Phosphorene: from theory to applications


2D materials are the focus of an intense research effort because of their unique properties and their potential for revealing intriguing new phenomena. Phosphorene, a monolayer of black phosphorus, earned its place among the family of 2D semiconductor materials when recent results unveiled its high carrier mobility, high optical and UV absorption, and other attractive properties, which are of particular interest for optoelectronic applications. Unlike graphene, phosphorene has an anisotropic orthorhombic structure that is ductile along one of the in-plane crystal directions but stiff along the other. This results in unusual mechanical, electronic, optical and transport properties that reflect the anisotropy of the lattice. This Review summarizes the physical properties of phosphorene and highlights the recent progress made in the preparation, isolation and characterization of this material. The role of defects and doping is discussed, and phosphorene-based devices are surveyed; finally, the remaining challenges and potential applications of phosphorene are outlined.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Band structure of phosphorene.
Figure 2: Optical properties of phosphorene.
Figure 3: Phonon band structure and Raman spectra of phosphorene.
Figure 4: Synthesis of black phosphorus.
Figure 5: Encapsulation of phosphorene for protection against oxidation.
Figure 6: Defects in phosphorene.
Figure 7: Phosphorene-based devices.


  1. 1

    Corbridge, D. Phosphorus: Chemistry, Biochemistry and Technology 6th edn (CRC Press, 2013).

    Google Scholar 

  2. 2

    Bridgman, P. W. Two new modifications of phosphorus. J. Am. Chem. Soc. 36, 1344–1363 (1914).

    Article  CAS  Google Scholar 

  3. 3

    Bridgman, P. W. Further note on black phosphorus. J. Am. Chem. Soc. 38, 609–612 (1916).

    Article  CAS  Google Scholar 

  4. 4

    Jacobs, R. B. Phosphorus at high temperatures and pressures. J. Chem. Phys. 5, 945–953 (1937).

    Article  CAS  Google Scholar 

  5. 5

    Keyes, R. W. The electrical properties of black phosphorus. Phys. Rev. 92, 580–584 (1953).

    Article  CAS  Google Scholar 

  6. 6

    Greenwood, N. N. & Earnshaw, A. (eds) Chemistry of the Elements (Elsevier, 2012).

    Google Scholar 

  7. 7

    Zhu, Z. & Tománek, D. Semiconducting layered blue phosphorus: a computational study. Phys. Rev. Lett. 112, 176802 (2014).

    Article  CAS  Google Scholar 

  8. 8

    Guo, H., Lu, N., Dai, J., Wu, X. & Zeng, X. C. Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers. J. Phys. Chem. C 118, 14051–14059 (2014).

    Article  CAS  Google Scholar 

  9. 9

    Guan, J., Zhu, Z. & Tománek, D. Phase coexistence and metal–insulator transition in few-layer phosphorene: a computational study. Phys. Rev. Lett. 113, 046804 (2014).

    Article  CAS  Google Scholar 

  10. 10

    Wittig, J. & Matthias, B. T. Superconducting phosphorus. Science 160, 994–995 (1968).

    Article  CAS  Google Scholar 

  11. 11

    Rajagopalan, M., Alouani, M. & Christensen, N. Calculation of band structure and superconductivity in the simple cubic phase of phosphorus. J. Low Temp. Phys. 75, 1–13 (1989).

    Article  CAS  Google Scholar 

  12. 12

    Chan, K. T., Malone, B. D. & Cohen, M. L. Pressure dependence of superconductivity in simple cubic phosphorus. Phys. Rev. B 88, 064517 (2013).

    Article  CAS  Google Scholar 

  13. 13

    Karuzawa, M., Ishizuka, M. & Endo, S. The pressure effect on the superconducting transition temperature of black phosphorus. J. Phys. Condens. Matter 14, 10759 (2002).

    Article  CAS  Google Scholar 

  14. 14

    Kawamura, H., Shirotani, I. & Tachikawa, K. Anomalous superconductivity and pressure induced phase transitions in black phosphorus. Solid State Commun. 54, 775–778 (1985).

    Article  CAS  Google Scholar 

  15. 15

    Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).

    Article  CAS  Google Scholar 

  16. 16

    Rodin, A. S., Carvalho, A. & Castro Neto, A. H. Strain-induced gap modification in black phosphorus. Phys. Rev. Lett. 112, 176801 (2014).

    Article  CAS  Google Scholar 

  17. 17

    Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).

    Article  CAS  Google Scholar 

  18. 18

    Favron, A. et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14, 826–832 (2015).

    Article  CAS  Google Scholar 

  19. 19

    Liu, H., Du, Y., Deng, Y. & Ye, P. D. Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44, 2732–2743 (2015).

    Article  CAS  Google Scholar 

  20. 20

    Ling, X., Wang, H., Huang, S., Xia, F. & Dresselhaus, M. S. The renaissance of black phosphorus. Proc. Natl Acad. Sci. USA 112, 4523–4530 (2015).

    Article  CAS  Google Scholar 

  21. 21

    Ryder, C. R., Wood, J. D., Wells, S. A. & Hersam, M. C. Chemically tailoring semiconducting two-dimensional transition metal dichalcogenides and black phosphorus. ACS Nano 10, 3900–3917 (2016).

    Article  Google Scholar 

  22. 22

    Pauling, L. & Simonetta, M. Bond orbitals and bond energy in elementary phosphorus. J. Chem. Phys. 20, 29–34 (1952).

    Article  CAS  Google Scholar 

  23. 23

    Hart, R. R., Robin, M. B. & Kuebler, N. A. 3p orbitals, bent bonds, and the electronic spectrum of the P4 molecule. J. Chem. Phys. 42, 3631–3638 (1965).

    Article  CAS  Google Scholar 

  24. 24

    Hulliger, F. Physics and Chemistry of Layered Materials Vol. 5 (Reidel, 1977).

    Google Scholar 

  25. 25

    Cartz, L., Srinivasa, S. R., Riedner, R. J., Jorgensen, J. D. & Worlton, T. G. Effect of pressure on bonding in black phosphorus. J. Chem. Phys. 71, 1718–1721 (1979).

    Article  CAS  Google Scholar 

  26. 26

    Qiao, J., Kong, X., Hu, Z.-X., Yang, F. & Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014).

    Article  CAS  Google Scholar 

  27. 27

    Jiang, J.-W. & Park, H. S. Negative Poisson's ratio in single-layer black-phosphorus. Nat. Commun. 5, 4727 (2014).

    Article  CAS  Google Scholar 

  28. 28

    Tran, V., Soklaski, R., Liang, Y. & Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89, 235319 (2014).

    Article  CAS  Google Scholar 

  29. 29

    Li, P. & Appelbaum, I. Electrons and holes in phosphorene. Phys. Rev. B 90, 115439 (2014).

    Article  CAS  Google Scholar 

  30. 30

    Yuan, H. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat. Nanotechnol. 10, 707–713 (2015).

    Article  CAS  Google Scholar 

  31. 31

    Low, T. et al. Tunable optical properties of multilayer black phosphorus thin films. Phys. Rev. B 90, 075434 (2014).

    Article  CAS  Google Scholar 

  32. 32

    Wu, J. et al. Colossal ultraviolet photoresponsivity of few-layer black phosphorus. ACS Nano 9, 8070–8077 (2015).

    Article  CAS  Google Scholar 

  33. 33

    Wang, X. et al. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10, 517–521 (2015).

    Article  CAS  Google Scholar 

  34. 34

    Rodin, A. S., Carvalho, A. & Castro Neto, A. H. Excitons in anisotropic two-dimensional semiconducting crystals. Phys. Rev. B 90, 075429 (2014).

    Article  CAS  Google Scholar 

  35. 35

    Rohlfing, M. & Louie, S. G. Electron–hole excitations and optical spectra from first principles. Phys. Rev. B 62, 4927–4944 (2000).

    Article  CAS  Google Scholar 

  36. 36

    Wirtz, L., Marini, A. & Rubio, A. Excitons in boron nitride nanotubes: dimensionality effects. Phys. Rev. Lett. 96, 126104 (2006).

    Article  CAS  Google Scholar 

  37. 37

    Zhang, S. et al. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano 8, 9590–9596 (2014).

    Article  CAS  Google Scholar 

  38. 38

    Yang, J. et al. Unambiguous identification of monolayer phosphorene by phase-shifting interferometry. Preprint at (2014).

  39. 39

    Yang, J. et al. Optical tuning of exciton and trion emissions in monolayer phosphorene. Light Sci. Appl. 4, e312 (2015).

    Article  CAS  Google Scholar 

  40. 40

    Castellanos-Gomez, A. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 1, 025001 (2014).

    Article  CAS  Google Scholar 

  41. 41

    Li, L. et al. Quantum oscillations in a two-dimensional electron gas in black phosphorus thin films. Nat. Nanotechnol. 10, 608–613 (2015).

    Article  CAS  Google Scholar 

  42. 42

    Gillgren, N. et al. Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures. 2D Mater. 2, 011001 (2015).

    Article  CAS  Google Scholar 

  43. 43

    Ribeiro-Soares, J., Almeida, R. M., Cançado, L. G., Dresselhaus, M. S. & Jorio, A. Group theory for structural analysis and lattice vibrations in phosphorene systems. Phys. Rev. B 91, 205421 (2015).

    Article  CAS  Google Scholar 

  44. 44

    Sugai, S. & Shirotani, I. Raman and infrared reflection spectroscopy in black phosphorus. Solid State Commun. 53, 753–755 (1985).

    Article  CAS  Google Scholar 

  45. 45

    Fei, R. & Yang, L. Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 14, 2884–2889 (2014).

    Article  CAS  Google Scholar 

  46. 46

    Flores, E. et al. Thermoelectric power of bulk black-phosphorus. Appl. Phys. Lett. 106, 022102 (2015).

    Article  CAS  Google Scholar 

  47. 47

    Fei, R. et al. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Lett. 14, 6393–6399 (2014).

    Article  CAS  Google Scholar 

  48. 48

    Jang, H., Wood, J. D., Ryder, C. R., Hersam, M. C. & Cahill, D. G. Anisotropic thermal conductivity of exfoliated black phosphorus. Adv. Mater. 27, 8017–8022 (2015).

    Article  Google Scholar 

  49. 49

    Luo, Z. et al. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 6, 8572 (2015).

    Article  CAS  Google Scholar 

  50. 50

    Lv, H., Lu, W., Shao, D. & Sun, Y. Large thermoelectric power factors in black phosphorus and phosphorene. Preprint at (2014).

  51. 51

    Zhang, J. et al. Phosphorene nanoribbon as a promising candidate for thermoelectric applications. Sci. Rep. 4, 6452 (2014).

    Article  CAS  Google Scholar 

  52. 52

    Wu, H. et al. Broad temperature plateau for thermoelectric figure of merit ZT>2 in phase-separated PbTe0.7S0.3 . Nat. Commun. 5, 4515 (2014).

    Article  CAS  Google Scholar 

  53. 53

    Kawamura, H., Shirotani, I. & Tachikawa, K. Anomalous superconductivity in black phosphorus under high pressures. Solid State Commun. 49, 879–881 (1984).

    Article  CAS  Google Scholar 

  54. 54

    Shao, D. F., Lu, W. J., Lv, H. Y. & Sun, Y. P. Electron-doped phosphorene: a potential monolayer superconductor. Europhys. Lett. 108, 67004 (2014).

    Article  CAS  Google Scholar 

  55. 55

    Huang, G. Q., Xing, Z. W. & Xing, D. Y. Prediction of superconductivity in Li-intercalated bilayer phosphorene. Appl. Phys. Lett. 106, 113107 (2015).

    Article  CAS  Google Scholar 

  56. 56

    Bridgman, P. W. The compressibility and pressure coefficient of resistance of ten elements. Proc. Am. Acad. Arts Sci. 76, 55–70 (1948).

    CAS  Google Scholar 

  57. 57

    Baba, M., Izumida, F., Takeda, Y. & Morita, A. Preparation of black phosphorus single crystals by a completely closed bismuth-flux method and their crystal morphology. Jpn. J. Appl. Phys. 28, 1019 (1989).

    Article  CAS  Google Scholar 

  58. 58

    Lange, S., Schmidt, P. & Nilges, T. Au3SnP7@Black phosphorus: an easy access to black phosphorus. Inorg. Chem. 46, 4028–4035 (2007).

    Article  CAS  Google Scholar 

  59. 59

    Nilges, T., Kersting, M. & Pfeifer, T. A fast low-pressure transport route to large black phosphorus single crystals. J. Solid State Chem. 181, 1707–1711 (2008).

    Article  CAS  Google Scholar 

  60. 60

    Sansone, G., Maschio, L., Usvyat, D., Schtz, M. & Karttunen, A. Toward an accurate estimate of the exfoliation energy of black phosphorus: a periodic quantum chemical approach. J. Phys. Chem. Lett. 7, 131–136 (2015).

    Article  CAS  Google Scholar 

  61. 61

    Shulenburger, L., Baczewski, A., Zhu, Z., Guan, J. & Tománek, D. The nature of the interlayer interaction in bulk and few-layer phosphorus. Nano Lett. 15, 8170–8175 (2015).

    Article  CAS  Google Scholar 

  62. 62

    Yasaei, P. et al. High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv. Mater. 27, 1887–1892 (2015).

    Article  CAS  Google Scholar 

  63. 63

    Brent, J. R. et al. Production of few-layer phosphorene by liquid exfoliation of black phosphorus. Chem. Commun. 50, 13338–13341 (2014).

    Article  CAS  Google Scholar 

  64. 64

    Kang, J. et al. Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano 9, 3596–3604 (2015).

    Article  Google Scholar 

  65. 65

    Sotor, J. et al. Ultrafast thulium-doped fiber laser mode locked with black phosphorus. Opt. Lett. 40, 3885–3888 (2015).

    Article  CAS  Google Scholar 

  66. 66

    Kang, J. et al. Stable aqueous dispersions of optically and electronically active phosphorene. Preprint at (2016).

  67. 67

    Lu, W. et al. Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Res. 7, 853–859 (2014).

    Article  CAS  Google Scholar 

  68. 68

    Ziletti, A. et al. Phosphorene oxides: bandgap engineering of phosphorene by oxidation. Phys. Rev. B 91, 085407 (2015).

    Article  CAS  Google Scholar 

  69. 69

    Ziletti, A., Carvalho, A., Campbell, D. K., Coker, D. F. & Castro Neto, A. H. Oxygen defects in phosphorene. Phys. Rev. Lett. 114, 046801 (2015).

    Article  CAS  Google Scholar 

  70. 70

    Utt, K. L. et al. Intrinsic defects, fluctuations of the local shape, and the photo-oxidation of black phosphorus. ACS Cent. Sci. 1, 320–327 (2015).

    Article  CAS  Google Scholar 

  71. 71

    Yang, T. et al. Interpreting core-level spectra of oxidizing phosphorene: theory and experiment. Phys. Rev. B 92, 125412 (2015).

    Article  CAS  Google Scholar 

  72. 72

    Koenig, S. P., Doganov, R. A., Schmidt, H., Castro Neto, A. H. & Ozyilmaz, B. Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104, 103106 (2014).

    Article  CAS  Google Scholar 

  73. 73

    Wood, J. D. et al. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 14, 6964–6970 (2014).

    Article  CAS  Google Scholar 

  74. 74

    Island, J. O., Steele, G. A., van der Zant, H. S. J. & Castellanos-Gomez, A. Environmental instability of few-layer black phosphorus. 2D Mater. 2, 011002 (2015).

    Article  CAS  Google Scholar 

  75. 75

    Edmonds, M. T. et al. Creating a stable oxide at the surface of black phosphorus. ACS Appl. Mater. Interfaces 7, 14557–14562 (2015).

    Article  CAS  Google Scholar 

  76. 76

    Doganov, R. A. et al. Transport properties of ultrathin black phosphorus on hexagonal boron nitride. Appl. Phys. Lett. 106, 083505 (2015).

    Article  CAS  Google Scholar 

  77. 77

    Tayari, V. et al. Two-dimensional magnetotransport in a black phosphorus naked quantum well. Nat. Commun. 6, 7702 (2015).

    Article  CAS  Google Scholar 

  78. 78

    Kim, J.-S. et al. Toward air-stable multilayer phosphorene thin-films and transistors. Sci. Rep. 5, 8989 (2015).

    Article  CAS  Google Scholar 

  79. 79

    Mittal, V. Encapsulation Nanotechnologies (Wiley, 2013).

    Google Scholar 

  80. 80

    Avsar, A. et al. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano 9, 4138–4145 (2015).

    Article  CAS  Google Scholar 

  81. 81

    Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    Article  CAS  Google Scholar 

  82. 82

    Zhu, W. et al. Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. Nano Lett. 15, 1883–1890 (2015).

    Article  CAS  Google Scholar 

  83. 83

    Guo, Z. et al. From black phosphorus to phosphorene: basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 25, 6996–7002 (2015).

    Article  CAS  Google Scholar 

  84. 84

    Liang, L. et al. Electronic bandgap and edge reconstruction in phosphorene materials. Nano Lett. 14, 6400–6406 (2014).

    Article  CAS  Google Scholar 

  85. 85

    Woomer, A. H. et al. Phosphorene: synthesis, scale-up, and quantitative optical Spectroscopy. ACS Nano 9, 8869–8884 (2015).

    Article  CAS  Google Scholar 

  86. 86

    Liu, X., Wood, J. D., Chen, K.-S., Cho, E. & Hersam, M. C. In situ thermal decomposition of exfoliated two-dimensional black phosphorus. J. Phys. Chem. Lett. 6, 773–778 (2015).

    Article  CAS  Google Scholar 

  87. 87

    Luo, X. et al. Large frequency change with thickness in interlayer breathing mode: significant interlayer interactions in few layer black phosphorus. Nano Lett. 15, 3931–3938 (2015).

    Article  CAS  Google Scholar 

  88. 88

    Ling, X. et al. Low-frequency interlayer breathing modes in few-layer black phosphorus. Nano Lett. 15, 4080–4088 (2015).

    Article  CAS  Google Scholar 

  89. 89

    Weber, J., Calado, V. & Van de Sanden, M. Optical constants of graphene measured by spectroscopic ellipsometry. Appl. Phys. Lett. 97, 091904 (2010).

    Article  CAS  Google Scholar 

  90. 90

    Morita, A. Semiconducting black phosphorus. Appl. Phys. A 39, 227–242 (1986).

    Article  Google Scholar 

  91. 91

    Boukhvalov, D. W., Rudenko, A. N., Prishchenko, D. A., Mazurenko, V. G. & Katsnelson, M. I. Chemical modifications and stability of phosphorene with impurities: a first principles study. Phys. Chem. Chem. Phys. 17, 15209–15217 (2015).

    Article  CAS  Google Scholar 

  92. 92

    Carvalho, A., Rodin, A. S. & Neto, A. H. C. Phosphorene nanoribbons. Europhys. Lett. 108, 47005 (2014).

    Article  CAS  Google Scholar 

  93. 93

    Liu, Y., Xu, F., Zhang, Z., Penev, E. S. & Yakobson, B. I. Two-dimensional mono-elemental semiconductor with electronically inactive defects: the case of phosphorus. Nano Lett. 14, 6782–6786 (2014).

    Article  CAS  Google Scholar 

  94. 94

    Kulish, V. V., Malyi, O. I., Persson, C. & Wu, P. Adsorption of metal adatoms on single-layer phosphorene. Phys. Chem. Chem. Phys. 17, 992–1000 (2015).

    Article  CAS  Google Scholar 

  95. 95

    Kim, J. et al. Observation of tunable band gap and anisotropic dirac semimetal state in black phosphorus. Science 349, 723–726 (2015).

    Article  CAS  Google Scholar 

  96. 96

    Liu, X., Wen, Y., Chen, Z., Shan, B. & Chen, R. A first-principles study of sodium adsorption and diffusion on phosphorene. Phys. Chem. Chem. Phys. 17, 16398–16404 (2015).

    Article  CAS  Google Scholar 

  97. 97

    Koenig, S. P. et al. Electron doping of ultrathin black phosphorus with Cu adatoms. Nano Lett. 16, 2145–2151 (2016).

    Article  CAS  Google Scholar 

  98. 98

    Xiang, D. et al. Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus. Nat. Commun. 6, 6485 (2015).

    Article  CAS  Google Scholar 

  99. 99

    Hu, T. & Hong, J. First-principles study of metal adatom adsorption on black phosphorene. J. Phys. Chem. C 119, 8199–8207 (2015).

    Article  CAS  Google Scholar 

  100. 100

    Kulish, V. V., Malyi, O. I., Persson, C. & Wu, P. Phosphorene as an anode material for Na-ion batteries: a first-principles study. Phys. Chem. Chem. Phys. 17, 13921–13928 (2015).

    Article  CAS  Google Scholar 

  101. 101

    Ryder, C. R. et al. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat. Chem. 8, 597–602 (2016).

    Article  CAS  Google Scholar 

  102. 102

    Seixas, L., Carvalho, A. & Castro Neto, A. H. Atomically thin dilute magnetism in Co-doped phosphorene. Phys. Rev. B 91, 155138 (2015).

    Article  CAS  Google Scholar 

  103. 103

    Sui, X. et al. Tunable magnetism in transition-metal-decorated phosphorene. J. Phys. Chem. C 119, 10059–10063 (2015).

    Article  CAS  Google Scholar 

  104. 104

    Yu, W. et al. Dilute magnetic semiconductor and half metal behaviors in 3d transition-metal doped black and blue phosphorenes: a first-principles study. Nanoscale Res. Lett. 11, 77 (2016).

    Article  CAS  Google Scholar 

  105. 105

    Hu, W. & Yang, J. Defects in phosphorene. J. Phys. Chem. C 119, 20474–20480 (2015).

    Article  CAS  Google Scholar 

  106. 106

    Lu, J. et al. Bandgap engineering of phosphorene by laser oxidation toward functional 2D materials. ACS Nano 9, 10411–10421 (2015).

    Article  CAS  Google Scholar 

  107. 107

    Ramasubramaniam, A. & Muniz, A. R. Ab initio studies of thermodynamic and electronic properties of phosphorene nanoribbons. Phys. Rev. B 90, 085424 (2014).

    Article  CAS  Google Scholar 

  108. 108

    Venkata Kamalakar, M., Madhushankar, B. N., Dankert, A. & Dash, S. P. Engineering Schottky barrier in black phosphorus field effect devices for spintronic applications. Preprint at (2014).

  109. 109

    Das, S. et al. Tunable transport gap in phosphorene. Nano Lett. 14, 5733–5739 (2014).

    Article  CAS  Google Scholar 

  110. 110

    Liu, X. et al. Black phosphorus based field effect transistors with simultaneously achieved near ideal subthreshold swing and high hole mobility at room temperature. Sci. Rep. 6, 24920 (2016).

    Article  CAS  Google Scholar 

  111. 111

    Xia, F., Wang, H. & Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014).

    Article  CAS  Google Scholar 

  112. 112

    Palacios, T., Hsu, A. & Wang, H. Applications of graphene devices in RF communications. IEEE Commun. Mag. 48, 122–128 (2010).

    Article  Google Scholar 

  113. 113

    Wang, H. et al. Black phosphorus radio-frequency transistors. Nano Lett. 14, 6424–6429 (2014).

    Article  CAS  Google Scholar 

  114. 114

    Engel, M., Steiner, M. & Avouris, P. Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett. 14, 6414–6417 (2014).

    Article  CAS  Google Scholar 

  115. 115

    Youngblood, N., Chen, C., Koester, S. J. & Li, M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photonics 9, 247–252 (2015).

    Article  CAS  Google Scholar 

  116. 116

    Buscema, M., Groenendijk, D. J., Steele, G. A., van der Zant, H. S. J. & Castellanos-Gomez, A. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nat. Commun. 5, 4651 (2014).

    Article  CAS  Google Scholar 

  117. 117

    Buscema, M. et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14, 3347–3352 (2014).

    Article  CAS  Google Scholar 

  118. 118

    Lin, J.-H., Zhang, H. & Cheng, X.-L. First-principle study on the optical response of phosphorene. Front. Phys. 10, 1–9 (2015).

    Article  Google Scholar 

  119. 119

    Carvalho, A., Ribeiro, R. M. & Castro Neto, A. H. Band nesting and the optical response of two-dimensional semiconducting transition metal dichalcogenides. Phys. Rev. B 88, 115205 (2013).

    Article  CAS  Google Scholar 

  120. 120

    Low, T., Engel, M., Steiner, M. & Avouris, P. Origin of photoresponse in black phosphorus phototransistors. Phys. Rev. B 90, 081408 (2014).

    Article  CAS  Google Scholar 

  121. 121

    Wu, R. J. et al. Atomic and electronic structure of exfoliated black phosphorus. J. Vacuum Sci. Technol. A 33, 060604 (2015).

    Article  CAS  Google Scholar 

  122. 122

    Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2 . Phys. Rev. Lett. 113, 076802 (2014).

    Article  CAS  Google Scholar 

  123. 123

    Heremans, J. P., Dresselhaus, M. S., Bell, L. E. & Morelli, D. T. When thermoelectrics reached the nanoscale. Nat. Nanotechnol. 8, 471–473 (2013).

    Article  CAS  Google Scholar 

  124. 124

    Ding, G., Gao, G. & Yao, K. High-efficient thermoelectric materials: the case of orthorhombic IV–VI compounds. Sci. Rep. 5, 9567 (2015).

    Article  CAS  Google Scholar 

  125. 125

    Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Article  CAS  Google Scholar 

  126. 126

    Cai, Y. et al. Giant phononic anisotropy and unusual anharmonicity of phosphorene: interlayer coupling and strain engineering. Adv. Funct. Mater. 25, 2230–2236 (2015).

    Article  CAS  Google Scholar 

  127. 127

    Shirotani, I. Growth of large single crystals of black phosphorus at high pressures and temperatures, and its electrical properties. Mol. Cryst. Liq. Cryst. 86, 203–211 (1982).

    Article  Google Scholar 

  128. 128

    Tian, H. et al. Anisotropic black phosphorus synaptic device for neuromorphic applications. Adv. Mater. 28, 4991–4997 (2016).

    Article  CAS  Google Scholar 

  129. 129

    Han, C. et al. Strongly modulated ambipolar characteristics of few-layer black phosphorus in oxygen. Preprint at (2016).

  130. 130

    Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  CAS  Google Scholar 

  131. 131

    Du, X., Skachko, I., Barker, A. & Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3, 491–495 (2008).

    Article  CAS  Google Scholar 

  132. 132

    Ellis, J. K., Lucero, M. J. & Scuseria, G. E. The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory. Appl. Phys. Lett. 99, 261908 (2011).

    Article  CAS  Google Scholar 

  133. 133

    Jin, Z., Li, X., Mullen, J. T. & Kim, K. W. Intrinsic transport properties of electrons and holes in monolayer transition-metal dichalcogenides. Phys. Rev. B 90, 045422 (2014).

    Article  CAS  Google Scholar 

  134. 134

    Watanabe, K., Taniguchi, T. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404–409 (2004).

    Article  CAS  Google Scholar 

Download references


M.W. acknowledges the financial support from the National Natural Science Foundation of China (Grant No. 21203154). Work at NTU was supported in part by Air Force Office of Scientific Research (Grant no. AFRLAFOSR/AOARD 134074), MOE Tier-2 grant (no. MOE2013-T2-2-049), and A*STAR SERC Grant (no. 1121202012). A.C., A.S.R. and A.H.C.N. were supported by the National Research Foundation, Prime Minister Office, Singapore, under its Medium Sized Centre Programme and CRP award “Novel 2D materials with tailored properties: beyond graphene” (Grant number R-144-000-295-281).

Author information



Corresponding authors

Correspondence to Haibin Su or Antonio H. Castro Neto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary information S1 (table)

Elastic constants for bulk black phosphorus (PDF 88 kb)

Supplementary information S2 (table)

Bandgap energies (PDF 51 kb)

Supplementary information S3 (table)

Effective masses (PDF 58 kb)

Supplementary information S4 (table)

Vibrational modes (PDF 60 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carvalho, A., Wang, M., Zhu, X. et al. Phosphorene: from theory to applications. Nat Rev Mater 1, 16061 (2016).

Download citation

Further reading