Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Organic thermoelectric materials for energy harvesting and temperature control

Abstract

Conjugated polymers and related processing techniques have been developed for organic electronic devices ranging from lightweight photovoltaics to flexible displays. These breakthroughs have recently been used to create organic thermoelectric materials, which have potential for wearable heating and cooling devices, and near-room-temperature energy generation. So far, the best thermoelectric materials have been inorganic compounds (such as Bi2Te3) that have relatively low Earth abundance and are fabricated through highly complex vacuum processing routes. Molecular materials and hybrid organic–inorganic materials now demonstrate figures of merit approaching those of these inorganic materials, while also exhibiting unique transport behaviours that are suggestive of optimization pathways and device geometries that were not previously possible. In this Review, we discuss recent breakthroughs for organic materials with high thermoelectric figures of merit and indicate how these materials may be incorporated into new module designs that take advantage of their mechanical and thermoelectric properties.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Molecular design and energetics of OTE materials.
Figure 2: Effect of structural order of OTE materials on transport properties.
Figure 3: The thermoelectric properties of a wide range of OTE materials follow the same empirical trend.
Figure 4: Ordered regions connected by disordered chains in semiconducting polymeric materials.
Figure 5: OTE materials compatible with high-throughput 2D processing enable customizable and easily optimizable device architectures.

References

  1. 1

    Lee, J. et al. Deep blue phosphorescent organic light-emitting diodes with very high brightness and efficiency. Nat. Mater. 15, 92–98 (2016).

    CAS  Google Scholar 

  2. 2

    Reineke, S., Thomschke, M., Lüssem, B. & Leo, K. White organic light-emitting diodes: status and perspective. Rev. Mod. Phys. 85, 1245–1293 (2013).

    CAS  Google Scholar 

  3. 3

    Dou, L. et al. 25th anniversary article. A decade of organic/polymeric photovoltaic research. Adv. Mater. 25, 6642–6671 (2013).

    CAS  Google Scholar 

  4. 4

    Sirringhaus, H. 25th anniversary article. Organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater. 26, 1319–1335 (2014).

    CAS  Google Scholar 

  5. 5

    Cahill, D. G. et al. Nanoscale thermal transport. J. Appl. Phys. 93, 793–818 (2003).

    CAS  Google Scholar 

  6. 6

    Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008).

    CAS  Google Scholar 

  7. 7

    Vineis, C. J., Shakouri, A., Majumdar, A. & Kanatzidis, M. G. Nanostructured thermoelectrics: big efficiency gains from small features. Adv. Mater. 22, 3970–3980 (2010).

    CAS  Google Scholar 

  8. 8

    Goldsmid, H. J. The electrical conductivity and thermoelectric power of bismuth telluride. Proc. Phys. Soc. Lond. 71, 633–646 (1958).

    CAS  Google Scholar 

  9. 9

    Poudel, B. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008).

    CAS  Google Scholar 

  10. 10

    Venkatasubramanian, R., Siivola, E., Colpitts, T. & O'Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001).

    CAS  Google Scholar 

  11. 11

    Priya, S. & Inman, D. J. Energy Harvesting Technologies Vol. 21 (Springer, 2009).

    Google Scholar 

  12. 12

    Rowe, D. M. Thermoelectrics Handbook: Macro to Nano (CRC, 2005).

    Google Scholar 

  13. 13

    Bubnova, O. & Crispin, X. Towards polymer-based organic thermoelectric generators. Energy Environ. Sci. 5, 9345–9362 (2012).

    CAS  Google Scholar 

  14. 14

    Chen, Y., Zhao, Y. & Liang, Z. Solution processed organic thermoelectrics: towards flexible thermoelectric modules. Energy Environ. Sci. 8, 401–422 (2015).

    CAS  Google Scholar 

  15. 15

    Poehler, T. O. & Katz, H. E. Prospects for polymer-based thermoelectrics: state of the art and theoretical analysis. Energy Environ. Sci. 5, 8110–8115 (2012).

    CAS  Google Scholar 

  16. 16

    Yang, J. H., Yip, H. L. & Jen, A. K. Y. Rational design of advanced thermoelectric materials. Adv. Energy Mater. 3, 549–565 (2013).

    CAS  Google Scholar 

  17. 17

    Zhang, Q., Sun, Y., Xu, W. & Zhu, D. Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently. Adv. Mater. 26, 6829–6851 (2014).

    CAS  Google Scholar 

  18. 18

    Chabinyc, M. L., Schiltz, R. A. & Glaudell, A. M. in Innovative Thermoelectric Materials (eds Katz, H. E. & Poehler, T. O. ) (Imperial College Press, 2016).

    Google Scholar 

  19. 19

    Urban, J. J. & Coates, N. E. in Innovative Thermoelectric Materials (eds Katz, H. E. & Poehler, T. O. ) (Imperial College Press, 2016).

    Google Scholar 

  20. 20

    Moriarty, G. P., Briggs, K., Stevens, B., Yu, C. & Grunlan, J. C. Fully organic nanocomposites with high thermoelectric power factors by using a dual-stabilizer preparation. Energy Technol. 1, 265–272 (2013).

    CAS  Google Scholar 

  21. 21

    Kim, D., Kim, Y., Choi, K., Grunlan, J. C. & Yu, C. H. Improved thermoelectric behavior of nanotube-filled polymer composites with poly(3,4-ethylenedioxythiophene poly(styrenesulfonate). ACS Nano 4, 513–523 (2010).

    CAS  Article  Google Scholar 

  22. 22

    Choi, K. & Yu, C. Highly doped carbon nanotubes with gold nanoparticles and their influence on electrical conductivity and thermopower of nanocomposites. PloS One 7, e44977 (2012).

    CAS  Google Scholar 

  23. 23

    Coates, N. E. et al. Effect of interfacial properties on polymer-nanocrystal thermoelectric transport. Adv. Mater. 25, 1629–1633 (2013).

    CAS  Google Scholar 

  24. 24

    Yee, S. K., Coates, N. E., Majumdar, A., Urban, J. J. & Segalman, R. A. Thermoelectric power factor optimization in PEDOT:PSS tellurium nanowire hybrid composites. Phys. Chem. Chem. Phys. 15, 4024–4032 (2013).

    CAS  Google Scholar 

  25. 25

    Ireland, R. M. et al. Effects of pulsing and interfacial potentials on tellurium–organic heterostructured films. ACS Appl. Mater. Interface 5, 1604–1611 (2013).

    CAS  Google Scholar 

  26. 26

    Ireland, R. M., Zhang, L. S., Gopalan, P. & Katz, H. E. Tellurium thin films in hybrid organic electronics: morphology and mobility. Adv. Mater. 25, 4358–4364 (2013).

    CAS  Google Scholar 

  27. 27

    Sinha, J., Ireland, R. M., Lee, S. J. & Katz, H. E. Synergistic thermoelectric power factor increase in films incorporating tellurium and thiophene-based semiconductors. MRS Commun. 3, 97–100 (2013).

    CAS  Google Scholar 

  28. 28

    Yu, C., Choi, K., Yin, L. & Grunlan, J. C. Light-weight flexible carbon nanotube based organic composites with large thermoelectric power factors. ACS Nano 5, 7885–7892 (2011).

    CAS  Google Scholar 

  29. 29

    Yu, C., Kim, Y. S., Kim, D. & Grunlan, J. C. Thermoelectric behavior of segregated-network polymer nanocomposites. Nano Lett. 8, 4428–4432 (2008).

    CAS  Google Scholar 

  30. 30

    Hardigree, J. F. M. et al. Reducing leakage currents in n-channel organic field-effect transistors using molecular dipole mono layers on nanoscale oxides. ACS Appl. Mater. Interfaces 5, 7025–7032 (2013).

    Google Scholar 

  31. 31

    Dun, C. et al. Layered Bi2Se3 nanoplate/polyvinylidene fluoride composite based n-type thermoelectric fabrics. ACS Appl. Mater. Interfaces 7, 7054–7059 (2015).

    CAS  Google Scholar 

  32. 32

    Hewitt, C. A. et al. Multilayered carbon nanotube/polymer composite based thermoelectric fabrics. Nano Lett. 12, 1307–1310 (2012).

    CAS  Google Scholar 

  33. 33

    Shakouri, A. Recent developments in semiconductor thermoelectric physics and materials. Annu. Rev. Mater. Res. 41, 399–431 (2011).

    CAS  Google Scholar 

  34. 34

    Beekman, M., Morelli, D. T. & Nolas, G. S. Better thermoelectrics through glass-like crystals. Nat. Mater. 14, 1182–1185 (2015).

    CAS  Google Scholar 

  35. 35

    Coropceanu, V. et al. Charge transport in organic semiconductors. Chem. Rev. 107, 926–952 (2007).

    CAS  Google Scholar 

  36. 36

    Bredas, J. L. & Street, G. B. Polarons, bipolarons, and solitons in conducting polymers. Acc. Chem. Res. 18, 309–315 (1985).

    CAS  Google Scholar 

  37. 37

    Anthony, J. E., Facchetti, A., Heeney, M., Marder, S. R. & Zhan, X. n-Type organic semiconductors in organic electronics. Adv. Mater. 22, 3876–3892 (2010).

    CAS  Google Scholar 

  38. 38

    Guo, X., Baumgarten, M. & Müllen, K. Designing π-conjugated polymers for organic electronics. Prog. Polym. Sci. 38, 1832–1908 (2013).

    CAS  Google Scholar 

  39. 39

    Holliday, S., Donaghey, J. E. & McCulloch, I. Advances in charge carrier mobilities of semiconducting polymers used in organic transistors. Chem. Mater. 26, 647–663 (2014).

    CAS  Google Scholar 

  40. 40

    Mei, J. & Bao, Z. Side chain engineering in solution-processable conjugated polymers. Chem. Mater. 26, 604–615 (2014).

    CAS  Google Scholar 

  41. 41

    Chabinyc, M. Thermoelectric polymers: behind organics' thermopower. Nat. Mater. 13, 119–121 (2014).

    CAS  Google Scholar 

  42. 42

    Heeger, A. J., Kivelson, S., Schrieffer, J. & Su, W.-P. Solitons in conducting polymers. Rev. Mod. Phys. 60, 781 (1988).

    CAS  Google Scholar 

  43. 43

    Noriega, R. et al. A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12, 1038–1044 (2013).

    CAS  Google Scholar 

  44. 44

    Rivnay, J. et al. Large modulation of carrier transport by grain-boundary molecular packing and microstructure in organic thin films. Nat. Mater. 8, 952–958 (2009).

    CAS  Google Scholar 

  45. 45

    Venkateshvaran, D. et al. Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515, 384–388 (2014).

    CAS  Google Scholar 

  46. 46

    Mei, J. G., Kim, D. H., Ayzner, A. L., Toney, M. F. & Bao, Z. A. Siloxane-terminated solubilizing side chains: bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors. J. Am. Chem. Soc. 133, 20130–20133 (2011).

    CAS  Google Scholar 

  47. 47

    Fabretto, M. V. et al. Polymeric material with metal-like conductivity for next generation organic electronic devices. Chem. Mater. 24, 3998–4003 (2012).

    CAS  Google Scholar 

  48. 48

    Heeger, A. J. Semiconducting and metallic polymers: the fourth generation of polymeric materials. J. Phys. Chem. B 105, 8475–8491 (2001).

    CAS  Google Scholar 

  49. 49

    Worfolk, B. J. et al. Ultrahigh electrical conductivity in solution-sheared polymeric transparent films. Proc. Natl Acad. Sci. USA 112, 14138–14143 (2015).

    CAS  Google Scholar 

  50. 50

    Walzer, K., Maennig, B., Pfeiffer, M. & Leo, K. Highly efficient organic devices based on electrically doped transport layers. Chem. Rev. 107, 1233–1271 (2007).

    CAS  Google Scholar 

  51. 51

    Zaumseil, J. & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. Chem. Rev. 107, 1296–1323 (2007).

    CAS  Google Scholar 

  52. 52

    Anthopoulos T. D. Anyfantis G. C. Papavassiliou G. C. & de Leeuw D. M. Air-stable ambipolar organic transistors. Appl. Phys. Lett. 90 122105 (2007).

    Google Scholar 

  53. 53

    de Leeuw, D. M., Simenon, M. M. J., Brown, A. R. & Einerhand, R. E. F. Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices. Synth. Met. 87, 53–59 (1997).

    CAS  Google Scholar 

  54. 54

    Nicolai, H. T. et al. Unification of trap-limited electron transport in semiconducting polymers. Nat. Mater. 11, 882–887 (2012).

    CAS  Google Scholar 

  55. 55

    Jung, B. J., Tremblay, N. J., Yeh, M.-L. & Katz, H. E. Molecular design and synthetic approaches to electron-transporting organic transistor semiconductors†. Chem. Mater. 23, 568–582 (2011).

    CAS  Google Scholar 

  56. 56

    Russ, B. et al. Power factor enhancement in solution-processed organic n-type thermoelectrics through molecular design. Adv. Mater. 26, 3473–3477 (2014).

    CAS  Google Scholar 

  57. 57

    Schlitz, R. A. et al. Solubility-limited extrinsic n-type doping of a high electron mobility polymer for thermoelectric applications. Adv. Mater. 26, 2825–2830 (2014).

    CAS  Google Scholar 

  58. 58

    Shi, H., Liu, C., Jiang, Q. & Xu, J. Effective approaches to improve the electrical conductivity of PEDOT:PSS: a review. Adv. Electron Mater. 1, 1500017 (2015).

    Google Scholar 

  59. 59

    Bubnova, O. et al. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat. Mater. 10, 429–433 (2011). This paper demonstrated routes for tuning the thermoelectric properties of PEDOT for optimal performance and demonstrated a first proof-of-principle OTE device.

    CAS  Google Scholar 

  60. 60

    Winther-Jensen, B. & West, K. Vapor-phase polymerization of 3,4-ethylenedioxythiophene: a route to highly conducting polymer surface layers. Macromolecules 37, 4538–4543 (2004).

    CAS  Google Scholar 

  61. 61

    Wei, P. et al. 2-(2-Methoxyphenyl)-1,3-dimethyl-1H-benzoimidazol-3-ium iodide as a new air-stable n-type dopant for vacuum-processed organic semiconductor thin films. J. Am. Chem. Soc. 134, 3999–4002 (2012).

    CAS  Google Scholar 

  62. 62

    Guo, S. et al. n-Doping of organic electronic materials using air-stable organometallics. Adv. Mater. 24, 699–703 (2012).

    CAS  Google Scholar 

  63. 63

    Lussem, B., Riede, M. & Leo, K. Doping of organic semiconductors. Phys. Status Solidi A 210, 9–43 (2013).

    Google Scholar 

  64. 64

    Li, J. et al. Introducing solubility control for improved organic p-type dopants. Chem. Mater. 27, 5765–5774 (2015).

    CAS  Google Scholar 

  65. 65

    Qi, Y. et al. Solution doping of organic semiconductors using air-stable n-dopants. Appl. Phys. Lett. 100, 083305 (2012).

    Google Scholar 

  66. 66

    Chan, C. K., Kim, E. G., Brédas, J. L. & Kahn, A. Molecular n-type doping of 1,4,5,8-naphthalene tetracarboxylic dianhydride by pyronin B studied using direct and inverse photoelectron spectroscopies. Adv. Funct. Mater. 16, 831–837 (2006).

    CAS  Google Scholar 

  67. 67

    Li, F. et al. Acridine orange base as a dopant for n doping of C60 thin films. J. Appl. Phys. 100, 23716–23900 (2006).

    Google Scholar 

  68. 68

    Li, F., Werner, A., Pfeiffer, M., Leo, K. & Liu, X. Leuco crystal violet as a dopant for n-doping of organic thin films of fullerene C60 . J. Phys. Chem. B 108, 17076–17082 (2004).

    CAS  Google Scholar 

  69. 69

    Naab, B. D. et al. Mechanistic study on the solution-phase n-doping of 1,3-dimethyl-2-aryl-2,3-dihydro-1H-benzoimidazole derivatives. J. Am. Chem. Soc. 135, 15018–15025 (2013).

    CAS  Google Scholar 

  70. 70

    Shi, K. et al. Toward high performance n-type thermoelectric materials by rational modification of BDPPV backbones. J. Am. Chem. Soc. 137, 6979–6982 (2015).

    CAS  Google Scholar 

  71. 71

    Russ, B. et al. Tethered tertiary amines as solid-state n-type dopants for solution-processable organic semiconductors. Chem. Sci. 7, 1914–1919 (2016).

    CAS  Google Scholar 

  72. 72

    Cochran, J. E. et al. Molecular interactions and ordering in electrically doped polymers: blends of PBTTT and F4TCNQ. Macromolecules 47, 6836–6846 (2014).

    CAS  Google Scholar 

  73. 73

    Duong, D. T., Wang, C., Antono, E., Toney, M. F. & Salleo, A. The chemical and structural origin of efficient p-type doping in P3HT. Org. Electron. 14, 1330–1336 (2013).

    CAS  Google Scholar 

  74. 74

    Winokur, M. et al. X-ray scattering from sodium-doped polyacetylene: incommensurate–commensurate and order–disorder transformations. Phys. Rev. Lett. 58, 2329 (1987).

    CAS  Google Scholar 

  75. 75

    Winokur, M., Wamsley, P., Moulton, J., Smith, P. & Heeger, A. Structural evolution in iodine-doped poly (3-alkylthiophenes). Macromolecules 24, 3812–3815 (1991).

    CAS  Google Scholar 

  76. 76

    Tashiro, K., Kobayashi, M., Kawai, T. & Yoshino, K. Crystal structural change in poly(3-alkyl thiophene)s induced by iodine doping as studied by an organized combination of X-ray diffraction, infrared/Raman spectroscopy and computer simulation techniques. Polymer 38, 2867–2879 (1997).

    CAS  Google Scholar 

  77. 77

    Mai, C.-K. et al. Varying the ionic functionalities of conjugated polyelectrolytes leads to both p-and n-type carbon nanotube composites for flexible thermoelectrics. Energy Environ. Sci. 8, 2341–2346 (2015).

    CAS  Google Scholar 

  78. 78

    Mai, C.-K. et al. Side-chain effects on the conductivity, morphology, and thermoelectric properties of self-doped narrow-band-gap conjugated polyelectrolytes. J. Am. Chem. Soc. 136, 13478–13481 (2014).

    CAS  Google Scholar 

  79. 79

    Pingel, P. & Neher, D. Comprehensive picture of p-type doping of P3HT with the molecular acceptor F4TCNQ. Phys. Rev. B 87, 115209 (2013).

    Google Scholar 

  80. 80

    Xuan, Y. et al. Thermoelectric properties of conducting polymers: the case of poly (3-hexylthiophene). Phys. Rev. B 82, 115454 (2010).

    Google Scholar 

  81. 81

    Wang, Z., Li, C., Scherr, E., MacDiarmid, A. & Epstein, A. Three dimensionality of ‘metallic’ states in conducting polymers: polyaniline. Phys. Rev. Lett. 66, 1745 (1991).

    CAS  Google Scholar 

  82. 82

    Yoon, C. O. et al. Hopping transport in doped conducting polymers in the insulating regime near the metal–insulator boundary: polypyrrole, polyaniline and polyalkylthiophenes. Synth. Met. 75, 229–239 (1995).

    CAS  Google Scholar 

  83. 83

    Paloheimo, J., Laakso, K., Isotalo, H. & Stubb, H. Conductivity, thermoelectric-power and field-effect mobility in self-assembled films of polyanilines and oligoanilines. Synth. Met. 68, 249–257 (1995).

    CAS  Google Scholar 

  84. 84

    van de Ruit, K. et al. Quasi-one dimensional in-plane conductivity in filamentary films of PEDOT:PSS. Adv. Funct. Mater. 23, 5778–5786 (2013).

    CAS  Google Scholar 

  85. 85

    Wang, S., Ha, M., Manno, M., Frisbie, C. D. & Leighton, C. Hopping transport and the Hall effect near the insulator–metal transition in electrochemically gated poly(3-hexylthiophene) transistors. Nat. Commun. 3, 1210 (2012).

    Google Scholar 

  86. 86

    Epstein, A. et al. Inhomogeneous disorder and the modified Drude metallic state of conducting polymers. Synth. Met. 65, 149–157 (1994).

    CAS  Google Scholar 

  87. 87

    Kim, Y. H. et al. Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells. Adv. Funct. Mater. 21, 1076–1081 (2011).

    CAS  Google Scholar 

  88. 88

    Luo, J. et al. Enhancement of the thermoelectric properties of PEDOT:PSS thin films by post-treatment. J. Mater. Chem. A 1, 7576–7583 (2013).

    CAS  Google Scholar 

  89. 89

    DeLongchamp, D. M. et al. Influence of a water rinse on the structure and properties of poly(3,4-ethylene dioxythiophene): poly(styrene sulfonate) films. Langmuir 21, 11480–11483 (2005).

    CAS  Google Scholar 

  90. 90

    Kim, G. H., Shao, L., Zhang, K. & Pipe, K. P. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat. Mater. 12, 719–723 (2013).

    CAS  Google Scholar 

  91. 91

    Scholes, D. T. et al. Overcoming film quality issues for conjugated polymers doped with F4TCNQ by solution sequential processing: Hall effect, structural, and optical measurements. J. Phys. Chem. Lett. 6, 4786–4793 (2015).

    CAS  Google Scholar 

  92. 92

    Lazzaroni, R., Lögdlund, M., Stafström, S., Salaneck, W. R. & Brédas, J. L. The poly-3-hexylthiophene/NOPF6 system: a photoelectron spectroscopy study of electronic structural changes induced by the charge transfer in the solid state. J. Chem. Phys. 93, 4433–4439 (1990).

    CAS  Google Scholar 

  93. 93

    Lögdlund, M., Lazzaroni, R., Stafström, S., Salaneck, W. R. & Brédas, J. L. Direct observation of charge-induced π-electronic structural changes in a conjugated polymer. Phys. Rev. Lett. 63, 1841–1844 (1989).

    Google Scholar 

  94. 94

    Yim, K. H. et al. Controlling electrical properties of conjugated polymers via a solution-based p-type doping. Adv. Mater. 20, 3319–3324 (2008).

    CAS  Google Scholar 

  95. 95

    Bubnova, O. et al. Semi-metallic polymers. Nat. Mater. 13, 190–194 (2014). The first report of semi-metallic behaviour in an organic semiconductor resulting from the formation of bipolaron bands is presented in this work.

    CAS  Google Scholar 

  96. 96

    Aich, R. B., Blouin, N., Bouchard, A. & Leclerc, M. Electrical and thermoelectric properties of poly(2,7-carbazole) derivatives. Chem. Mater. 21, 751–757 (2009).

    CAS  Google Scholar 

  97. 97

    Glaudell, A. M., Cochran, J. E., Patel, S. N. & Chabinyc, M. L. Impact of the doping method on conductivity and thermopower in semiconducting polythiophenes. Adv. Energy Mater. 5, 1401072 (2015).

    Google Scholar 

  98. 98

    Zhang, F. J. et al. Modulated thermoelectric properties of organic semiconductors using field-effect transistors. Adv. Funct. Mater. 25, 3004–3012 (2015).

    CAS  Google Scholar 

  99. 99

    Inabe, T. et al. Electronic structure of alkali metal doped C60 derived from thermoelectric-power measurements. Phys. Rev. Lett. 69, 3797–3799 (1992).

    CAS  Google Scholar 

  100. 100

    Wang, Z. H. et al. Electronic transport properties of KxC70 thin-films. Phys. Rev. B 48, 10657–10660 (1993).

    CAS  Google Scholar 

  101. 101

    Sumino M. et al. Thermoelectric properties of n-type C60 thin films and their application in organic thermovoltaic devices. Appl. Phys. Lett. 99 093308 (2011).

    Google Scholar 

  102. 102

    Sun, Y. M. et al. Organic thermoelectric materials and devices based on p- and n-type poly(metal 1,1,2,2-ethenetetrathiolate)s. Adv. Mater. 24, 932–937 (2012). The organometallic polymers presented in this study showcase organometallics as a promising class of high-performing p-type and n-type thermoelectric materials.

    CAS  Google Scholar 

  103. 103

    Kola, S. et al. Pyromellitic diimide–ethynylene-based homopolymer film as an n-channel organic field-effect transistor semiconductor. ACS Macro Lett. 2, 664–669 (2013).

    CAS  Google Scholar 

  104. 104

    Fritzsche, H. A general expression for the thermoelectric power. Solid State Commun. 9, 1813–1815 (1971).

    CAS  Google Scholar 

  105. 105

    Park, Y. W., Denenstein, A., Chiang, C. K., Heeger, A. J. & Macdiarmid, A. G. Semiconductor–metal transition in doped (CH)x: thermoelectric power. Solid State Commun. 29, 747–751 (1979).

    CAS  Google Scholar 

  106. 106

    Zhang, Q., Sun, Y. M., Xu, W. & Zhu, D. B. What to expect from conducting polymers on the playground of thermoelectricity: lessons learned from four high-mobility polymeric semiconductors. Macromolecules 47, 609–615 (2014).

    CAS  Google Scholar 

  107. 107

    Reghu, M., Cao, Y., Moses, D. & Heeger, A. J. Counterion-induced processibility of polyaniline: transport at the metal–insulator boundary. Phys. Rev. B 47, 1758–1764 (1993).

    CAS  Google Scholar 

  108. 108

    Yoon, C. O., Reghu, M., Moses, D. & Heeger, A. J. Transport near the metal–insulator-transition: polypyrrole doped with PF6 . Phys. Rev. B 49, 10851–10863 (1994).

    CAS  Google Scholar 

  109. 109

    Nogami, Y. et al. On the metallic states in highly conducting iodine-doped polyacetylene. Solid State Commun. 76, 583–586 (1990).

    CAS  Google Scholar 

  110. 110

    Kaiser, A. B. Electronic transport properties of conducting polymers and carbon nanotubes. Rep. Prog. Phys. 64, 1 (2001).

    CAS  Google Scholar 

  111. 111

    Kaiser, A. B. Thermoelectric-power and conductivity of heterogeneous conducting polymers. Phys. Rev. B 40, 2806–2813 (1989). This paper reported an early analysis of how thermopower and electrical conductivity can vary due to percolation in organic materials.

    CAS  Google Scholar 

  112. 112

    Massonnet, N. et al. Improvement of the Seebeck coefficient of PEDOT:PSS by chemical reduction combined with a novel method for its transfer using free-standing thin films. J. Mater. Chem. C 2, 1278–1283 (2014).

    CAS  Google Scholar 

  113. 113

    See, K. C. et al. Water-processable polymer–nanocrystal hybrids for thermoelectrics. Nano Lett. 10, 4664–4667 (2010). This study demonstrated that synergetic effects can be realized when rationally combining organic with inorganic thermoelectric materials, resulting in performance exceeding that of either of the individual components alone.

    CAS  Google Scholar 

  114. 114

    Massonnet, N., Carella, A., de Geyer, A., Faure-Vincent, J. & Simonato, J.-P. Metallic behaviour of acid doped highly conductive polymers. Chem. Sci. 6, 412–417 (2015).

    CAS  Google Scholar 

  115. 115

    Pernstich, K. P., Rossner, B. & Batlogg, B. Field-effect-modulated Seebeck coefficient in organic semiconductors. Nat. Mater. 7, 321–325 (2008).

    CAS  Google Scholar 

  116. 116

    Sun, J. et al. Simultaneous increase in Seebeck coefficient and conductivity in a doped poly(alkylthiophene) blend with defined density of states. Macromolecules 43, 2897–2903 (2010).

    CAS  Google Scholar 

  117. 117

    Urban, J. J. Prospects for thermoelectricity in quantum dot hybrid arrays. Nat. Nanotechnol. 10, 997–1001 (2015).

    CAS  Google Scholar 

  118. 118

    He, M. et al. Thermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at the organic–inorganic semiconductor interface. Energy Environ. Sci. 5, 8351–8358 (2012).

    CAS  Google Scholar 

  119. 119

    Zhou, C. et al. Nanowires as building blocks to fabricate flexible thermoelectric fabric: the case of copper telluride nanowires. ACS Appl. Mater. Interface 7, 21015–21020 (2015).

    CAS  Google Scholar 

  120. 120

    Ju, Y. S., Kurabayashi, K. & Goodson, K. E. Thermal characterization of anisotropic thin dielectric films using harmonic Joule heating. Thin Solid Films 339, 160–164 (1999).

    CAS  Google Scholar 

  121. 121

    Duda, J. C., Hopkins, P. E., Shen, Y. & Gupta, M. C. Exceptionally low thermal conductivities of films of the fullerene derivative PCBM. Phys. Rev. Lett. 110, 015902 (2013).

    Google Scholar 

  122. 122

    Wang, X., Liman, C. D., Treat, N. D., Chabinyc, M. L. & Cahill, D. G. Ultralow thermal conductivity of fullerene derivatives. Phys. Rev. B 88, 075310 (2013).

    Google Scholar 

  123. 123

    Wang, X., Ho, V., Segalman, R. A. & Cahill, D. G. Thermal conductivity of high-modulus polymer fibers. Macromolecules 46, 4937–4943 (2013).

    CAS  Google Scholar 

  124. 124

    Liu, J. et al. Thermal conductivity and elastic constants of PEDOT:PSS with high electrical conductivity. Macromolecules 48, 585–591 (2015).

    CAS  Google Scholar 

  125. 125

    Weathers, A. et al. Significant electronic thermal transport in the conducting polymer poly(3,4-ethylenedioxythiophene). Adv. Mater. 27, 2101–2106 (2015).

    CAS  Google Scholar 

  126. 126

    Wei, Q., Mukaida, M., Kirihara, K. & Ishida, T. Experimental studies on the anisotropic thermoelectric properties of conducting polymer films. ACS Macro Lett. 3, 948–952 (2014).

    CAS  Google Scholar 

  127. 127

    Arias, A. C., MacKenzie, J. D., McCulloch, I., Rivnay, J. & Salleo, A. Materials and applications for large area electronics: solution-based approaches. Chem. Rev. 110, 3–24 (2010).

    CAS  Google Scholar 

  128. 128

    Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).

    CAS  Google Scholar 

  129. 129

    Schwartz, G. et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 4, 1859 (2013).

    Google Scholar 

  130. 130

    Leonov, V. in Wearable Monitoring Systems (eds Bonfiglio, A. & De Rossi, D. ) 27–49 (Springer, 2011).

    Google Scholar 

  131. 131

    Sun, T., Peavey, J. L., David Shelby, M., Ferguson, S. & O'Connor, B. T. Heat shrink formation of a corrugated thin film thermoelectric generator. Energy Convers. Manage. 103, 674–680 (2015).

    CAS  Google Scholar 

  132. 132

    Goldsmid, H. (ed.) Thermoelectric Refrigeration (Springer, 2013).

    Google Scholar 

  133. 133

    Goupil, C., Seifert, W., Zabrocki, K., Müller, E. & Snyder, G. J. Thermodynamics of thermoelectric phenomena and applications. Entropy 13, 1481–1517 (2011).

    Google Scholar 

  134. 134

    Bahk, J.-H., Fang, H., Yazawa, K. & Shakouri, A. Flexible thermoelectric materials and device optimization for wearable energy harvesting. J. Mater. Chem. C 3, 10362–10374 (2015).

    CAS  Google Scholar 

  135. 135

    Owoyele, O., Ferguson, S. & O'Connor, B. T. Performance analysis of a thermoelectric cooler with a corrugated architecture. Appl. Energy 147, 184–191 (2015).

    Google Scholar 

  136. 136

    Fujifilm. Sustainability Report 2013, 18–19 (Fujifilm, 2013).

  137. 137

    Kim, S. J., We, J. H. & Cho, B. J. A wearable thermoelectric generator fabricated on a glass fabric. Energy Environ. Sci. 7, 1959–1965 (2014).

    CAS  Google Scholar 

  138. 138

    Madan, D., Wang, Z., Wright, P. K. & Evans, J. W. Printed flexible thermoelectric generators for use on low levels of waste heat. Appl. Energy 156, 587–592 (2015).

    CAS  Google Scholar 

  139. 139

    Du, Y. et al. Thermoelectric fabrics: toward power generating clothing. Sci. Rep. 5, 6411 (2015).

    CAS  Google Scholar 

  140. 140

    Nonoguchi, Y. et al. Systematic conversion of single walled carbon nanotubes into n-type thermoelectric materials by molecular dopants. Sci. Rep. 3, 3344 (2013).

    Google Scholar 

  141. 141

    Yu, C. H., Murali, A., Choi, K. W. & Ryu, Y. Air-stable fabric thermoelectric modules made of n- and p-type carbon nanotubes. Energy Environ. Sci. 5, 9481–9486 (2012).

    CAS  Google Scholar 

  142. 142

    Søndergaard, R. R., Hösel, M., Espinosa, N., Jørgensen, M. & Krebs, F. C. Practical evaluation of organic polymer thermoelectrics by large-area R2R processing on flexible substrates. Energy Sci. Eng. 1, 81–88 (2013).

    Google Scholar 

  143. 143

    Tomlinson, E. P., Hay, M. E. & Boudouris, B. W. Radical polymers and their application to organic electronic devices. Macromolecules 47, 6145–6158 (2014).

    CAS  Google Scholar 

  144. 144

    Tomlinson, E. P., Willmore, M. J., Zhu, X., Hilsmier, S. W. A. & Boudouris, B. W. Tuning the thermoelectric properties of a conducting polymer through blending with open-shell molecular dopants. ACS Appl. Mater. Interface 7, 18195–18200 (2015).

    CAS  Google Scholar 

  145. 145

    Stavrinidou, E. et al. Direct measurement of ion mobility in a conducting polymer. Adv. Mater. 25, 4488–4493 (2013).

    CAS  Google Scholar 

  146. 146

    Wang, H., Ail, U., Gabrielsson, R., Berggren, M. & Crispin, X. Ionic Seebeck effect in conducting polymers. Adv. Energy Mater. 5, 1500044 (2015).

    Google Scholar 

  147. 147

    Chang, W. B. et al. Harvesting waste heat in unipolar ion conducting polymers. ACS Macro Lett. 5, 94–98 (2016).

    CAS  Google Scholar 

  148. 148

    Chang, W. B. et al. Electrochemical effects in thermoelectric polymers. ACS Macro Lett. 5, 455–459 (2016).

    CAS  Google Scholar 

  149. 149

    Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008).

    CAS  Google Scholar 

  150. 150

    Onda, K., Masuda, T., Nagata, S. & Nozaki, K. Cycle analyses of thermoelectric power generation and heat pumps using the β′′-alumina electrolyte. J. Power Sources 55, 231–236 (1995).

    CAS  Google Scholar 

  151. 151

    Bian, Z. & Shakouri, A. Beating the maximum cooling limit with graded thermoelectric materials. Appl. Phys. Lett. 89, 212101 (2006).

    Google Scholar 

  152. 152

    Snyder, G. J., Fleurial, J.-P., Caillat, T., Yang, R. & Chen, G. Supercooling of peltier cooler using a current pulse. J. Appl. Phys. 92, 1564–1569 (2002).

    CAS  Google Scholar 

  153. 153

    Zhang F. Zang Y. Huang D. Di C.-a. & Zhu D. Flexible and self-powered temperature–pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat. Commun. 6 8356 (2015).

    CAS  Google Scholar 

  154. 154

    Yazawa, K. & Shakouri, A. Scalable cost/performance analysis for thermoelectric waste heat recovery systems. J. Electron. Mater. 41, 1845–1850 (2012).

    CAS  Google Scholar 

  155. 155

    Yee, S. K., LeBlanc, S., Goodson, K. E. & Dames, C. $ per W metrics for thermoelectric power generation: beyond ZT. Energy Environ. Sci. 6, 2561–2571 (2013). Important conceptual introduction of alternative metrics to ZT that may better capture the merits of using scalable, flexible thermoelectric devices.

    Google Scholar 

  156. 156

    Darian-Smith, I. in Comprehensive Physiology (Wiley, 2011).

    Google Scholar 

  157. 157

    Cho, C. et al. Completely organic multilayer thin film with thermoelectric power factor rivaling inorganic tellurides. Adv. Mater. 27, 2996–3001 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the AFOSR-MURI on Controlling Thermal and Electrical Transport in Organic and Hybrid Materials, AFOSR MURI FA9550-12-1-0002, as well as the Molecular Foundry, a LBNL user facility supported by the Office of Science, BES, US DOE, under Contract DE-AC02-05CH11231.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jeffrey J. Urban or Michael L. Chabinyc or Rachel A. Segalman.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Russ, B., Glaudell, A., Urban, J. et al. Organic thermoelectric materials for energy harvesting and temperature control. Nat Rev Mater 1, 16050 (2016). https://doi.org/10.1038/natrevmats.2016.50

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing