Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Two-dimensional semiconductors for transistors

Abstract

In the quest for higher performance, the dimensions of field-effect transistors (FETs) continue to decrease. However, the reduction in size of FETs comprising 3D semiconductors is limited by the rate at which heat, generated from static power, is dissipated. The increase in static power and the leakage of current between the source and drain electrodes that causes this increase, are referred to as short-channel effects. In FETs with channels made from 2D semiconductors, leakage current is almost eliminated because all electrons are confined in atomically thin channels and, hence, are uniformly influenced by the gate voltage. In this Review, we provide a mathematical framework to evaluate the performance of FETs and describe the challenges for improving the performances of short-channel FETs in relation to the properties of 2D materials, including graphene, transition metal dichalcogenides, phosphorene and silicene. We also describe tunnelling FETs that possess extremely low-power switching behaviour and explain how they can be realized using heterostructures of 2D semiconductors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Advantages of 2D materials compared with 3D materials for FETs.
Figure 2: Operating principles of a FET with 2D semiconducting materials forming the channels.
Figure 3: Calculated FET characteristics and spin–valley locking in the valence band of 2D TMDs.
Figure 4: Energy band alignments and device properties of 2D materials.
Figure 5: 2D phosphorene for FETs.
Figure 6: 2D silicene FETs.
Figure 7: Future FET technologies.
Figure 8: Operating mechanism of tunnelling FETs.

Similar content being viewed by others

References

  1. Moore, G. E. Cramming more components onto integrated circuits. Electronics 38, 114–177 (1965).

    Google Scholar 

  2. Dennard, R. H., Gaensslen, F. H., Rideout, V. L., Bassous, E. & LeBlanc, A. R. Design of ion-implanted MOSFET's with very small physical dimensions. IEEE J. Solid-State Circ. 9, 256–268 (1974).

    Article  Google Scholar 

  3. Mistry, K. et al. A 45 nm logic technology with high-k+ metal gate transistors, strained silicon, 9 Cu interconnect layers, 193 nm dry patterning, and 100% Pb-free packaging. IEEE Int. Electron Devices Meet. 247–250 (IEEE, 2007).

    Google Scholar 

  4. Cartwright, J. Intel enters the third dimension. Naturehttp://www.nature.com/news/2011/110506/full/news.2011.274.html (2011).

  5. Waldrop, M. M. The chips are down for Moore's law. Nature 530, 144–147 (2016).

    Article  CAS  Google Scholar 

  6. Ferrain, I., Colinge, C. A. & Colinge, J.-P. Multi-gate transistors as the future of the classical metal-oxide-semiconductors field-effect-transistors. Nature 479, 310–316 (2011).

    Article  CAS  Google Scholar 

  7. Colinge, J. P. Multiple-gate SOI MOSFETs. Solid State Electron. 48, 897–905 (2004).

    Article  CAS  Google Scholar 

  8. The International Technology Roadmap for Semiconductors: 2012 Update, http://www.itrs2.net/ (ITRS, 2012).

  9. Del Alamo, J. A. Nanometer-scale electronics with III–V compound semiconductors. Nature 479, 317–323 (2011).

    Article  CAS  Google Scholar 

  10. Colinge, J. P. in FinFETs and Other Multi-Gate Transistors (ed Colinge, J. P ) 1–48 (Springer, 2007).

    Google Scholar 

  11. Huang, X. et al. Sub 50-nm FinFET: PMOS. Tech. Dig. Int. Electron Devices Meet. 67–70 (IEEE, 1999).

    Google Scholar 

  12. Jan, C.-H. et al. A 22 nm SoC platform technology featuring 3-D tri-gate and high-k/metal gate, optimized for ultra low power, high performance and high density SoC applications. IEEE Int. Electron Devices Meet. 3.1.1–3.1.4 (IEEE, 2012).

  13. Radosavljevic, M. et al. Electrostatics improvement in 3-D tri-gate over ultra-thin body planar InGaAs quantum well field effect transistors with high-K gate dielectric and scaled gate-to-drain/gate-to-source separation. IEEE Int. Electron Devices Meet. 33.1.1–33.1.4 (IEEE, 2011).

  14. Yu, B. et al. in Ultra-thin-body silicon-on-insulator MOSFETs for terabit-scale integration. Proc. Int. Semiconductor Dev. Res. Symp. 623–626 (Engineering Academic Outreach, 1997).

    Google Scholar 

  15. Li, G.-W. et al. Ultrathin body GaN-on-insulator quantum well FETs with regrown ohmic contacts. IEEE Electron Device Lett. 33, 661–663 (2012).

    Article  CAS  Google Scholar 

  16. Jena, D. Tunnelling transistors based on graphene and 2D crystals. Proc. IEEE 101, 1585–1602 (2013).

    Article  CAS  Google Scholar 

  17. Kang, J. H. et al. Graphene and beyond-graphene 2D crystals for next-generation green electronics. Proc. SPIE 9083, 908305 (2014).

    Article  CAS  Google Scholar 

  18. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  19. Avouris, P. et al. Graphene-based fast electronics and optoelectronics. IEEE Int. Electron Devices Meet. 23.1.1–23.1.4 (IEEE, 2010).

  20. Liao, L. et al. Sub-100 nm channel length graphene transistors. Nano Lett. 10, 3952–3956 (2010).

    Article  CAS  Google Scholar 

  21. Liao, L. et al. High-speed graphene transistors with a self-aligned nanowire gate. Nature 467, 305–308 (2010).

    Article  CAS  Google Scholar 

  22. Xia, F. et al. Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839–843 (2009).

    Article  CAS  Google Scholar 

  23. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010).

    Article  CAS  Google Scholar 

  24. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    Article  CAS  Google Scholar 

  25. Jena, D. & Konar, A. Enhancement in carrier mobility in semiconductor nanostructures by dielectric engineering. Phys. Rev. Lett. 98, 136805 (2007).

    Article  CAS  Google Scholar 

  26. Cui, X. et al. Multi-terminal transport measurements of MoS2 using van der Waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015).

    Article  CAS  Google Scholar 

  27. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    Article  CAS  Google Scholar 

  28. Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014).

    Article  CAS  Google Scholar 

  29. Wang, H. et al. Integrated circuits based on bi-layer MoS2 transistors. Nano Lett. 12, 4674–4680 (2012).

    Article  CAS  Google Scholar 

  30. Natori, K. Ballistic metal oxide semiconductor field effect transistor. J. Appl. Phys. 76, 4879–4890 (1994).

    Article  CAS  Google Scholar 

  31. Natori, K. Scaling limit of the MOS transistor: a ballistic MOSFET. ICICE Elect. Trans. E84C, 1029–1036 (2001).

    Google Scholar 

  32. Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    Article  CAS  Google Scholar 

  33. Rodwell, M. et al. III–V FET channel designs for high current densities and thin inversion layers. Device Res. Conf (DRC) 149–152 (IEEE, 2010).

  34. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    Article  CAS  Google Scholar 

  35. Fuhrer, M. S. & Hone, J. Measurement of mobility in dual-gate MoS2 transistor. Nat. Nanotechnol. 8, 146–147 (2013).

    Article  CAS  Google Scholar 

  36. Wilson, J. A. & Yoffe, A. D. The transition metal dichalcogenide discussion and interpretation of the optical, electrical and structural properties. Adv. Phys. 18, 193–335 (1969).

    Article  CAS  Google Scholar 

  37. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).

    Article  Google Scholar 

  38. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009).

    Article  CAS  Google Scholar 

  39. Schwierz, F. Graphene transistors: status, prospects, and problems. Proc. IEEE 101, 1567–1584 (2013).

    Article  CAS  Google Scholar 

  40. Fang, T., Konar, A., Xing, H. & Jena, D. Mobility in semiconducting graphene nanoribbons: phonon, impurity, and edge roughness scattering. Phys. Rev. B: Condens. Matter 78, 205403 (2008).

    Article  CAS  Google Scholar 

  41. Hwang, W. S. et al. Graphene nanoribbon field effect transistors on wafer scale epitaxial graphene on SiC substrates. APL Mater. 3, 011101 (2015).

    Article  CAS  Google Scholar 

  42. Chau, R., Doyle, B., Datta, S., Kavalieros, J. & Zhang, K. Integrated nanoelectronics for the future. Nat. Mater. 6, 810–812 (2007).

    Article  CAS  Google Scholar 

  43. Radosavljevic, M. et al. High-performance 40 nm gate length InSb p-channel compressively strained quantum well field effect transistors for low-power (VCC = 0.5V) logic applications. IEEE Int. Electron Devices Meet. 1–4 (IEEE, 2008).

  44. Podzorov, V., Gershenson, M. E., Kloc, Ch., Zeis, R. & Bucher, E. High-mobility field-effect transistors based on transition metal dichalcogenides. Appl. Phys. Lett. 84, 3301 (2004).

    Article  CAS  Google Scholar 

  45. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  CAS  Google Scholar 

  46. Yoon, Y., Ganapathi, K. & Salahuddin, S. How good can monolayer MoS2 transistors be? Nano Lett. 11, 3768 (2011).

    Article  CAS  Google Scholar 

  47. Fang, H. et al. High performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12, 3788–3792 (2012).

    Article  CAS  Google Scholar 

  48. Wang, H. et al. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12, 4674–4680 (2012).

    Article  CAS  Google Scholar 

  49. Das, S., Chen, H.-Y., Penumatcha, A. V. & Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2012).

    Article  CAS  Google Scholar 

  50. Larentis, S., Fallahazad, B. & Tutuc, E. Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Appl. Phys. Lett. 101, 223104 (2012).

    Article  CAS  Google Scholar 

  51. Radisavljevic, B. & Kis, A. Mobility engineering and a metal–insulator transition in monolayer MoS2 . Nat. Mater. 12, 815–820 (2013).

    Article  CAS  Google Scholar 

  52. Fang, H. et al. Degenerate n-doping of few layered transition metal dichalcogenides by potassium. Nano Lett. 13, 1991–1995 (2013).

    Article  CAS  Google Scholar 

  53. Du, Y. et al. MoS2 field-effect transistors with graphene/metal heterocontacts. IEEE Electron Device Lett. 35, 599–601 (2014).

    Article  CAS  Google Scholar 

  54. Allain, A. & Kis, A. Electron and hole mobilities in single layer WSe2 . ACS Nano 8, 7180–7185 (2014).

    Article  CAS  Google Scholar 

  55. Jo, S., Ubrig, N., Berger, H., Kuzmenko, A. B. & Morpurgo, A. F. Mono- and bilayer WS2 light-emitting transistors. Nano Lett. 14, 2019–2025 (2014).

    Article  CAS  Google Scholar 

  56. Lin, Y.-F. et al. Ambipolar MoTe2 transistors and their applications in logic circuits. Adv. Mater. 26, 3263–3269 (2014).

    Article  CAS  Google Scholar 

  57. Pradhan, N. R. et al. Ambipolar molybdenum diselenide field-effect transistors: field effect and Hall mobilities. ACS Nano 8, 7923–7929 (2014).

    Article  CAS  Google Scholar 

  58. Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J. & Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8, 1102–1120 (2014).

    Article  CAS  Google Scholar 

  59. Gong, K. et al. Electric control of spin in monolayer WSe2 field effect transistors. Nanotechnology 25, 435201 (2014).

    Article  CAS  Google Scholar 

  60. Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

    Article  CAS  Google Scholar 

  61. Schimdt, H., Giustiniano, F. & Eda, G. Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects. Chem. Soc. Rev. 44, 7715–7736 (2015).

    Article  Google Scholar 

  62. Liu, H., Neal, A. T., Zhu, Z., Tomanek, D. & Ye, P. D. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).

    Article  CAS  Google Scholar 

  63. Koenig, S. P. et al. Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104, 103106 (2014).

    Article  CAS  Google Scholar 

  64. Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).

