Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Exploring heavy fermions from macroscopic to microscopic length scales

A Corrigendum to this article was published on 23 August 2016

Abstract

Strongly correlated systems present fundamental challenges, especially in materials in which electronic correlations cause a strong increase of the effective mass of the charge carriers. Heavy fermion metals — intermetallic compounds of rare earth metals (such as Ce, Sm and Yb) and actinides (such as U, Np and Pu) — are prototype systems for complex and collective quantum states; they exhibit both a lattice Kondo effect and antiferromagnetic correlations. These materials show unexpected phenomena; for example, they display unconventional superconductivity (beyond Bardeen–Cooper–Schrieffer (BCS) theory) and unconventional quantum criticality (beyond the Landau framework). In this Review, we focus on systems in which Landau's Fermi-liquid theory does not apply. Heavy fermion metals and semiconductors are well suited for the study of strong electronic correlations, because the relevant energy scales (for charge carriers, magnetic excitations and lattice dynamics) are well separated from each other, allowing the exploration of concomitant physical phenomena almost independently. Thus, the study of these materials also provides valuable insight for the understanding — and tailoring — of other correlated systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Doniach phase diagram and its realization in CePd2Si2.
Figure 2: Electronic structure of a Kondo lattice.
Figure 3: Comparison of quantum criticality in the spin-density wave and in the locally critical scenario.
Figure 4: Evidence for conventional quantum critical points in CeNi2Ge2 and CeCu2Si2.
Figure 5: Evidence for unconventional QCPs in CeCu5.9Au0.1 and in CeRhIn5 under pressure.
Figure 6: Phase diagram of YbRh2Si2.
Figure 7: Violation of the Wiedemann–Franz law at the QCP.
Figure 8: Evolution of the temperature–magnetic field (TB) phase diagram upon isoelectronic substitution.
Figure 9: Generalized phase diagram at T = 0.
Figure 10: Kondo temperatures T K high and T K low = T K and development of Kondo-lattice coherence below T coh.
Figure 11: Tunnelling conductance of SmB6.

Similar content being viewed by others

References

  1. Meissner, W. & Voigt, B. Messungen mit Hilfe von flüssigem Helium, X. I. Widerstand der reinen Metalle in tiefen Temperaturen. Ann. Phys. 399, 761–797 (in German) (1930).

    Article  Google Scholar 

  2. de Haas, W. J., de Boer, J. & van den Berg, G. J. The electrical resistance of gold, copper and lead at low temperatures. Physica 1, 1115–1124 (1934).

    Article  CAS  Google Scholar 

  3. MacDonald, D. K. C., Pearson, W. B. & Templeton, I. M. Thermo-electricity at low temperatures, transition metals as solute and solvent. Proc. Roy. Soc. 266, 161–184 (1962).

    CAS  Google Scholar 

  4. Kondo, J. Resistance minimum in dilute magnetic alloys. Prog. Theor. Phys. 32, 37–49 (1964).

    Article  CAS  Google Scholar 

  5. Wilson, K. G. The renormalization-group and critical phenomena. Rev. Mod. Phys. 55, 583–600 (1983).

    Article  Google Scholar 

  6. Nozières, P. Fermi-liquid description of Kondo problem at low temperatures. J. Low Temp. Phys. 17, 31–42 (1974).

    Article  Google Scholar 

  7. Triplett, B. B. & Phillips, N. E. Calorimetric evidence for a singlet ground state in CuCr and CuFe. Phys. Rev. Lett. 27, 1001–1004 (1971).

    Article  CAS  Google Scholar 

  8. Daybell, M. D. & Steyert, W. A. Localized magnetic impurity states in metals: some experimental relationships. Rev. Mod. Phys. 40, 380–389 (1968).

    Article  CAS  Google Scholar 

  9. Riblet, G. & Winzer, K. Vanishing of superconductivity below a second transition temperature in (La1−xCex)Al2 alloys due to Kondo effect. Solid State Commun. 9, 1663–1665 (1971).

    Article  CAS  Google Scholar 

  10. Maple, M. B. et al. The re-entrant superconducting-normal phase boundary of the Kondo system (La, Ce)Al2 . Solid State Commun. 11, 829–834 (1972).

    Article  CAS  Google Scholar 

  11. Steglich, F. & Armbrüster, H. Evidence for intermediate temperature superconductivity as a bulk effect. Solid State Commun. 14, 903–906 (1974).

    Article  CAS  Google Scholar 

  12. Moeser, J., Steglich, F. & von Minnigerode, G. Giant thermoelectric-power of (La, Ce)Al2 . J. Low Temp. Phys. 15, 91–98 (1974).

    Article  CAS  Google Scholar 

  13. Maple, M. B. in Magnetism vol. 5 (ed. Suhl, H. ) 289–326 (Academic Press, 1973).

    Book  Google Scholar 

  14. Bredl, C. D., Steglich, F. & Schotte, K. D. Specific-heat of concentrated Kondo systems: (La, Ce)Al2 and CeAl2 . Z. Phys. B 29, 327–340 (1978).

    Article  CAS  Google Scholar 

  15. Andres, K., Graebner, J. E. & Ott, H. R. 4f-virtual-bound-state formation in CeAl3 at low temperatures. Phys. Rev. Lett. 35, 1779–1782 (1975).

    Article  CAS  Google Scholar 

  16. Ruderman, M. A. & Kittel, C. Indirect exchange coupling of nuclear moments by conduction electrons. Phys. Rev. 96, 99–102 (1954).

    Article  CAS  Google Scholar 

  17. Kasuya, T. A theory of ferromagnetism and antiferromagnetism in Zeners model. Prog. Theor. Phys. 16, 45–57 (1956).

    Article  Google Scholar 

  18. Yosida, K. Magnetic properties of Cu–Mn alloys. Phys. Rev. 106, 893–898 (1957).

    Article  Google Scholar 

  19. Doniach, S. Kondo lattice and weak antiferromagnetism. Phys. B 91, 231–234 (1977).

    Article  Google Scholar 

  20. Stewart, G. R. Heavy-fermion systems. Rev. Mod. Phys. 56, 755–787 (1984).

    Article  CAS  Google Scholar 

  21. Brandt, N. B. & Moshchalkov, V. V. Concentrated Kondo systems. Adv. Phys. 33, 373–467 (1984).

    Article  CAS  Google Scholar 

  22. Lee, P. A., Rice, T. M., Serene, J. W., Sham, L. J. & Wilkins, J. W. Theories of heavy-electron systems. Comments Condens. Matter Phys. 12, 99–161 (1986).

    CAS  Google Scholar 

  23. Ott, H. R. in Progress in Low Temperature Physics vol. 11 215–289 (Elsevier, 1987).

    Google Scholar 

  24. Fulde, P., Keller, J. & Zwicknagl, G. Theory of heavy fermion systems. Solid State Phys. 41, 1–150 (1988).

    Article  CAS  Google Scholar 

  25. Grewe, N. & Steglich, F. Handbook on the Physics and Chemistry of Rare Earths Vol. 14 (eds Gschneidner Jr., K. A. & Eyring, L. ) 343–474 (Elsevier, 1991).

    Google Scholar 

  26. Hewson, A. C. The Kondo Problem to Heavy Fermions Vol. 2 (Cambridge Univ. Press, 1993).

    Book  Google Scholar 

  27. Kitaoka, Y. & Kuramoto, Y. Dynamics of Heavy Electrons Vol. 105 (Oxford Univ. Press, 2000).

    Google Scholar 

  28. Schofield, A. J. Non-Fermi liquids. Contemp. Phys. 40, 95–115 (1999).

    Article  CAS  Google Scholar 

  29. Stewart, G. R. Non-Fermi-liquid behavior in d - and f-electron metals. Rev. Mod. Phys. 73, 797–855 (2001)

    Article  CAS  Google Scholar 

  30. Senthil, T., Vojta, M. & Sachdev, S. Weak magnetism and non-Fermi liquids near heavy-fermion critical points. Phys. Rev. B 69, 035111 (2004).

    Article  Google Scholar 

  31. Pfleiderer, C. Superconducting phases of f -electron compounds. Rev. Mod. Phys. 81, 1551–1624 (2009).

    Article  CAS  Google Scholar 

  32. Mathur, N. D. et al. Magnetically mediated superconductivity in heavy fermion compounds. Nature 394, 39–43 (1998).

    Article  CAS  Google Scholar 

  33. Zwicknagl, G. Quasi-particles in heavy fermion systems. Adv. Phys. 41, 203–302 (1992).

    Article  CAS  Google Scholar 

  34. Zwicknagl, G. Field-induced suppression of the heavy-fermion state in YbRh2Si2 . J. Phys. Condens. Matter 23, 094215 (2011).

    Article  Google Scholar 

  35. Reinders, P. H. P., Springford, M., Coleridge, P. T., Boulet, R. & Ravot, D. de Haas–van Alphen effect in the heavy-electron compound CeCu6 . Phys. Rev. Lett. 57, 1631–1634 (1986).

    Article  CAS  Google Scholar 

  36. Taillefer, L. & Lonzarich, G. G. Heavy-fermion quasiparticles in UPt3 . Phys. Rev. Lett. 60, 1570–1573 (1988).

    Article  CAS  Google Scholar 

  37. King, C. A. & Lonzarich, G. G. Quasi-particles properties in ferromagnetic CeRu2Ge2 . Phys. B 171, 161–165 (1991).

    Article  CAS  Google Scholar 

  38. Aoki, H., Uji, S., Albessard, A. K. & O-nuki, Y. Transition of f electron nature from itinerant to localized: metamagnetic transition in CeRu2Si2 studied via the de Haas–van Alphen effect. Phys. Rev. Lett. 71, 2110–2113 (1993).

    Article  CAS  Google Scholar 

  39. Kummer, K. et al. Temperature-independent Fermi surface in the Kondo lattice YbRh2Si2 . Phys. Rev. X 5, 011028 (2015).

    Google Scholar 

  40. Paschen, S. et al. Kondo destruction in heavy fermion quantum criticality and the photoemission spectrum of YbRh2Si2 . J. Magn. Magn. Mater. 400, 17–22 (2016).

    Article  CAS  Google Scholar 

  41. Hoffman, J. E. Spectroscopic scanning tunneling microscopy insights into Fe-based superconductors. Rep. Prog. Phys. 74, 124513 (2011).

    Article  Google Scholar 

  42. Yuan, T., Figgins, J. & Morr, D. K. Hidden order transition in URu2Si2: evidence for the emergence of a coherent anderson lattice from scanning tunneling spectroscopy. Phys. Rev. B 86, 035129 (2012).

    Article  Google Scholar 

  43. Mydosh, J. A. & Oppeneer, P. M. Hidden order behaviour in URu2Si2 (a critical review of the status of hidden order in 2014). Phil. Mag. 94, 3642–3662 (2014).

    Article  CAS  Google Scholar 

  44. Schmidt, A. R. et al. Imaging the Fano lattice to ‘hidden order’ transition in URu2Si2 . Nature 465, 570–576 (2010).

    Article  CAS  Google Scholar 

  45. Ayanjian, P. et al. Visualizing the formation of the Kondo lattice and the hidden order in URu2Si2 . Proc. Natl Acad. Sci. USA 107, 10383–10388 (2010).

    Article  Google Scholar 

  46. Hamidian, M. H. et al. How Kondo-holes create intense nanoscale heavy-fermion hybridization disorder. Proc. Natl Acad. Sci. USA 108, 18233–18237 (2011).

    Article  CAS  Google Scholar 

  47. Figgins, J. & Morr, D. K. Defects in heavy fermion materials: unveiling strong correlations in real space. Phys. Rev. Lett. 107, 066401 (2011).

    Article  Google Scholar 

  48. Martin, R. M. Fermi-surface sum-rule and its consequences for periodic Kondo and mixed-valence systems. Phys. Rev. Lett. 48, 362–365 (1982).

    Article  CAS  Google Scholar 

  49. Nozières, P. & Blandin, A. Kondo effect in real metals. J. Phys. Paris 41, 193–211 (1980).

    Google Scholar 

  50. Schlottmann, P. & Sacramento, P. D. Multichannel Kondo problem and some applications. Adv. Phys. 42, 641–682 (1993).

    Article  CAS  Google Scholar 

  51. Oreg, Y. & Goldhaber-Gordon, D. Two-channel Kondo effect in a modified single electron transistor. Phys. Rev. Lett. 90, 136602 (2003).

    Article  Google Scholar 

  52. Parks, J. J. et al. Mechanical control of spin states in spin-1 molecules and the underscreened Kondo effect. Science 328, 1370–1373 (2010).

    Article  CAS  Google Scholar 

  53. Sugawara, T. & Eguchi, H. Low temperature resistivity, magnetic susceptibility and superconducting transition temperature in La containing rare-earth impurities. J. Phys. Soc. Jpn 21, 725–732 (1966).

    Article  CAS  Google Scholar 

  54. Cochrane, R. W., Ström-Olsen, J. O., Williams, G. & Ho, S. C. LuGd: a positive-exchange-constant Kondo system. Phys. Rev. B 17, 254–256 (1978).

    Article  CAS  Google Scholar 

  55. Lieke, W., Steglich, F., Rander, K. & Keiter, H. Transport properties of a reverse Kondo alloy at finite magnetic field experiment and theory. Phys. Rev. B 20, 2129–2141 (1979).

    Article  CAS  Google Scholar 

  56. Zhang, Y.-H. et al. Temperature and magnetic field dependence of a Kondo system in the weak coupling regime. Nat. Commun. 4, 2110 (2013).

    Article  Google Scholar 

  57. Coleman, P. & Schofield, A. J. Quantum criticality. Nature 433, 226–229 (2005).

    Article  CAS  Google Scholar 

  58. Transitions in focus [Editorial]. Nat. Phys. 4, 157–204 (2008).

  59. Sachdev, S. Quantum Phase Transitions (Cambridge Univ. Press, 2011).

    Book  Google Scholar 

  60. Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article  CAS  Google Scholar 

  61. Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article  CAS  Google Scholar 

  62. Hertz, J. A. Quantum critical phenomena. Phys. Rev. B 14, 1165–1184 (1976).

    Article  CAS  Google Scholar 

  63. Millis, A. J. Effect of a nonzero temperature on quantum critical-points in itinerant fermion systems. Phys. Rev. B 48, 7183–7196 (1993).

    Article  CAS  Google Scholar 

  64. Moriya, T. & Takimoto, T. Anomalous properties around magnetic instability in heavy-electron systems. J. Phys. Soc. Jpn 64, 960–969 (1995).

    Article  CAS  Google Scholar 

  65. Lonzarich, G. G. in Electron (ed. Springford, M. ) 109–147 (Cambridge Univ. Press, 1997).

    Google Scholar 

  66. von Löhneysen, H., Rosch, A., Vojta, M. & Wölfle, P. Fermi-liquid instabilities at magnetic quantum phase transitions. Rev. Mod. Phys. 79, 1015–1075 (2007).

    Article  Google Scholar 

  67. Gegenwart, P., Steglich, F. & Si, Q. Quantum criticality in heavy-fermion metals. Nat. Phys. 4, 186–197 (2008).

    Article  CAS  Google Scholar 

  68. Scalapino, D. J., Loh Jr, E. & Hirsch, J. E. d-wave pairing near a spin-density-wave instability. Phys. Rev. B 34, 8190–8192 (1986).

    Article  CAS  Google Scholar 

  69. Monthoux, P. & Lonzarich, G. G. Magnetically mediated superconductivity: crossover from cubic to tetragonal lattice. Phys. Rev. B 66, 224504 (2002).

    Article  Google Scholar 

  70. Küchler, R. et al. Divergence of the Grüneisen ratio at quantum critical points in heavy fermion metals. Phys. Rev. Lett. 91, 066405 (2003).

    Article  Google Scholar 

  71. Gegenwart, P. et al. Non-Fermi-liquid effects at ambient pressure in a stoichiometric heavy-fermion compound with very low disorder: CeNi2Ge2 . Phys. Rev. Lett. 82, 1293–1296 (1999).

    Article  CAS  Google Scholar 

  72. Rosch, A. Interplay of disorder and spin fluctuations in the resistivity near a quantum critical point. Phys. Rev. Lett. 82, 4280–4283 (1999).

    Article  CAS  Google Scholar 

  73. Steglich, F. et al. Superconductivity in the presence of strong Pauli paramagnetism: CeCu2Si2 . Phys. Rev. Lett. 43, 1892–1896 (1979).

    Article  CAS  Google Scholar 

  74. Arndt, J. et al. Spin fluctuations in normal state CeCu2Si2 on approaching the quantum critical point. Phys. Rev. Lett. 106, 246401 (2011).

    Article  Google Scholar 

  75. Stockert, O. et al. Nature of the A phase in CeCu2Si2 . Phys. Rev. Lett. 92, 136401 (2004).

    Article  CAS  Google Scholar 

  76. Stockert, O. et al. Magnetically driven superconductivity in CeCu2Si2 . Nat. Phys. 7, 119–124 (2011).

    Article  CAS  Google Scholar 

  77. Stockert, O., Kirchner, S., Steglich, F. & Si, Q. Superconductivity in Ce- and U-based 122 heavy-fermion compounds. J. Phys. Soc. Jpn 81, 011001 (2012).

    Article  Google Scholar 

  78. Nishiyama, S., Miyake, K. & Varma, C. M. Superconducting transition temperatures for spin-fluctuation superconductivity: application to heavy-fermion compounds. Phys. Rev. B 88, 014510 (2013).

    Article  Google Scholar 

  79. Enayat, M. et al. Superconducting gap and vortex lattice of the heavy fermion compound CeCu2Si2 . Phys. Rev. B 93, 045123 (2016).

    Article  Google Scholar 

  80. Kittaka, S. et al. Multiband superconductivity with unexpected deficiency of nodal quasiparticles in CeCu2Si2 . Phys. Rev. Lett. 112, 067002 (2014).

    Article  Google Scholar 

  81. Pang, G. M. et al. Evidence for fully gapped d-wave superconductivity in CeCu2Si2. Preprint at https://arxiv.org/abs/1605.04786 (2016).

  82. Küchler, R. et al. Quantum criticality in the cubic heavy-fermion system CeIn3−xSnx . Phys. Rev. Lett. 96, 256403 (2006).

    Article  Google Scholar 

  83. Knafo, W., Raymond, S., Lejay, P. & Flouquet, J. Antiferromagnetic criticality at a heavy-fermion quantum phase transition. Nat. Phys. 5, 753–757 (2009).

    Article  CAS  Google Scholar 

  84. Petrovic, C. et al. Heavy-fermion superconductivity in CeCoIn5 at 2.3 K. J. Phys. Condens. Matter 13, L337–L342 (2001).

    Article  CAS  Google Scholar 

  85. Thompson, J. D. & Fisk, Z. Progress in heavy-fermion superconductivity: Ce115 and related materials. J. Phys. Soc. Jpn 81, 011002 (2012).

    Article  Google Scholar 

  86. Park, T. et al. Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5 . Nature 440, 65–68 (2006).

    Article  CAS  Google Scholar 

  87. Kenzelmann, M. et al. Coupled superconducting and magnetic order in CeCoIn5 . Science 321, 1652–1654 (2008).

    Article  CAS  Google Scholar 

  88. Broun, D. M. What lies beneath the dome? Nat. Phys. 4, 170–172 (2008).

    Article  CAS  Google Scholar 

  89. Allan, M. P. et al. Imaging Cooper pairing of heavy fermions in CeCoIn5 . Nat. Phys. 9, 468–473 (2013).

    Article  CAS  Google Scholar 

  90. Zhou, B. B. et al. Visualizing nodal heavy fermion superconductivity in CeCoIn5 . Nat. Phys. 9, 474–479 (2013).

    Article  CAS  Google Scholar 

  91. Izawa, K. et al. Angular position of nodes in the superconducting gap of quasi-2D heavy-fermion superconductor CeCoIn5 . Phys. Rev. Lett. 87, 057002 (2001).

    Article  CAS  Google Scholar 

  92. An, K. et al. Sign reversal of field-angle resolved heat capacity oscillations in a heavy fermion superconductor CeCoIn5 and d x²−y² pairing symmetry. Phys. Rev. Lett. 104, 037002 (2010).

    Article  CAS  Google Scholar 

  93. Aynajian, P. et al. Visualizing heavy fermions emerging in a quantum critical Kondo lattice. Nature 486, 201–206 (2012).

    Article  CAS  Google Scholar 

  94. van Dyke, J. S. et al. Direct evidence for a magnetic f-electron-mediated pairing mechanism of heavy-fermion superconductivity in CeCoIn5 . Proc. Natl Acad. Sci. USA 111, 11663–11667 (2014).

    Article  CAS  Google Scholar 

  95. Schröder, A. et al. Onset of antiferromagnetism in heavy-fermion metals. Nature 407, 351–355 (2000).

    Article  Google Scholar 

  96. Aronson, M. C. et al. Non-Fermi-liquid scaling of the magnetic response in UCu5−xPdx (x = 11.5). Phys. Rev. Lett. 75, 725–728 (1995).

    Article  CAS  Google Scholar 

  97. Si, Q., Rabello, S., Ingersent, K. & Smith, J. L. Locally critical quantum phase transitions in strongly correlated metals. Nature 413, 804–808 (2001).

    Article  CAS  Google Scholar 

  98. Coleman, P., Pépin, C., Si, Q. & Ramazashvili, R. How do Fermi liquids get heavy and die? J. Phys. Condens. Matter 13, R723–R738 (2001).

    Article  CAS  Google Scholar 

  99. Shishido, H., Settai, R., Harima, H. & Onuki, Y. A drastic change of the Fermi surface at a critical pressure in CeRhIn5: dHvA study under pressure. J. Phys. Soc. Jpn 74, 1103–1106 (2005).

    Article  CAS  Google Scholar 

  100. Ishida, K. et al. Low-temperature magnetic order and spin dynamics in YbRh2Si2 . Phys. Rev. B 68, 184401 (2003).

    Article  Google Scholar 

  101. Trovarelli, O. et al. YbRh2Si2: pronounced non-Fermi-liquid effects above a low-lying magnetic phase transition. Phys. Rev. Lett. 85, 626–629 (2000).

    Article  CAS  Google Scholar 

  102. Custers, J. et al. The break-up of heavy electrons at a quantum critical point. Nature 424, 524–527 (2003).

    Article  CAS  Google Scholar 

  103. Gegenwart, P. et al. Multiple energy scales at a quantum critical point. Science 315, 969–971 (2007).

    Article  CAS  Google Scholar 

  104. Paschen, S. et al. Hall-effect evolution across a heavy-fermion quantum critical point. Nature 432, 881–885 (2004).

    Article  CAS  Google Scholar 

  105. Friedemann, S. et al. Fermi-surface collapse and dynamical scaling near a quantum-critical point. Proc. Natl Acad. Sci. USA 107, 14547–14551 (2010).

    Article  CAS  Google Scholar 

  106. Senthil, T. Critical Fermi surfaces and non-Fermi liquid metals. Phys. Rev. B 78, 035103 (2008).

    Article  Google Scholar 

  107. Pfau, H. et al. Thermal and electrical transport across a magnetic quantum critical point. Nature 484, 493–497 (2012).

    Article  CAS  Google Scholar 

  108. Steglich, F. et al. Evidence of a Kondo destroying quantum critical point in YbRh2Si2 . J. Phys. Soc. Jpn 83, 061001 (2014).

    Article  Google Scholar 

  109. Wiedemann, G. & Franz, R. Ueber die Wärmeleitfähigkeit der Metalle. Ann. Phys. 165, 497–531 (in German) (1853).

    Article  Google Scholar 

  110. Lorenz, L. Bestimmung der Wärmegrade in absolutem Maasse. Ann. Phys. 223, 429–452 (in German) (1872).

    Article  Google Scholar 

  111. Sommerfeld, A. & Bethe, H. (eds) Elektronentheorie der Metalle Vol. 24 (in German) (Springer-Verlag, 1933).

    Google Scholar 

  112. Dong, J. K., Tokiwa, Y., Bud'ko, S. L., Canfield, P. C. & Gegenwart, P. Anomalous reduction of the Lorenz ratio at the quantum critical point in YbAgGe. Phys. Rev. Lett. 110, 176402 (2013).

    Article  CAS  Google Scholar 

  113. Machida, Y. et al. Verification of the Wiedemann–Franz law in YbRh2Si2 at a quantum critical point. Phys. Rev. Lett. 110, 236402 (2013).

    Article  CAS  Google Scholar 

  114. Reid, J.-P. et al. Wiedemann–Franz law and non-vanishing temperature scale across the field-tuned quantum critical point of YbRh2Si2 . Phys. Rev. B 89, 045130 (2014).

    Article  Google Scholar 

  115. Pourret, A. et al. Quantum criticality and Lifshitz transition in the ising system CeRu2Si2: comparison with YbRh2Si2 . J. Phys. Soc. Jpn 83, 061002 (2014).

    Article  Google Scholar 

  116. Taupin, M. et al. Thermal conductivity through the quantum critical point in YbRh2Si2 at very low temperature. Phys. Rev. Lett. 115, 046402 (2015).

    Article  CAS  Google Scholar 

  117. Belitz, D., Kirkpatrick, T. R. & Vojta, T. First order transitions and multicritical points in weak itinerant ferromagnets. Phys. Rev. Lett. 82, 4707–4710 (1999).

    Article  CAS  Google Scholar 

  118. Rech, J., Pepin, C. & Chubukov, A. V. Quantum critical behavior in itinerant electron systems: Eliashberg theory and instability of a ferromagnetic quantum critical point. Phys. Rev. B 74, 195126 (2006).

    Article  Google Scholar 

  119. Brando, M., Belitz, D., Grosche, F. M. & Kirkpatrick, T. R. Metallic quantum ferromagnets. Rev. Mod. Phys. 88, 025006 (2016).

    Article  Google Scholar 

  120. Steppke, A. et al. Ferromagnetic quantum critical point in the heavy-fermion metal YbNi4(P1−xAsx)2 . Science 339, 933–936 (2013).

    Article  CAS  Google Scholar 

  121. Tokiwa, Y., Gegenwart, P., Geibel, C. & Steglich, F. Separation of energy scales in undoped YbRh2Si2 under hydrostatic pressure. J. Phys. Soc. Jpn 78, 123708 (2009).

    Article  Google Scholar 

  122. Friedemann, S. et al. Detaching the antiferromagnetic quantum critical point from the Fermi-surface reconstruction in YbRh2Si2 . Nat. Phys. 5, 465–469 (2009).

    Article  CAS  Google Scholar 

  123. Si, Q. Global magnetic phase diagram and local quantum criticality in heavy fermion metals. Physica B 378380, 23–27 (2006).

    Article  Google Scholar 

  124. Si, Q. Quantum criticality and global phase diagram of magnetic heavy fermions. Phys. Status Solidi B 247, 476–484 (2010).

    Article  CAS  Google Scholar 

  125. Si, Q. & Paschen, S. Quantum phase transition in heavy fermion metals and Kondo insulators. Phys. Status Solidi B 250, 425–438 (2013).

    Article  CAS  Google Scholar 

  126. Custers, J. et al. Evidence for a non-Fermi-liquid phase in Ge-substituted YbRh2Si2 . Phys. Rev. Lett. 104, 186402 (2010).

    Article  CAS  Google Scholar 

  127. Gegenwart, P., Custers, J., Tokiwa, Y., Geibel, C. & Steglich, F. Ferromagnetic quantum critical fluctuations in YbRh2(Si0.95Ge0.05)2 . Phys. Rev. Lett. 94, 076402 (2005).

    Article  CAS  Google Scholar 

  128. Anderson, P. W. Hidden Fermi liquid: the secret of high-T c cuprates. Phys. Rev. B 78, 174505 (2008).

    Article  Google Scholar 

  129. Nevidomskyy, A. H. & Coleman, P. Layered Kondo lattice model for quantum critical β -YbAlB4 . Phys. Rev. Lett. 102, 077202 (2009).

    Article  Google Scholar 

  130. Bud'ko, S. L., Zapf, V., Morosan, E. & Canfield, P. C. Field-dependent Hall effect in single-crystal heavy-fermion YbAgGe below 1 K. Phys. Rev. B 72, 172413 (2005).

    Article  Google Scholar 

  131. Kim, M. S. & Aronson, M. C. Spin liquids and antiferromagnetic order in the Shastry–Sutherland-lattice compound Yb2Pt2Pb. Phys. Rev. Lett. 110, 017201 (2013).

    Article  CAS  Google Scholar 

  132. Kim, M. S. et al. Low-temperature anomalies in magnetic, transport, and thermal properties of single-crystal CeRhSn with valence fluctuations. Phys. Rev. B 68, 054416 (2003).

    Article  Google Scholar 

  133. Tokiwa, Y., Garst, M., Gegenwart, P., Bud'ko, S. L. & Canfield, P. C. Quantum bicriticality in the heavy-fermion metamagnet YbAgGe. Phys. Rev. Lett. 111, 116401 (2013).

    Article  CAS  Google Scholar 

  134. Fritsch, V. et al. Approaching quantum criticality in a partially geometrically frustrated heavy-fermion metal. Phys. Rev. B 89, 054416 (2014).

    Article  Google Scholar 

  135. Tokiwa, Y., Stingl, C., Kim, M.-S., Takabatake, T. & Gegenwart, P. Characteristic signatures of quantum criticality driven by geometrical frustration. Sci. Adv. 1, e1500001 (2015).

    Article  Google Scholar 

  136. Vojta, M. From itinerant to local-moment antiferromagnetism in Kondo lattices: adiabatic continuity versus quantum phase transitions. Phys. Rev. B 78, 125109 (2008).

    Article  Google Scholar 

  137. Tomita, T., Kuga, K., Uwatoko, Y., Coleman, P. & Nakatsuji, S. Strange metal without magnetic criticality. Science 349, 506–509 (2015).

    Article  CAS  Google Scholar 

  138. Nakatsuji, S. et al. Superconductivity and quantum criticality in the heavy-fermion system β-YbAlB4 . Nat. Phys. 4, 603–607 (2008).

    Article  CAS  Google Scholar 

  139. Okawa, M. et al. Strong valence fluctuation in the quantum critical heavy fermion superconductor β-YbAlB4: a hard x-ray photoemission study. Phys. Rev. Lett. 104, 247201 (2010).

    Article  CAS  Google Scholar 

  140. Holanda, L. M. et al. Quantum critical Kondo quasiparticles probed by ESR in β -YbAlB4 . Phys. Rev. Lett. 107, 026402 (2011).

    Article  CAS  Google Scholar 

  141. Matsumoto, Y. et al. Quantum criticality without tuning in the mixed valence compound β-YbAlB4 . Science 331, 316–319 (2011).

    Article  CAS  Google Scholar 

  142. Sutherland, M. L. et al. Intact quasiparticles at an unconventional quantum critical point. Phys. Rev. B 92, 041114(R) (2015).

    Article  Google Scholar 

  143. Tokiwa, Y., Ishikawa, J. J., Nakatsuji, S. & Gegenwart, P. Quantum criticality in a metallic spin liquid. Nat. Mater. 13, 356–359 (2014).

    Article  CAS  Google Scholar 

  144. Machida, Y., Nakatsuji, S., Onoda, S., Tayama, T. & Sakakibara, T. Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order. Nature 463, 210–213 (2010).

    Article  CAS  Google Scholar 

  145. Custers, J. et al. Destruction of the Kondo effect in the cubic heavy-fermion compound Ce3Pd20Si6 . Nat. Mater. 11, 189–194 (2012).

    Article  CAS  Google Scholar 

  146. Stockert, O., Enderle, M. & Löhneysen, H. Magnetic fluctuations at a field-induced quantum phase transition. Phys. Rev. Lett. 99, 237203 (2007).

    Article  CAS  Google Scholar 

  147. Jiao, L. et al. Fermi surface reconstruction and multiple quantum phase transitions in the antiferromagnet CeRhIn5 . Proc. Natl Acad. Sci. USA 112, 673–678 (2015).

    Article  CAS  Google Scholar 

  148. Sebastian, S. E. et al. Heavy holes as a precursor to superconductivity in antiferromagnetic CeIn3 . Proc. Natl Acad. Sci. USA 106, 7741–7744 (2009).

    Article  CAS  Google Scholar 

  149. Cornut, B. & Coqblin, B. Influence of the crystalline field on the Kondo effect of alloys and compounds with Ce impurities. Phys. Rev. B 5, 4541–4561 (1972).

    Article  Google Scholar 

  150. Sun, P. & Steglich, F. Nernst effect: evidence of local Kondo scattering in heavy fermions. Phys. Rev. Lett. 110, 216408 (2013).

    Article  Google Scholar 

  151. Coleman, P., Anderson, P. W. & Ramakrishnan, T. V. Theory for the anomalous Hall constant of mixed-valence systems. Phys. Rev. Lett. 55, 414–417 (1985).

    Article  CAS  Google Scholar 

  152. Pikul, A. et al. Single-ion Kondo scaling of the coherent Fermi liquid regime in Ce1−xLaxNi2Ge2 . Phys. Rev. Lett. 108, 066405 (2012).

    Article  Google Scholar 

  153. Schotte, K. D. & Schotte, U. Interpretation of Kondo experiments in a magnetic field. Phys. Lett. 55A, 38–40 (1975).

    Article  CAS  Google Scholar 

  154. Ernst, S. et al. Emerging local Kondo screening and spatial coherence in the heavy-fermion metal YbRh2Si2 . Nature 474, 362–366 (2011).

    Article  CAS  Google Scholar 

  155. Köhler, U., Oeschler, N., Steglich, F., Maquilon, S. & Fisk, Z. Energy scales of Lu1−xYbxRh2Si2 by means of thermopower investigations. Phys. Rev. B 77, 104412 (2008).

    Article  Google Scholar 

  156. Újsághy, O., Kroha, J., Szunyogh, L. & Zawadowski, A. Theory of the Fano resonance in the STM tunneling density of states due to a single Kondo impurity. Phys. Rev. Lett. 85, 2557–2560 (2000).

    Article  Google Scholar 

  157. Lang, K. M. et al. Imaging the granular structure of high-Tc superconductivity in underdoped Bi2Sr2CaCu2O8+δ . Nature 415, 412–416 (2002).

    Article  CAS  Google Scholar 

  158. Petersen, L. et al. Direct imaging of the two-dimensional Fermi contour: Fourier-transform STM. Phys. Rev. B 57, R6858–6861 (1998).

    Article  CAS  Google Scholar 

  159. Wahl, P. et al. Local spectroscopy of the Kondo lattice YbAl3: seeing beyond the surface with scanning tunneling microscopy and spectroscopy. Phys. Rev. B 84, 245131 (2011).

    Article  Google Scholar 

  160. Stockert, O. et al. Crystalline electric field excitations of the non-Fermi-liquid YbRh2Si2 . Phys. B 378, 157–158 (2006).

    Article  Google Scholar 

  161. Wirth, S. et al. Structural investigations on YbRh2Si2: from the atomic to the macroscopic length scale. J. Phys. Condens. Matter 24, 294203 (2012).

    Article  CAS  Google Scholar 

  162. Kroha, J. et al. Structure and transport in multi-orbital Kondo systems. Phys. E 18, 69–72 (2003).

    Article  CAS  Google Scholar 

  163. Costi, T. A. Kondo effect in a magnetic field and the magnetoresistivity of Kondo alloys. Phys. Rev. Lett. 85, 1504–1507 (2000).

    Article  CAS  Google Scholar 

  164. Yang, Y., Fisk, Z., Lee, H.-O., Thompson, J. D. & Pines, D. Scaling the Kondo lattice. Nature 454, 611–613 (2008).

    Article  CAS  Google Scholar 

  165. Curro, N. J., Young, B.-L., Schmalian, J. & Pines, D. Scaling in the emergent behavior of heavy-electron materials. Phys. Rev. B 70, 235117 (2004).

    Article  Google Scholar 

  166. Nakatsuji, S., Pines, D. & Fisk, Z. Two fluid description of the Kondo lattice. Phys. Rev. Lett. 92, 016401 (2004).

    Article  Google Scholar 

  167. Aeppli, G. & Fisk, Z. Kondo insulators. Comments Condens. Matter Phys. 16, 155–165 (1992).

    CAS  Google Scholar 

  168. Coleman, P. Introduction to Many Body Physics (Cambridge Univ. Press, 2015).

    Book  Google Scholar 

  169. Varma, C. M. Aspects of strongly correlated insulators. Phys. Rev. B 50, 9952–9956 (1994).

    Article  CAS  Google Scholar 

  170. Riseborough, P. S. Heavy fermion semiconductors. Adv. Phys. 49, 257–320 (2000).

    Article  CAS  Google Scholar 

  171. Dzero, M., Sun, K., Galitski, V. & Coleman, P. Topological Kondo insulators. Phys. Rev. Lett. 104, 106408 (2010).

    Article  Google Scholar 

  172. Takimoto, T. SmB6: a promising candidate for a topological insulator. J. Phys. Soc. Jpn 80, 123710 (2011).

    Article  Google Scholar 

  173. Dzero, M., Xia, J., Galitski, V. & Coleman, P. Topological Kondo insulators. Annu. Rev. Condens. Matter Phys. 7, 249–280 (2016).

    Article  CAS  Google Scholar 

  174. Strigari, F. et al. Crystal-field ground state of the orthorhombic Kondo insulator CeRu2Al10 . Phys. Rev. B 86, 081105 (2012).

    Article  Google Scholar 

  175. Jaccarino, V., Wertheim, G. K., Wernick, J. H., Walker, L. R. & Arajs, S. Paramagnetic excited state of FeSi. Phys. Rev. 160, 476–482 (1967).

    Article  CAS  Google Scholar 

  176. Bentien, A., Johnsen, S., Madsen, G. K. H., Iversen, B. B. & Steglich, F. Colossal Seebeck coefficient in strongly correlated semiconductor FeSb2 . Europhys. Lett. 80, 17008 (2007).

    Article  Google Scholar 

  177. Vainshtein, E. E., Blokhin, S. M. & Paderno, Y. B. X-ray spectral investigation of samarium hexaboride. Sov. Phys. Solid State 6, 2318–2320 (1965).

    Google Scholar 

  178. Mizumaki, M., Tsutsui, S. & Iga, F. Temperature dependence of Sm valence in SmB6 studied by x-ray absorption spectroscopy. J. Phys. Conf. Ser. 176, 012034 (2009).

    Article  Google Scholar 

  179. Allen, J. W., Batlogg, B. & Wachter, P. Large low-temperature Hall effect and resistivity in mixed-valent SmB6 . Phys. Rev. B 20, 4807–4813 (1979).

    Article  CAS  Google Scholar 

  180. von Molnár, S. et al. in Valence Instabilities (eds Wachter, P. & Boppart, H. ) 389–395 (North-Holland, 1982).

    Google Scholar 

  181. Zhang, X. et al. Hybridization, inter-ion correlation, and surface states in the Kondo insulator SmB6 . Phys. Rev. X 3, 011011 (2013).

    CAS  Google Scholar 

  182. Neupane, M. et al. Surface electronic structure of the topological Kondo-insulator candidate correlated electron system SmB6 . Nat. Commun. 4, 2991 (2013).

    Article  CAS  Google Scholar 

  183. Frantzeskakis, E. et al. Kondo hybridization and the origin of metallic states at the (001) surface of SmB6 . Phys. Rev. X 3, 041024 (2013).

    CAS  Google Scholar 

  184. Xu, N. et al. Direct observation of the spin texture in SmB6 as evidence of the topological Kondo insulator. Nat. Commun. 5, 4566 (2014).

    Article  CAS  Google Scholar 

  185. Suga, S. et al. Spin-polarized angle-resolved photoelectron spectroscopy of the so-predicted Kondo topological insulator SmB6 . J. Phys. Soc. Jpn 83, 014705 (2014).

    Article  Google Scholar 

  186. Gorshunov, B. et al. Low-energy electrodynamics of SmB6 . Phys. Rev. B 59, 1808–1814 (1999).

    Article  CAS  Google Scholar 

  187. Flachbart, K. et al. Energy gap of intermediate-valent SmB6 studied by point-contact spectroscopy. Phys. Rev. B 64, 085104 (2001).

    Article  Google Scholar 

  188. Miyazaki, H., Hajiri, T., Ito, T., Kunii, S. & Kimura, S. I. Momentum-dependent hybridization gap and dispersive in-gap state of the Kondo semiconductor SmB6 . Phys. Rev. B 86, 075105 (2012).

    Article  Google Scholar 

  189. Menth, A., Buehler, E. & Geballe, T. H. Magnetic and semiconducting properties of SmB6 . Phys. Rev. Lett. 22, 295–297 (1969).

    Article  CAS  Google Scholar 

  190. Caldwell, T. et al. High-field suppression of in-gap states in the Kondo insulator SmB6 . Phys. Rev. B 75, 075106 (2007).

    Article  Google Scholar 

  191. Rößler, S. et al. Hybridization gap and fano resonance in SmB6 . Proc. Natl Acad. Sci. USA 111, 4798–4802 (2014).

    Article  Google Scholar 

  192. Yee, M. M. et al. Imaging the Kondo insulating gap on SmB6. Preprint at https://arxiv.org/abs/1308.1085 (2013).

  193. Ruan, W. et al. Emergence of a coherent in-gap state in the SmB6 Kondo insulator revealed by scanning tunneling spectroscopy. Phys. Rev. Lett. 112, 136401 (2014).

    Article  Google Scholar 

  194. Alekseev, P. A. et al. Neutron scattering study of the intermediate-valent ground state in SmB6 . Europhys. Lett. 23, 347–353 (1993).

    Article  CAS  Google Scholar 

  195. Maltseva, M., Dzero, M. & Coleman, P. Electron cotunneling into a Kondo lattice. Phys. Rev. Lett. 103, 206402 (2009).

    Article  Google Scholar 

  196. Figgins, J. & Morr, D. K. Differential conductance and quantum interference in Kondo systems. Phys. Rev. Lett. 104, 187202 (2010).

    Article  Google Scholar 

  197. Schiller, A. & Hershfield, S. Theory of scanning tunneling spectroscopy of a magnetic adatom on a metallic surface. Phys. Rev. B 61, 9036–9046 (2000).

    Article  CAS  Google Scholar 

  198. Zhu, Z.-H. et al. Polarity-driven surface metallicity in SmB6 . Phys. Rev. Lett. 111, 216402 (2013).

    Article  Google Scholar 

  199. Costi, T. A., Hewson, A. C. & Zlatic´, V. Transport coefficients of the Anderson model via the numerical renormalization group. J. Phys. Condens. Matter 6, 2519–2558 (1994).

    Article  CAS  Google Scholar 

  200. Zou, Y. et al. Fermi liquid breakdown and evidence for superconductivity in YFe2Ge2 . Phys. Status Solidi R. 8, 928–930 (2014).

    Article  CAS  Google Scholar 

  201. Wu, W. et al. Superconductivity in the vicinity of antiferromagnetic order in CrAs. Nat. Commun. 5, 5508 (2014).

    Article  Google Scholar 

  202. Bao, J. K. et al. Superconductivity in quasi-one-dimensional K2Cr3As3 with significant electron correlations. Phys. Rev. X 5, 011013 (2015).

    CAS  Google Scholar 

  203. Kunthia, P. et al. Contiguous 3d and 4f magnetism: strongly correlated 3d electrons in YbFe2Al10 . Phys. Rev. Lett. 113, 216403 (2014).

    Article  Google Scholar 

  204. Goldhaber-Gordon, D. et al. Kondo effect in a single-electron transistor. Nature 391, 156–159 (1998).

    Article  CAS  Google Scholar 

  205. Liang, W., Shores, M. P., Bockrath, M., Long, J. R. & Park, H. Kondo resonance in a single-molecule transistor. Nature 419, 725–729 (2002).

    Article  Google Scholar 

  206. Si, Q., Yu, R. & Abrahams, E. High-temperature superconductivity in iron pnictides and chalcogenides. Nat. Rev. Mater. 1, 16017 (2016).

    Article  CAS  Google Scholar 

  207. Kanoda, K. in The Physics of Organic Superconductors and Conductors (ed. Lebed, A. ) 623–642 (Springer-Verlag, 2008).

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank E. Abrahams, J. W. Allen, J. Arndt, P. Coleman, Z. Fisk, S. Friedemann, P. Gegenwart, C. Geibel, S. Kirchner, S. Lausberg, S. Paschen, H. Pfau, A. P. Pikul, S. Rößler, S. Seiro, Q. Si, O. Stockert, U. Stockert, P. Sun, L. H. Tjeng, H. Q. Yuan and G. Zwicknagl for enlightening discussions and/or providing data. They also acknowledge partial financial support by DFG Research Unit 960.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Steffen Wirth or Frank Steglich.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wirth, S., Steglich, F. Exploring heavy fermions from macroscopic to microscopic length scales. Nat Rev Mater 1, 16051 (2016). https://doi.org/10.1038/natrevmats.2016.51

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2016.51

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing