Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Porous organic cages: soluble, modular and molecular pores

Abstract

Porosity is a rare property for molecular materials but, surprisingly, porous solids built from discrete organic cage molecules have emerged as a versatile functional-materials platform. From modest beginnings less than a decade ago, there are now organic cage solids with surface areas that can rival extended metal–organic frameworks. In contrast to network polymers and frameworks, these organic cages are synthesized first and then assembled in the solid state in a separate step. This offers solution-processing options that are not available for insoluble organic and inorganic frameworks. In this Review, we highlight examples of porous organic cages and focus on the unique features that set them apart, such as their molecular solubility, their increased tendency to exhibit polymorphism and the scope for modular co-crystallization.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: A timeline of porous molecules.
Figure 2: A timeline of porous organic cages.
Figure 3: Reversible synthetic routes used for porous cage formation with example cages.
Figure 4: Controlling solid-state porous cage packing.
Figure 5: Modular co-crystallization of porous organic cages.
Figure 6: Crystal structure prediction for porous organic cages.
Figure 7: Selected applications of porous organic cages.

References

  1. 1

    Kitagawa, S. Porous materials and the age of gas. Angew. Chem. Int. Ed. 54, 10686–10687 (2015).

    Article  CAS  Google Scholar 

  2. 2

    Kondo, M., Yoshitomi, T., Matsuzaka, H., Kitagawa, S. & Seki, K. Three-dimensional framework with channeling cavities for small molecules: {[M2(4,4′-bpy)3(NO3)4]·xH2O}n (M = Co, Ni, Zn). Angew. Chem. Int. Ed. 36, 1725–1727 (1997).

    Article  CAS  Google Scholar 

  3. 3

    Cheetham, A. K., Férey, G. & Loiseau, T. Open-framework inorganic materials. Angew. Chem. Int. Ed. 38, 3268–3292 (1999).

    Article  CAS  Google Scholar 

  4. 4

    Furukawa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    Article  CAS  Google Scholar 

  5. 5

    Bradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. & Rosseinsky, M. J. Design, chirality, and flexibility in nanoporous molecule-based materials. Acc. Chem. Res. 38, 273–282 (2005).

    Article  CAS  Google Scholar 

  6. 6

    Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    Article  CAS  Google Scholar 

  7. 7

    Thomas, A. Functional materials: from hard to soft porous frameworks. Angew. Chem. Int. Ed. 49, 8328–8344 (2010).

    Article  CAS  Google Scholar 

  8. 8

    Slater A. G. & Cooper A. I. Function-led design of new porous materials. Science 348 http://dx.doi.org/10.1126/science.aaa8075 (2015).

  9. 9

    Jiang, J., Zhao, Y. & Yaghi, O. M. Covalent chemistry beyond molecules. J. Am. Chem. Soc. 138, 3255–3265 (2016).

    Article  CAS  Google Scholar 

  10. 10

    Barbour, L. J. Crystal porosity and the burden of proof. Chem. Commun. 11, 1163–1168 (2006). This communication sets out a framework for how porosity is defined in molecular crystals.

    Article  CAS  Google Scholar 

  11. 11

    Holst, J. R., Trewin, A. & Cooper, A. I. Porous organic molecules. Nat. Chem. 2, 915–920 (2010).

    Article  CAS  Google Scholar 

  12. 12

    McKeown, N. B. Nanoporous molecular crystals. J. Mater. Chem. 20, 10588–10597 (2010).

    Article  CAS  Google Scholar 

  13. 13

    Tian, J., Thallapally, P. K. & McGrail, B. P. Porous organic molecular materials. CrystEngComm 14, 1909–1919 (2012).

    Article  CAS  Google Scholar 

  14. 14

    Evans, J. D. et al. Computational identification of organic porous molecular crystals. CrystEngComm 18, 4133–4141 (2016).

    Article  CAS  Google Scholar 

  15. 15

    Zhang, G. & Mastalerz, M. Organic cage compounds — from shape-persistency to function. Chem. Soc. Rev. 43, 1934–1947 (2014).

    Article  CAS  Google Scholar 

  16. 16

    Jin, Y. H., Wang, Q., Taynton, P. & Zhang, W. Dynamic covalent chemistry approaches toward macrocycles, molecular cages, and polymers. Acc. Chem. Res. 47, 1575–1586 (2014).

    Article  CAS  Google Scholar 

  17. 17

    Mastalerz, M. Permanent porous materials from discrete organic molecules — towards ultra-high surface areas. Chem. Eur. J. 18, 10082–10091 (2012).

    Article  CAS  Google Scholar 

  18. 18

    Evans, J. D., Sumby, C. J. & Doonan, C. J. Synthesis and applications of porous organic cages. Chem. Lett. 44, 582–588 (2015).

    Article  CAS  Google Scholar 

  19. 19

    Huang, S. L., Jin, G. X., Luo, H. K. & Hor, T. S. A. Engineering organic macrocycles and cages: versatile bonding approaches. Chem. Asian J. 10, 24–42 (2015).

    Article  CAS  Google Scholar 

  20. 20

    Xiong, M., Ding, H. M., Li, B. J., Zhou, T. L. & Wang, C. Porous organic molecular cages: from preparation to applications. Curr. Org. Chem. 18, 1965–1972 (2014).

    Article  CAS  Google Scholar 

  21. 21

    Ono, K. Porous organic cage crystals. J. Syn. Org. Chem. Jpn 70, 653–654 (2012).

    Article  CAS  Google Scholar 

  22. 22

    Cholewa, P. P. & Dalgarno, S. J. Metal–organic calixarene capsules: the evolution of controlled assembly. CrystEngComm 16, 3655–3666 (2014).

    Article  CAS  Google Scholar 

  23. 23

    Barrer, R. M. & Shanson, V. H. Dianin's compound as a zeolitic sorbent. J. Chem. Soc. Chem. Commun. 9, 333–334 (1976). A prototypical example of gas adsorption by a crystalline organic molecular solid.

    Article  Google Scholar 

  24. 24

    Lee, F., Gabe, E., Tse, J. S. & Ripmeester, J. A. Crystal structure, CP/MAS xeon-129 and carbon-13 NMR of local ordering in Dianin's compound clathrates. J. Am. Chem. Soc. 110, 6014–6019 (1988).

    Article  CAS  Google Scholar 

  25. 25

    Lloyd, G. O., Bredenkamp, M. W. & Barbour, L. J. Enclathration of morpholinium cations by Dianin's compound: salt formation by partial host-to-guest proton transfer. Chem. Commun. 32, 4053–4055 (2005).

    Article  CAS  Google Scholar 

  26. 26

    Andreetti, G. D., Ungaro, R. & Pochini, A. Crystal and molecular structure of cyclo{quater[(5-t-butyl-2-hydroxy-1,3-phenylene)methylene]} toluene (1:1) clathrate. J. Chem. Soc. Chem. Commun. 22, 1005–1007 (1979).

    Article  Google Scholar 

  27. 27

    Atwood, J. L., Barbour, L. J., Jerga, A. & Schottel, B. L. Guest transport in a nonporous organic solid via dynamic van der Waals cooperativity. Science 298, 1000–1002 (2002).

    Article  CAS  Google Scholar 

  28. 28

    Atwood, J. L., Barbour, L. J. & Jerga, A. A new type of material for the recovery of hydrogen from gas mixtures. Angew. Chem. Int. Ed. 43, 2948–2950 (2004). One of a series of important papers from Atwood and colleagues, who were among the first to suggest porous molecular solids for separations.

    Article  CAS  Google Scholar 

  29. 29

    Dalgarno, S. J., Thallapally, P. K., Barbour, L. J. & Atwood, J. L. Engineering void space in organic van der Waals crystals: calixarenes lead the way. Chem. Soc. Rev. 36, 236–245 (2007).

    Article  CAS  Google Scholar 

  30. 30

    Thallapally, P. K., Dalgarno, S. J. & Atwood, J. L. Frustrated organic solids display unexpected gas sorption. J. Am. Chem. Soc. 128, 15060–15061 (2006).

    Article  CAS  Google Scholar 

  31. 31

    Thallapally, P. K. et al. Organic crystals absorb hydrogen gas under mild conditions. Chem. Commun. 42, 5272–5274 (2005).

    Article  CAS  Google Scholar 

  32. 32

    Thallapally, P. K. et al. Gas-induced transformation and expansion of a non-porous organic solid. Nat. Mater. 7, 146–150 (2008).

    Article  CAS  Google Scholar 

  33. 33

    Thallapally, P. K., Wirsig, T. B., Barbour, L. J. & Atwood, J. L. Crystal engineering of nonporous organic solids for methane sorption. Chem. Commun. 35, 4420–4422 (2005).

    Article  CAS  Google Scholar 

  34. 34

    Atwood, J. L., Barbour, L. J., Thallapally, P. K. & Wirsig, T. B. A crystalline organic substrate absorbs methane under STP conditions. Chem. Commun. 42, 51–53 (2005).

    Article  CAS  Google Scholar 

  35. 35

    Kudo, H. et al. Molecular waterwheel (Noria) from a simple condensation of resorcinol and an alkanedial. Angew. Chem. Int. Ed. 45, 7948–7952 (2006).

    Article  CAS  Google Scholar 

  36. 36

    Tian, J., Thallapally, P. K., Dalgarno, S. J., McGrail, P. B. & Atwood, J. L. Amorphous molecular organic solids for gas adsorption. Angew. Chem. Int. Ed. 48, 5492–5495 (2009).

    Article  CAS  Google Scholar 

  37. 37

    Shimizu, L. S. et al. Self-assembled nanotubes that reversibly bind acetic acid guests. J. Am. Chem. Soc. 125, 14972–14973 (2003).

    Article  CAS  Google Scholar 

  38. 38

    Sanna, E. et al. A crystalline sponge based on dispersive forces suitable for X-ray structure determination of included molecular guests. Chem. Sci. 6, 5466–5472 (2015).

    Article  CAS  Google Scholar 

  39. 39

    Smith, M. K. & Miljanic, O. S. Arylene ethynylene macrocycles: from molecular hosts to components of high-performance supramolecular architectures. Org. Biomol. Chem. 13, 7841–7845 (2015).

    Article  CAS  Google Scholar 

  40. 40

    Ji, Q. et al. Cyclotetrabenzoin: facile synthesis of a shape-persistent molecular square and its assembly into hydrogen-bonded nanotubes. Chem. Eur. J. 21, 17205–17209 (2015).

    Article  CAS  Google Scholar 

  41. 41

    Sakamoto, H. et al. Cycloparaphenylene as a molecular porous carbon solid with uniform pores exhibiting adsorption-induced softness. Chem. Sci. 7, 4204–4210(2016).

    Article  CAS  Google Scholar 

  42. 42

    Bezzu, C. G., Helliwell, M., Warren, J. E., Allan, D. R. & McKeown, N. B. Heme-like coordination chemistry within nanoporous molecular crystals. Science 327, 1627–1630 (2010).

    Article  CAS  Google Scholar 

  43. 43

    Xu, Y. W. et al. Thermal reaction of a columnar assembled diacetylene macrocycle. J. Am. Chem. Soc. 132, 5334–5335 (2010).

    Article  CAS  Google Scholar 

  44. 44

    Baroncini, M. et al. Photoinduced reversible switching of porosity in molecular crystals based on star-shaped azobenzene tetramers. Nat. Chem. 7, 634–640 (2015).

    Article  CAS  Google Scholar 

  45. 45

    Kohl, B., Rominger, F. & Mastalerz, M. Crystal structures of a molecule designed not to pack tightly. Chem. Eur. J. 21, 17308–17313 (2015).

    Article  CAS  Google Scholar 

  46. 46

    Chong, J. H., Ardakani, S. J., Smith, K. J. & MacLachlan, M. J. Triptycene-based metal salphens — exploiting intrinsic molecular porosity for gas storage. Chem. Eur. J. 15, 11824–11828 (2009).

    Article  CAS  Google Scholar 

  47. 47

    Taylor, R. G. D. et al. Triptycene-based organic molecules of intrinsic microporosity. Org. Lett. 16, 1848–1851 (2014).

    Article  CAS  Google Scholar 

  48. 48

    Kohl, B., Rominger, F. & Mastalerz, M. Rigid π-extended triptycenes via a hexaketone precursor. Org. Lett. 16, 704–707 (2014).

    Article  CAS  Google Scholar 

  49. 49

    Taylor, R. G. D. et al. The synthesis of organic molecules of intrinsic microporosity designed to frustrate efficient molecular packing. Chem. Eur. J. 22, 2466–2472 (2016).

    Article  CAS  Google Scholar 

  50. 50

    Chen, T.-H., Kaveevivitchai, W., Jacobson, A. J. & Miljanic, O. S. Adsorption of fluorinated anesthetics within the pores of a molecular crystal. Chem. Commun. (Camb.) 51, 14096–14098 (2015).

    Article  CAS  Google Scholar 

  51. 51

    Sozzani, P. et al. A porous crystalline molecular solid explored by hyperpolarized xenon. Angew. Chem. Int. Ed. 39, 2695–2699 (2000).

    Article  CAS  Google Scholar 

  52. 52

    Couderc, G., Hertzsch, T., Behrnd, N. R., Kramer, K. & Hulliger, J. Reversible sorption of nitrogen and xenon gas by the guest-free zeolite tris(o-phenylenedioxy)cyclotriphosphazene (TPP). Micropor. Mesopor. Mater. 88, 170–175 (2006).

    Article  CAS  Google Scholar 

  53. 53

    Allcock, H. R. & Siegel, L. A. Phosphonitrilic compounds. III. Molecular inclusion compounds of tris(o-phenylenedioxy)phosphonitrile trimer. J. Am. Chem. Soc. 86, 5140–5144 (1964).

    Article  CAS  Google Scholar 

  54. 54

    He, Y., Xiang, S. & Chen, B. A microporous hydrogen-bonded organic framework for highly selective C2H2/C2H4 separation at ambient temperature. J. Am. Chem. Soc. 133, 14570–14573 (2011).

    Article  CAS  Google Scholar 

  55. 55

    Li, P. et al. A homochiral microporous hydrogen-bonded organic framework for highly enantioselective separation of secondary alcohols. J. Am. Chem. Soc. 136, 547–549 (2014).

    Article  CAS  Google Scholar 

  56. 56

    Luo, X.-Z. et al. A microporous hydrogen-bonded organic framework: exceptional stability and highly selective adsorption of gas and liquid. J. Am. Chem. Soc. 135, 11684–11687 (2013).

    Article  CAS  Google Scholar 

  57. 57

    Wang, H. et al. A flexible microporous hydrogen-bonded organic framework for gas sorption and separation. J. Am. Chem. Soc. 137, 9963–9970 (2015).

    Article  CAS  Google Scholar 

  58. 58

    Zentner, C. A. et al. High surface area and Z′ in a thermally stable 8-fold polycatenated hydrogen-bonded framework. Chem. Commun. 51, 11642–11645 (2015).

    Article  CAS  Google Scholar 

  59. 59

    Mastalerz, M. & Oppel, I. M. Rational construction of an extrinsic porous molecular crystal with an extraordinary high specific surface area. Angew. Chem. Int. Ed. Engl. 51, 5252–5255 (2012). A breakthrough paper showing that extrinsic molecular porosity can rival extended, bonded frameworks.

    Article  CAS  Google Scholar 

  60. 60

    Seel, C. & Vogtle, F. Molecules with large cavities in supramolecular chemistry. Angew. Chem. Int. Ed. Engl. 31, 528–549 (1992).

    Article  Google Scholar 

  61. 61

    Masson, E., Ling, X., Joseph, R., Kyeremeh-Mensah, L. & Lu, X. Cucurbituril chemistry: a tale of supramolecular success. RSC Adv. 2, 1213–1247 (2012).

    Article  CAS  Google Scholar 

  62. 62

    Freeman, W. A., Mock, W. L. & Shih, N. Y. Cucurbituril. J. Am. Chem. Soc. 103, 7367–7368 (1981).

    Article  CAS  Google Scholar 

  63. 63

    Brotin, T. & Dutasta, J.-P. Cryptophanes and their complexes — present and future. Chem. Rev. 109, 88–130 (2009).

    Article  CAS  Google Scholar 

  64. 64

    Lim, S. et al. Cucurbit[6]uril: organic molecular porous material with permanent porosity, exceptional stability, and acetylene sorption properties. Angew. Chem. Int. Ed. 47, 3352–3355 (2008).

    Article  CAS  Google Scholar 

  65. 65

    Joseph, A. I., Lapidus, S. H., Kane, C. M. & Holman, K. T. Extreme confinement of xenon by cryptophane-111 in the solid state. Angew. Chem. Int. Ed. 54, 1471–1475 (2015).

    Article  CAS  Google Scholar 

  66. 66

    Cram, D. J. Cavitands: organic hosts with enforced cavities. Science 219, 1177–1183 (1983).

    Article  CAS  Google Scholar 

  67. 67

    Pedersen, C. J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89, 7017–7036 (1967).

    Article  CAS  Google Scholar 

  68. 68

    Tozawa, T. et al. Porous organic cages. Nat. Mater. 8, 973–978 (2009). A series of three porous organic crystals with type I nitrogen adsorption isotherms and BET surface areas of up to 600 m2 g−1 are reported here: the first porous organic cages.

    Article  CAS  Google Scholar 

  69. 69

    Bojdys, M. J. et al. Supramolecular engineering of intrinsic and extrinsic porosity in covalent organic cages. J. Am. Chem. Soc. 133, 16566–16571 (2011).

    Article  CAS  Google Scholar 

  70. 70

    Hasell, T. et al. Controlling the crystallization of porous organic cages: molecular analogs of isoreticular frameworks using shape-specific directing solvents. J. Am. Chem. Soc. 136, 1438–1448 (2014).

    Article  CAS  Google Scholar 

  71. 71

    Mitra, T. et al. A soft porous organic cage crystal with complex gas sorption behavior. Chem. Eur. J. 17, 10235–10240 (2011).

    Article  CAS  Google Scholar 

  72. 72

    Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002).

    Article  CAS  Google Scholar 

  73. 73

    Deng, H. et al. Multiple functional groups of varying ratios in metal–organic frameworks. Science 327, 846–850 (2010).

    Article  CAS  Google Scholar 

  74. 74

    Mastalerz, M. One-pot synthesis of a shape-persistent endo-functionalised nano-sized adamantoid compound. Chem. Commun. 39, 4756–4758 (2008).

    Article  CAS  Google Scholar 

  75. 75

    Mastalerz, M., Schneider, M. W., Oppel, I. M. & Presly, O. A salicylbisimine cage compound with high surface area and selective CO2/CH4 adsorption. Angew. Chem. Int. Ed. 50, 1046–1051 (2011).

    Article  CAS  Google Scholar 

  76. 76

    Schneider, M. W. et al. Periphery-substituted 4 + 6 salicylbisimine cage compounds with exceptionally high surface areas: influence of the molecular structure on nitrogen sorption properties. Chem. Eur. J. 18, 836–847 (2012).

    Article  CAS  Google Scholar 

  77. 77

    Schneider, M. W., Hauswald, H. J. S., Stoll, R. & Mastalerz, M. A shape-persistent exo-functionalized 4 + 6 imine cage compound with a very high specific surface area. Chem. Commun. 48, 9861–9863 (2012). A molecular organic cage crystal polymorph with a BET surface area of >2,000 m2 g−1.

    Article  CAS  Google Scholar 

  78. 78

    Schneider, M. W., Oppel, I. M., Griffin, A. & Mastalerz, M. Post-modification of the interior of porous shape-persistent organic cage compounds. Angew. Chem. Int. Ed. 52, 3611–3615 (2013).

    Article  CAS  Google Scholar 

  79. 79

    Avellaneda, A. et al. Kinetically controlled porosity in a robust organic cage material. Angew. Chem. Int. Ed. 52, 3746–3749 (2013). A route that avoids the use of dynamic covalent chemistry, therefore giving stable products

    Article  CAS  Google Scholar 

  80. 80

    Jelfs, K. E. et al. Large self-assembled chiral organic cages: synthesis, structure, and shape persistence. Angew. Chem. Int. Ed. 50, 10653–10656 (2011).

    Article  CAS  Google Scholar 

  81. 81

    Skowronek, P., Warzajtis, B., Rychlewska, U. & Gawronski, J. Self-assembly of a covalent organic cage with exceptionally large and symmetrical interior cavity: the role of entropy of symmetry. Chem. Commun. 49, 2524–2526 (2013).

    Article  CAS  Google Scholar 

  82. 82

    Zhang, G., Presly, O., White, F., Oppel, I. M. & Mastalerz, M. A. Permanent mesoporous organic cage with an exceptionally high surface area. Angew. Chem. Int. Ed. 53, 1516–1520 (2014). The first mesoporous molecular organic crystal.

    Article  CAS  Google Scholar 

  83. 83

    Hasell, T., Schmidtmann, M., Stone, C. A., Smith, M. W. & Cooper, A. I. Reversible water uptake by a stable imine-based porous organic cage. Chem. Commun. 48, 4689–4691 (2012).

    Article  CAS  Google Scholar 

  84. 84

    Liu, M. et al. Acid- and base-stable porous organic cages: shape persistence and pH stability via post-synthetic “tying” of a flexible amine cage. J. Am. Chem. Soc. 136, 7583–7586 (2014).

    Article  CAS  Google Scholar 

  85. 85

    Hong, S. et al. Porphyrin boxes: rationally designed porous organic cages. Angew. Chem. Int. Ed. 54, 13241–13244 (2015).

    Article  CAS  Google Scholar 

  86. 86

    Harris, K., Fujita, D. & Fujita, M. Giant hollow Mn L2 n spherical complexes: structure, functionalisation and applications. Chem. Commun. 49, 6703–6712 (2013).

    Article  CAS  Google Scholar 

  87. 87

    Sun, Q. F. et al. Self-assembled M24L48 polyhedra and their sharp structural switch upon subtle ligand variation. Science 328, 1144–1147 (2010).

    Article  CAS  Google Scholar 

  88. 88

    Jansze, S. M. et al. Ligand aspect ratio as a decisive factor for the self-assembly of coordination cages. J. Am. Chem. Soc. 138, 2046–2054 (2016).

    Article  CAS  Google Scholar 

  89. 89

    Lu, Z. et al. Synthesis and structure of chemically stable metal–organic polyhedra. J. Am. Chem. Soc. 131, 12532–12533 (2009).

    Article  CAS  Google Scholar 

  90. 90

    Tranchemontagne, D. J. L., Ni, Z., O'Keeffe, M. & Yaghi, O. M. Reticular chemistry of metal–organic polyhedra. Angew. Chem. Int. Ed. 47, 5136–5147 (2008).

    Article  CAS  Google Scholar 

  91. 91

    Brammer, L. Developments in inorganic crystal engineering. Chem. Soc. Rev. 33, 476–489 (2004).

    Article  CAS  Google Scholar 

  92. 92

    Jones, N. Atomic secrets. Nature 505, 602–602 (2014).

    Article  CAS  Google Scholar 

  93. 93

    Rissanen, K. in Analytical Methods in Supramolecular Chemistry (ed. Schalley, C. ) 305–336 (Wiley-VCH, 2007).

    Google Scholar 

  94. 94

    Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. Sect. A 64, 112–122 (2008).

    Article  CAS  Google Scholar 

  95. 95

    Rowan, S. J., Cantrill, S. J., Cousins, G. R. L., Sanders, J. K. M. & Stoddart, J. F. Dynamic covalent chemistry. Angew. Chem. Int. Ed. 41, 898–952 (2002).

    Article  Google Scholar 

  96. 96

    Klotzbach, S. & Beuerle, F. Shape-controlled synthesis and self-sorting of covalent organic cage compounds. Angew. Chem. Int. Ed. 54, 10356–10360 (2015).

    Article  CAS  Google Scholar 

  97. 97

    Jelfs, K. E. et al. In silico design of supramolecules from their precursors: odd–even effects in cage-forming reactions. J. Am. Chem. Soc. 135, 9307–9310 (2013).

    Article  CAS  Google Scholar 

  98. 98

    Jiang, S. et al. Selective gas sorption in a [2 + 3] ‘propeller’ cage crystal. Chem. Commun. 47, 8919–8921 (2011).

    Article  CAS  Google Scholar 

  99. 99

    Jiang, S. et al. Porous organic molecular solids by dynamic covalent scrambling. Nat. Commun. 2, 207 (2011).

    Article  CAS  Google Scholar 

  100. 100

    Jones, J. T. A. et al. Modular and predictable assembly of porous organic molecular crystals. Nature 474, 367–371 (2011). The first modular cage co-crystals and use of computational crystal structure prediction for porous organic crystals.

    Article  CAS  Google Scholar 

  101. 101

    Jones, J. T. A. et al. On–off porosity switching in a molecular organic solid. Angew. Chem. Int. Ed. 50, 749–753 (2011).

    Article  CAS  Google Scholar 

  102. 102

    Liu, X. J., Liu, Y., Li, G. & Warmuth, R. One-pot, 18-component synthesis of an octahedral nanocontainer molecule. Angew. Chem. Int. Ed. 45, 901–904 (2006).

    Article  CAS  Google Scholar 

  103. 103

    Ding, H. et al. Targeted synthesis of a large triazine-based [4 + 6] organic molecular cage: structure, porosity and gas separation. Chem. Commun. 51, 1976–1979 (2015).

    Article  CAS  Google Scholar 

  104. 104

    Jin, Y. H. et al. Highly CO2-selective organic molecular cages: what determines the CO2 selectivity. J. Am. Chem. Soc. 133, 6650–6658 (2011).

    Article  CAS  Google Scholar 

  105. 105

    Jin, Y., Zhu, Y. & Zhang, W. Development of organic porous materials through Schiff-base chemistry. CrystEngComm 15, 1484–1499 (2013).

    Article  CAS  Google Scholar 

  106. 106

    Kieryk, P., Janczak, J., Panek, J., Miklitz, M. & Lisowski, J. Chiral 2 + 3 keto-enamine pseudocyclophanes derived from 1,3,5-triformylphloroglucinol. Org. Lett. 18, 12–15 (2016).

    Article  CAS  Google Scholar 

  107. 107

    Schneider, M. W., Oppel, I. M. & Mastalerz, M. Exo-functionalized shape-persistent 2 + 3 cage compounds: influence of molecular rigidity on formation and permanent porosity. Chem. Eur. J. 18, 4156–4160 (2012).

    Article  CAS  Google Scholar 

  108. 108

    Klotzbach, S., Scherpf, T. & Beuerle, F. Dynamic covalent assembly of tribenzotriquinacenes into molecular cubes. Chem. Commun. 50, 12454–12457 (2014).

    Article  CAS  Google Scholar 

  109. 109

    Icli, B. et al. Dative boron-nitrogen bonds in structural supramolecular chemistry: multicomponent assembly of prismatic organic cages. Chem. Sci. 2, 1719–1721 (2011).

    Article  CAS  Google Scholar 

  110. 110

    Bull, S. D. et al. Exploiting the reversible covalent bonding of boronic acids: recognition, sensing, and assembly. Acc. Chem. Res. 46, 312–326 (2013).

    Article  CAS  Google Scholar 

  111. 111

    Ono, K. et al. Self-assembly of nanometer-sized boroxine cages from diboronic acids. J. Am. Chem. Soc. 137, 7015–7018 (2015).

    Article  CAS  Google Scholar 

  112. 112

    Wang, Q. et al. Solution-phase dynamic assembly of permanently interlocked aryleneethynylene cages through alkyne metathesis. Angew. Chem. Int. Ed. 54, 7550–7554 (2015).

    Article  CAS  Google Scholar 

  113. 113

    Wang, Q. et al. A tetrameric cage with D2h symmetry through alkyne metathesis. Angew. Chem. Int. Ed. 53, 10663–10667 (2014).

    Article  CAS  Google Scholar 

  114. 114

    Wang, Q. et al. Dynamic covalent synthesis of aryleneethynylene cages through alkyne metathesis: dimer, tetramer, or interlocked complex? Chem. Sci. 7, 3370–3376 (2016).

    Article  CAS  Google Scholar 

  115. 115

    Lee, S., Yang, A., Moneypenny, T. P. & Moore, J. S. Kinetically trapped tetrahedral cages via alkyne metathesis. J. Am. Chem. Soc. 138, 2182–2185 (2016).

    Article  CAS  Google Scholar 

  116. 116

    Horng, Y.-C. et al. Preparation of a reversible redox-controlled cage-type molecule linked by disulfide bonds. Eur. J. Org. Chem. 2009, 1511–1514 (2009).

    Article  CAS  Google Scholar 

  117. 117

    Tam-Chang, S. W., Stehouwer, J. S. & Hao, J. S. Formation of a macrobicyclic tris(disulfide) by molecular self-assembly. J. Org. Chem. 64, 334–335 (1999).

    Article  CAS  Google Scholar 

  118. 118

    Dhara, A. & Beuerle, F. Reversible assembly of a supramolecular cage linked by boron–nitrogen dative bonds. Chem. Eur. J. 21, 17391–17396 (2015).

    Article  CAS  Google Scholar 

  119. 119

    Wu, Z. Y., Lee, S. & Moore, J. S. Synthesis of 3-dimensional nanoscaffolding J. Am. Chem. Soc. 114, 8730–8732 (1992).

    Article  CAS  Google Scholar 

  120. 120

    Zhang, C. & Chen, C. F. Synthesis and structure of a triptycene-based nanosized molecular cage. J. Org. Chem. 72, 9339–9341 (2007).

    Article  CAS  Google Scholar 

  121. 121

    Zhang, C. et al. A porous tricyclooxacalixarene cage based on tetraphenylethylene. Angew. Chem. Int. Ed. 54, 9244–9248 (2015).

    Article  CAS  Google Scholar 

  122. 122

    Zhang, J. H. et al. A smart porphyrin cage for recognizing azide anions. Chem. Commun. 48, 3602–3604 (2012).

    Article  CAS  Google Scholar 

  123. 123

    Zhang, G., Presly, O., White, F., Oppel, I. M. & Mastalerz, M. A. Shape-persistent quadruply interlocked giant cage catenane with two distinct pores in the solid state. Angew. Chem. Int. Ed. 53, 5126–5130 (2014).

    CAS  Google Scholar 

  124. 124

    Hasell, T. et al. Triply interlocked covalent organic cages. Nat. Chem. 2, 750–755 (2010).

    Article  CAS  Google Scholar 

  125. 125

    Gil-Ramirez, G., Leigh, D. A. & Stephens, A. J. Catenanes: fifty years of molecular links. Angew. Chem. Int. Ed. 54, 6110–6150 (2015).

    Article  CAS  Google Scholar 

  126. 126

    O'Sullivan, M. C. et al. Vernier templating and synthesis of a 12-porphyrin nano-ring. Nature 469, 72–75 (2011).

    Article  CAS  Google Scholar 

  127. 127

    Leus, K. et al. Systematic study of the chemical and hydrothermal stability of selected ‘stable’ metal organic frameworks. Micropor. Mesopor. Mater. 226, 110–116 (2016).

    Article  CAS  Google Scholar 

  128. 128

    Kitchin, M. et al. Continuous flow synthesis of a carbon-based molecular cage macrocycle via a three-fold homocoupling reaction. Chem. Commun. 51, 14231–14234 (2015).

    Article  CAS  Google Scholar 

  129. 129

    Briggs, M. E. et al. Dynamic flow synthesis of porous organic cages. Chem. Commun. 51, 17390–17393 (2015).

    Article  CAS  Google Scholar 

  130. 130

    Zhang, J.-P., Huang, X.-C. & Chen, X.-M. Supramolecular isomerism in coordination polymers. Chem. Soc. Rev. 38, 2385–2396 (2009).

    Article  CAS  Google Scholar 

  131. 131

    Little, M. A., Chong, S. Y., Schmidtmann, M., Hasell, T. & Cooper, A. I. Guest control of structure in porous organic cages. Chem. Commun. 50, 9465–9468 (2014).

    Article  CAS  Google Scholar 

  132. 132

    Pyzer-Knapp, E. O. et al. Predicted crystal energy landscapes of porous organic cages. Chem. Sci. 5, 2235–2245 (2014).

    Article  CAS  Google Scholar 

  133. 133

    Hasell, T., Chong, S. Y., Jelfs, K. E., Adams, D. J. & Cooper, A. I. Porous organic cage nanocrystals by solution mixing. J. Am. Chem. Soc. 134, 588–598 (2012).

    Article  CAS  Google Scholar 

  134. 134

    Jiang, S. et al. Molecular dynamics simulations of gas selectivity in amorphous porous molecular solids. J. Am. Chem. Soc. 135, 17818–17830 (2013).

    Article  CAS  Google Scholar 

  135. 135

    Sholl, D. S. & Lively, R. P. Defects in metal–organic frameworks: challenge or opportunity? J. Phys. Chem. Lett. 6, 3437–3444 (2015).

    Article  CAS  Google Scholar 

  136. 136

    Wu, H. et al. Unusual and highly tunable missing-linker defects in zirconium metal–organic framework UiO-66 and their important effects on gas adsorption. J. Am. Chem. Soc. 135, 10525–10532 (2013).

    Article  CAS  Google Scholar 

  137. 137

    McKeown, N. B. Molecular nanoporous crystals: predictable porosity. Nat. Mater. 10, 563–564 (2011).

    Article  CAS  Google Scholar 

  138. 138

    Mintova, S., Jaber, M. & Valtchev, V. Nanosized microporous crystals: emerging applications. Chem. Soc. Rev. 44, 7207–7233 (2015).

    Article  CAS  Google Scholar 

  139. 139

    Hasell, T., Chong, S. Y., Schmidtmann, M., Adams, D. J. & Cooper, A. I. Porous organic alloys. Angew. Chem. Int. Ed. 51, 7154–7157 (2012).

    Article  CAS  Google Scholar 

  140. 140

    Isupov, V. A. Ferroelectric Na0.5Bi0.5TiO3 and K0.5Bi0.5TiO3 perovskites and their solid solutions. Ferroelectrics 315, 123–147 (2005).

    Article  CAS  Google Scholar 

  141. 141

    Noheda, B. Structure and high-piezoelectricity in lead oxide solid solutions. Curr. Opin. Solid State Mater. Sci. 6, 27–34 (2002).

    Article  CAS  Google Scholar 

  142. 142

    Bellows, J. C. & Prasad, P. N. Successive perturbation of phonon bands in an organic alloy. J. Chem. Phys. 66, 625–631 (1977).

    Article  CAS  Google Scholar 

  143. 143

    Natarajan, R. et al. Nanoporous organic alloys. Angew. Chem. Int. Ed. 50, 11386–11390 (2011).

    Article  CAS  Google Scholar 

  144. 144

    Little, M. A. et al. Trapping virtual pores by crystal retro-engineering. Nat. Chem. 7, 153–159 (2015).

    Article  CAS  Google Scholar 

  145. 145

    Barbour, L. J. Organic cage crystals: supramolecular joinery. Nat. Chem. 7, 97–99 (2015).

    Article  CAS  Google Scholar 

  146. 146

    Briggs, M. E. et al. Shape prediction for supramolecular organic nanostructures: [4 + 4] macrocyclic tetrapods. Cryst. Growth Des. 13, 4993–5000 (2013).

    Article  CAS  Google Scholar 

  147. 147

    Santolini, V., Tribello, G. A. & Jelfs, K. E. Predicting solvent effects on the structure of porous organic molecules. Chem. Commun. 51, 15542–15545 (2015).

    Article  CAS  Google Scholar 

  148. 148

    Chen, L. et al. Separation of rare gases and chiral molecules by selective binding in porous organic cages. Nat. Mater. 13, 954–960 (2014).

    Article  CAS  Google Scholar 

  149. 149

    Holden, D. et al. Gas diffusion in a porous organic cage: analysis of dynamic pore connectivity using molecular dynamics simulations. J. Phys. Chem. C 118, 12734–12743 (2014).

    Article  CAS  Google Scholar 

  150. 150

    Colon, Y. J. & Snurr, R. Q. High-throughput computational screening of metal–organic frameworks. Chem. Soc. Rev. 43, 5735–5749 (2014).

    Article  CAS  Google Scholar 

  151. 151

    Coudert, F.-X., Boutin, A., Jeffroy, M., Mellot-Draznieks, C. & Fuchs, A. H. Thermodynamic methods and models to study flexible metal–organic frameworks. ChemPhysChem 12, 247–258 (2011).

    Article  CAS  Google Scholar 

  152. 152

    Coudert, F.-X. & Fuchs, A. H. Computational characterization and prediction of metal–organic framework properties. Coord. Chem. Rev. 307, 211–236 (2016).

    Article  CAS  Google Scholar 

  153. 153

    Evans, J. D. et al. Feasibility of mixed matrix membrane gas separations employing porous organic cages. J. Phys. Chem. C 118, 1523–1529 (2014).

    Article  CAS  Google Scholar 

  154. 154

    Camp, J. S. & Sholl, D. S. Transition state theory methods to measure diffusion in flexible nanoporous materials: application to a porous organic cage crystal. J. Phys. Chem. C 120, 1110–1120 (2015).

    Article  CAS  Google Scholar 

  155. 155

    Baek, S. B. et al. High-temperature in situ crystallographic observation of reversible gas sorption in impermeable organic cages. Proc. Natl Acad. Sci. USA 112, 14156–14161 (2015).

    Article  CAS  Google Scholar 

  156. 156

    Kane, C. M., Ugono, O., Barbour, L. J. & Holman, K. T. Many simple molecular cavitands are intrinsically porous (zero-dimensional pore) materials. Chem. Mater. 27, 7337–7354 (2015).

    Article  CAS  Google Scholar 

  157. 157

    Holden, D. et al. Understanding static, dynamic and cooperative porosity in molecular materials. Chem. Sci.http://dx.doi.org/10.1039/C6SC00713A (2016).

  158. 158

    Holst, J. R. & Cooper, A. I. Ultrahigh surface area in porous solids. Adv. Mater. 22, 5212–5216 (2010).

    Article  CAS  Google Scholar 

  159. 159

    Elbert, S. M., Rominger, F. & Mastalerz, M. Synthesis of a rigid C3v-symmetric tris-salicylaldehyde as a precursor for a highly porous molecular cube. Chem. Eur. J. 20, 16707–16720 (2014).

    Article  CAS  Google Scholar 

  160. 160

    Hasell, T. et al. Porous organic cages for sulfur hexafluoride separation. J. Am. Chem. Soc. 138, 1653–1659 (2016).

    Article  CAS  Google Scholar 

  161. 161

    Mitra, T. et al. Molecular shape sorting using molecular organic cages. Nat. Chem. 5, 276–281 (2013).

    Article  CAS  Google Scholar 

  162. 162

    Zhang, J.-H. et al. Homochiral porous organic cage with high selectivity for the separation of racemates in gas chromatography. Anal. Chem. 87, 7817–7824 (2015).

    Article  CAS  Google Scholar 

  163. 163

    Kewley, A. et al. Porous organic cages for gas chromatography separations. Chem. Mater. 27, 3207–3210 (2015).

    Article  CAS  Google Scholar 

  164. 164

    Zhang, J. H., Xie, S. M., Wang, B. J., He, P. G. & Yuan, L. M. Highly selective separation of enantiomers using a chiral porous organic cage. J. Chromatogr. A 1426, 174–182 (2015).

    Article  CAS  Google Scholar 

  165. 165

    Xie, S. M. et al. A chiral porous organic cage for molecular recognition using gas chromatography. Acta Crystallogr. 903, 156–163 (2016).

    CAS  Google Scholar 

  166. 166

    Chen, T.-H. et al. Thermally robust and porous noncovalent organic framework with high affinity for fluorocarbons and CFCs. Nat. Commun. 5, 5131 (2014).

    Article  CAS  Google Scholar 

  167. 167

    Hasell, T., Zhang, H. & Cooper, A. I. Solution-processable molecular cage micropores for hierarchically porous materials. Adv. Mater. 24, 5732–5737 (2012).

    Article  CAS  Google Scholar 

  168. 168

    Bushell, A. F. et al. Nanoporous organic polymer/cage composite membranes. Angew. Chem. Int. Ed. 52, 1253–1256 (2013). The first organic–organic MMMs using soluble, porous molecular fillers.

    Article  CAS  Google Scholar 

  169. 169

    Song, Q. et al. Porous organic cage thin films and molecular-sieving membranes. Adv. Mater. 28, 2629–2637 (2016).

    Article  CAS  Google Scholar 

  170. 170

    Brutschy, M., Schneider, M. W., Mastalerz, M. & Waldvogel, S. R. Porous organic cage compounds as highly potent affinity materials for sensing by quartz crystal microbalances. Adv. Mater. 24, 6049–6052 (2012).

    Article  CAS  Google Scholar 

  171. 171

    Brutschy, M., Schneider, M. W., Mastalerz, M. & Waldvogel, S. R. Direct gravimetric sensing of GBL by a molecular recognition process in organic cage compounds. Chem. Commun. 49, 8398–8400 (2013).

    Article  CAS  Google Scholar 

  172. 172

    Buyukcakir, O., Seo, Y. & Coskun, A. Thinking outside the cage: controlling the extrinsic porosity and gas uptake properties of shape-persistent molecular cages in nanoporous polymers. Chem. Mater. 27, 4149–4155 (2015).

    Article  CAS  Google Scholar 

  173. 173

    Swamy, S. I. et al. A metal–organic framework with a covalently prefabricated porous organic linker. J. Am. Chem. Soc. 132, 12773–12775 (2010).

    Article  CAS  Google Scholar 

  174. 174

    Giri, N. et al. Liquids with permanent porosity. Nature 527, 216–220 (2015). The first porous liquids, enabled by the high solubility and structural rigidity of the cage molecules.

    Article  CAS  Google Scholar 

  175. 175

    Giri, N. et al. Alkylated organic cages: from porous crystals to neat liquids. Chem. Sci. 3, 2153–2157 (2012).

    Article  CAS  Google Scholar 

  176. 176

    Melaugh, G., Giri, N., Davidson, C. E., James, S. L. & Del Popolo, M. G. Designing and understanding permanent microporosity in liquids. Phys. Chem. Chem. Phys. 16, 9422–9431 (2014).

    Article  CAS  Google Scholar 

  177. 177

    O'Reilly, N., Giri, N. & James, S. L. Porous liquids. Chem. Eur. J. 13, 3020–3025 (2007).

    Article  CAS  Google Scholar 

  178. 178

    Mastalerz, M. Materials chemistry: liquefied molecular holes. Nature 527, 174–176 (2015).

    Article  CAS  Google Scholar 

  179. 179

    Lydon, D. P., Campbell, N. L., Adams, D. J. & Cooper, A. I. Scalable synthesis for porous organic cages. Synth. Commun. 41, 2146–2151 (2011).

    Article  CAS  Google Scholar 

  180. 180

    Nelson, A. P., Farha, O. K., Mulfort, K. L. & Hupp, J. T. Supercritical processing as a route to high internal surface areas and permanent microporosity in metal–organic framework materials. J. Am. Chem. Soc. 131, 458–460 (2009).

    Article  CAS  Google Scholar 

  181. 181

    Zhang, Y. B. et al. Single-crystal structure of a covalent organic framework. J. Am. Chem. Soc. 135, 16336–16339 (2013).

    Article  CAS  Google Scholar 

  182. 182

    Beaudoin, D., Maris, T. & Wuest, J. D. Constructing monocrystalline covalent organic networks by polymerization. Nat. Chem. 5, 830–834 (2013).

    Article  CAS  Google Scholar 

  183. 183

    Lai, H. W. H., Wiscons, R. A., Zentner, C. A., Zeller, M. & Rowsell, J. L. C. Supramolecular assembly of tris(4-carboxyphenyl)arenes: relationship between molecular structure and solid-state catenation motifs. Cryst. Growth Des. 16, 821–833 (2016).

    Article  CAS  Google Scholar 

  184. 184

    Liu, Z. et al. Supramolecular gelation of rigid triangular macrocycles through rings of multiple C–H;O interactions acting cooperatively. J. Org. Chem. 81, 2581–2588 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.I.C. thanks the Engineering and Physical Sciences Research Council (EP/N004884/1) and European Research Council under the European Union's Seventh Framework Programme/ERC Grant Agreement no. 321156 (Robust Organic Tectonics; RobOT) for financial support. T.H. thanks the Royal Society for a University Research Fellowship. The authors thank S. Chong and M. Little for critical input into this manuscript.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Tom Hasell or Andrew I. Cooper.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hasell, T., Cooper, A. Porous organic cages: soluble, modular and molecular pores. Nat Rev Mater 1, 16053 (2016). https://doi.org/10.1038/natrevmats.2016.53

Download citation

Further reading

Search

Quick links