    Article  CAS  Google Scholar 

  65. Buscema, M. et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14, 3347–3352 (2014).

    Article  CAS  Google Scholar 

  66. Xia, F., Wang, H. & Jia, Y. Rediscovering black phosphorus: a unique anisotropic 2D material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014).

    Article  CAS  Google Scholar 

  67. Das, S. et al. Tunable transport gap in phosphorene. Nano Lett. 14, 5733–5739 (2014).

    Article  CAS  Google Scholar 

  68. Liu, H. et al. The effect of dielectric capping on few-layer phosphorene transistors: tuning the Schottky barrier heights. IEEE Electron Device Lett. 35, 795–797 (2014).

    Article  CAS  Google Scholar 

  69. Deng, Y. et al. Black phosphorus–monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano 8, 8292–8299 (2014).

    Article  CAS  Google Scholar 

  70. Wang, H. et al. Black phosphorus radio-frequency transistors. Nano Lett. 14, 6424–6429 (2014).

    Article  CAS  Google Scholar 

  71. Haratipour, N., Robbins, M. C. & Koester, S. J. Black phosphorus p-MOSFETs with 7-nm HfO2 gate dielectric and low contact resistance. IEEE Electron. Device Lett. 36, 411–413 (2015).

    Article  CAS  Google Scholar 

  72. Du, Y. et al. Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling. ACS Nano 8, 10035–10042 (2014).

    Article  CAS  Google Scholar 

  73. Xiong, K., Luo, X. & Huang, J. C. M. Phosphorene FETs — Promising transistors based on a few layers of phosphorus atoms. IEEE MTT-S Int. Microwave Workshop Ser. Adv. Mater. Processes RF THz Appl. 1–3 (IEEE, 2015).

    Google Scholar 

  74. Tao, L. et al. Silicene field effect transistors operating at room temperature. Nat. Nanotechnol. 10, 227–231 (2015).

    Article  CAS  Google Scholar 

  75. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    Article  CAS  Google Scholar 

  76. Jariwala, B. et al. Synthesis and characterization of ReS2 and ReSe2 layered chalcogenide single crystals. Chem. Mater. 28, 3352–3359 (2016).

    Article  CAS  Google Scholar 

  77. Frindt, R. F. Superconductivity in ultrathin NbSe2 layers. Phys. Rev. Lett. 28, 299–301 (1971).

    Article  Google Scholar 

  78. Ye, J. T. et al. Superconducting dome in a gate-tuned band insulator. Science 338, 1193–1196 (2012).

    Article  CAS  Google Scholar 

  79. Sipos, B. et al. From Mott state to superconductivity in 1T-TaS2 . Nat. Mater. 7, 960–965 (2008).

    Article  CAS  Google Scholar 

  80. Ayari, A., Cobas, E., Ogundadegbe, O. & Fuhrer, M. S. Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. J. Appl. Phys. 101, 014507 (2007).

    Article  CAS  Google Scholar 

  81. Liu, L., Lu, Y. & Guo, J. On monolayer MoS2 field-effect transistors at the scaling limit. IEEE Trans. Electron Devices 60, 4133–4139 (2013).

    Article  CAS  Google Scholar 

  82. Alam, K. & Lake, R. Monolayer MoS2 transistors beyond the technology road map. IEEE Trans. Electron Devices 59, 3250–3254 (2012).

    Article  CAS  Google Scholar 

  83. Kim, S. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 3, 1011 (2012).

    Article  CAS  Google Scholar 

  84. Enyashin, A. N. & Seifert, G. Electronic properties of MoS2 monolayer and related structures. Nanosyst. Phys. Chem. Math. 5, 517–539 (2014).

    Google Scholar 

  85. McDonnell, S. et al. Defect dominated doping and contact resistance in MoS2 . ACS Nano 8, 2880–2888 (2014).

    Article  CAS  Google Scholar 

  86. Voiry, D. et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat. Mater.http://dx.doi.org/10.1038/nmat4660 (2016).

  87. Hwang, W. S. et al. Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior. Appl. Phys. Lett. 101, 013107 (2012).

    Article  CAS  Google Scholar 

  88. Jena, D., Banerjee, K. & Xing, G. H. 2D crystal semiconductors: Intimate contacts. Nat. Mater. 13, 1076–1078 (2014).

    Article  CAS  Google Scholar 

  89. Allain, A., Kang, J., Kis, A. & Banerjee, K. Electrical contacts in two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015).

    Article  CAS  Google Scholar 

  90. Yoon, J. et al. Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes. Small 9, 3295–3300 (2013).

    CAS  Google Scholar 

  91. Das, S., Gulotty, R., Sumant, A. V. & Roelofs, A. All two-dimensional, flexible, transparent, and thinnest thin film transistor. Nano Lett. 14, 2861–2866 (2014).

    Article  CAS  Google Scholar 

  92. Eda, G. et al. Coherent atomic and electronic heterostructures of single layer MoS2 . ACS Nano 6, 7311–7317 (2012).

    Article  CAS  Google Scholar 

  93. Cho, S. et al. Phase patterning of ohmic homojunction in MoTe2 . Science 348, 625–628 (2015).

    Article  CAS  Google Scholar 

  94. Akinwande, D., Petrone, N. & Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014).

    Article  CAS  Google Scholar 

  95. Pu, J. et al. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 12, 4013–4017 (2012).

    Article  CAS  Google Scholar 

  96. Chang, H.-Y. et al. High-performance, highly bendable MoS2 transistors with high-K dielectrics for flexible low-power systems. ACS Nano 7, 5446–5452 (2013).

    Article  CAS  Google Scholar 

  97. Zhu, W. et al. Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. Nano Lett. 15, 1883–1890 (2015).

    Article  CAS  Google Scholar 

  98. Roy, T. et al. Field-effect transistors built from all two-dimensional material components. ACS Nano 8, 6259–6264 (2014).

    Article  CAS  Google Scholar 

  99. Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

    Article  CAS  Google Scholar 

  100. Bridgman, P. M. Two new modifications of phosphorus. J. Am. Chem. Soc. 36, 1344–1363 (1914).

    Article  CAS  Google Scholar 

  101. Hultgren, R., Gingrich, N. S. & Warren, B. E. The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus. J. Chem. Phys. 3, 351–355 (1935).

    Article  CAS  Google Scholar 

  102. Keys, R. W. The electrical properties of black phosphorus. Phys. Rev. 92, 580–584 (1953).

    Article  Google Scholar 

  103. Takao, Y., Asahina, H. & Morita, A. Electronic structure of black phosphorus in tight binding approach. J. Phys. Soc. Jpn. 50, 3362–3369 (1981).

    Article  CAS  Google Scholar 

  104. Akahama, Y., Endo, S. & Narita, S. Electrical properties of black phosphorus single crystals. J. Phys. Soc. Jpn 52, 2148–2155 (1983).

    Article  CAS  Google Scholar 

  105. Youngblood, N., Chen, C., Koester, S. J. & Li, M. Waveguide integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photonics 9, 247–252 (2015).

    Article  CAS  Google Scholar 

  106. Castellanos-Gomez, A. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 1, 025001 (2014).

    Article  CAS  Google Scholar 

  107. Gillgren, N. et al. Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures. 2D Mater. 2, 011001 (2015).

    Article  CAS  Google Scholar 

  108. Li, L. et al. Quantum oscillations in two-dimensional electron gas in black phosphorus thin films. Nat. Nanotechnol. 10, 608–613 (2015).

    Article  CAS  Google Scholar 

  109. Island, J. O. et al. Environmental stability of few-layer black phosphorus. 2D Mater. 2, 011002 (2015).

    Article  CAS  Google Scholar 

  110. Kim, J. S. et al. Toward air-stable multilayer phosphorene thin-films and transistors. Sci. Rep. 5, 8989 (2015).

    Article  CAS  Google Scholar 

  111. Du, Y. et al. Ab initio studies on atomic and electronic structures of black phosphorus. J. Appl. Phys. 107, 093718 (2010).

    Article  CAS  Google Scholar 

  112. Avsar, A. et al. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano 9, 4138–4145 (2015).

    Article  CAS  Google Scholar 

  113. Na, J. et al. Few-layer black phosphorus field-effect transistors with reduced current fluctuation. ACS Nano 8, 11753–11762 (2014).

    Article  CAS  Google Scholar 

  114. Wood, J. D. et al. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 14, 6964–6970 (2014).

    Article  CAS  Google Scholar 

  115. Takeda, K. & Shiraishi, K. Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys. Rev. B: Condens. Matter 50, 14916–14922 (1994).

    Article  CAS  Google Scholar 

  116. Cinquanta, E. et al. Getting through the nature of silicene: an sp2sp3 two-dimensional silicon nanosheet. J. Phys. Chem. C 117, 16719–16724 (2013).

    Article  CAS  Google Scholar 

  117. Vogt, P. et al. Silicene: compelling experimental evidence for graphene-like two-dimensional silicon. Phys. Rev. Lett. 108, 155501 (2012).

    Article  CAS  Google Scholar 

  118. Li, X. et al. Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles. Phys. Rev. B: Condens. Matter 87, 115418 (2013).

    Article  CAS  Google Scholar 

  119. Nikonov, D. E. & Young, I. A. Benchmarking of beyond CMOS exploratory devices for logic integrated circuits. IEEE J. Explor. Solid-State Computat. Devices Circuits 1, 3–11 (2015).

    Article  Google Scholar 

  120. Li, M. O., Esseni, D., Nahas, J. J., Jena, D. & Xing, H. G. Two-dimensional heterojunction interlayer tunneling field effect transistors (Thin-TFETSs). IEEE J. Electron Devices Soc. 3, 200–207 (2015).

    Article  CAS  Google Scholar 

  121. Theis, T. N. & Solomon, P. N. In quest of the next switch: prospects for greatly reduced power dissipation in a successor to the silicon field effect transistor. Proc. IEEE 98, 2005–2014 (2010).

    Article  Google Scholar 

  122. Gnani, E., Maiorano, P., Reggiani, S., Gnudi, A. & Baccarani, G. Investigation on superlattice heterostructures for steep-slope nanowire FETs. Device Res. Conf. (DRC) 201–202 (IEEE, 2011).

    Chapter  Google Scholar 

  123. Zhang, Q., Zhao, W. & Seabaugh, A. Low-threshold swing-tunnel transistors. IEEE Electron Device Lett. 27, 297–300 (2006).

    Article  CAS  Google Scholar 

  124. Lu, H. & Seabaugh, A. Tunnel field-effect transistors: state-of-the-art. IEEE J. Electron Devices Soc. 2, 44–49 (2014).

    Article  CAS  Google Scholar 

  125. Zhou, G. et al. Novel gate-recessed vertical InAs/GaSb TFETs with record high ION of 180 μA/μm at VDS = 0.5 V. IEEE Int. Electron Devices Meet. 32.6.1–32.6.4 (IEEE, 2012).

  126. Lin, Y. C. et al. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures. Nat. Commun. 6, 7311 (2014).

    Article  CAS  Google Scholar 

  127. Yan, R. et al. Esaki diodes in van der Waals heterojunctions with broken gap energy band alignment. Nano Lett. 15, 5791–5798 (2015).

    Article  CAS  Google Scholar 

  128. Roy, T. et al. Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. ACS Nano 9, 2071–2079 (2015).

    Article  CAS  Google Scholar 

  129. Sarkar, D. et al. A sub-thermionic tunnel field effect transistor with an atomically thin channel. Nature 526, 91–95 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.C. acknowledges financial support from US National Science Foundation ECCS 1128335. D.J. would like to acknowledge financial support from the STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA, and by the Office of Naval Research (ONR), the Air Force Office of Scientific Research (AFOSR), and the National Science Foundation (NSF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manish Chhowalla or Debdeep Jena.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary information S1 (box)

Quantitative description of FET (PDF 326 kb)

Supplementary information S2 (figure)

Flowchart for assessing performance of FETs (PDF 170 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat Rev Mater 1, 16052 (2016). https://doi.org/10.1038/natrevmats.2016.52

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2016.52

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing