery, K. L., Iyer, S. M., Deisseroth, K. & Delp, S. L. Optogenetic control of targeted peripheral axons in freely moving animals. PLoS One 8, e72691 (2013).

    Article  CAS  Google Scholar 

  127. Boretius, T. et al. A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve. Biosens. Bioelectron. 26, 62–69 (2010).

    Article  CAS  Google Scholar 

  128. Raspopovic, S. et al. Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci. Transl. Med. 6, 222ra219 (2014).

    Article  Google Scholar 

  129. Musick, K. M. et al. Chronic multichannel neural recordings from soft regenerative microchannel electrodes during gait. Sci. Rep. 5, 14363 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the Bertarelli Foundation (SPL), Starting Grants from the European Research Council (ERC 259419 ESKIN (SPL), ERC 261247, Walk Again (GC)), the European Community's Seventh Framework Program (CP-IP 258654, NeuWALK (GC)) and the Alexander-von-Humboldt Foundation (Alexander-von-Humboldt Professorship (JG)). The authors thank A. Goriely, K. Franze, P. Janmey, K. Van Vliet, J. Fawcett, R. Franklin, M. Reimer and J. Bloch for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphanie P. Lacour.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lacour, S., Courtine, G. & Guck, J. Materials and technologies for soft implantable neuroprostheses. Nat Rev Mater 1, 16063 (2016). https://doi.org/10.1038/natrevmats.2016.63

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2016.63

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing