Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Organic thermoelectric materials for energy harvesting and temperature control

Abstract

Conjugated polymers and related processing techniques have been developed for organic electronic devices ranging from lightweight photovoltaics to flexible displays. These breakthroughs have recently been used to create organic thermoelectric materials, which have potential for wearable heating and cooling devices, and near-room-temperature energy generation. So far, the best thermoelectric materials have been inorganic compounds (such as Bi2Te3) that have relatively low Earth abundance and are fabricated through highly complex vacuum processing routes. Molecular materials and hybrid organic–inorganic materials now demonstrate figures of merit approaching those of these inorganic materials, while also exhibiting unique transport behaviours that are suggestive of optimization pathways and device geometries that were not previously possible. In this Review, we discuss recent breakthroughs for organic materials with high thermoelectric figures of merit and indicate how these materials may be incorporated into new module designs that take advantage of their mechanical and thermoelectric properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular design and energetics of OTE materials.
Figure 2: Effect of structural order of OTE materials on transport properties.
Figure 3: The thermoelectric properties of a wide range of OTE materials follow the same empirical trend.
Figure 4: Ordered regions connected by disordered chains in semiconducting polymeric materials.
Figure 5: OTE materials compatible with high-throughput 2D processing enable customizable and easily optimizable device architectures.

Similar content being viewed by others

References

  1. Lee, J. et al. Deep blue phosphorescent organic light-emitting diodes with very high brightness and efficiency. Nat. Mater. 15, 92–98 (2016).

    Article  CAS  Google Scholar 

  2. Reineke, S., Thomschke, M., Lüssem, B. & Leo, K. White organic light-emitting diodes: status and perspective. Rev. Mod. Phys. 85, 1245–1293 (2013).

    Article  CAS  Google Scholar 

  3. Dou, L. et al. 25th anniversary article. A decade of organic/polymeric photovoltaic research. Adv. Mater. 25, 6642–6671 (2013).

    Article  CAS  Google Scholar 

  4. Sirringhaus, H. 25th anniversary article. Organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater. 26, 1319–1335 (2014).

    Article  CAS  Google Scholar 

  5. Cahill, D. G. et al. Nanoscale thermal transport. J. Appl. Phys. 93, 793–818 (2003).

    Article  CAS  Google Scholar 

  6. Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008).

    Article  CAS  Google Scholar 

  7. Vineis, C. J., Shakouri, A., Majumdar, A. & Kanatzidis, M. G. Nanostructured thermoelectrics: big efficiency gains from small features. Adv. Mater. 22, 3970–3980 (2010).

    Article  CAS  Google Scholar 

  8. Goldsmid, H. J. The electrical conductivity and thermoelectric power of bismuth telluride. Proc. Phys. Soc. Lond. 71, 633–646 (1958).

    CAS  Google Scholar 

  9. Poudel, B. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008).

    Article  CAS  Google Scholar 

  10. Venkatasubramanian, R., Siivola, E., Colpitts, T. & O'Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001).

    Article  CAS  Google Scholar 

  11. Priya, S. & Inman, D. J. Energy Harvesting Technologies Vol. 21 (Springer, 2009).

    Book  Google Scholar 

  12. Rowe, D. M. Thermoelectrics Handbook: Macro to Nano (CRC, 2005).

    Google Scholar 

  13. Bubnova, O. & Crispin, X. Towards polymer-based organic thermoelectric generators. Energy Environ. Sci. 5, 9345–9362 (2012).

    Article  CAS  Google Scholar 

  14. Chen, Y., Zhao, Y. & Liang, Z. Solution processed organic thermoelectrics: towards flexible thermoelectric modules. Energy Environ. Sci. 8, 401–422 (2015).

    Article  CAS  Google Scholar 

  15. Poehler, T. O. & Katz, H. E. Prospects for polymer-based thermoelectrics: state of the art and theoretical analysis. Energy Environ. Sci. 5, 8110–8115 (2012).

    Article  CAS  Google Scholar 

  16. Yang, J. H., Yip, H. L. & Jen, A. K. Y. Rational design of advanced thermoelectric materials. Adv. Energy Mater. 3, 549–565 (2013).

    Article  CAS  Google Scholar 

  17. Zhang, Q., Sun, Y., Xu, W. & Zhu, D. Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently. Adv. Mater. 26, 6829–6851 (2014).

    Article  CAS  Google Scholar 

  18. Chabinyc, M. L., Schiltz, R. A. & Glaudell, A. M. in Innovative Thermoelectric Materials (eds Katz, H. E. & Poehler, T. O. ) (Imperial College Press, 2016).

    Google Scholar 

  19. Urban, J. J. & Coates, N. E. in Innovative Thermoelectric Materials (eds Katz, H. E. & Poehler, T. O. ) (Imperial College Press, 2016).

    Google Scholar 

  20. Moriarty, G. P., Briggs, K., Stevens, B., Yu, C. & Grunlan, J. C. Fully organic nanocomposites with high thermoelectric power factors by using a dual-stabilizer preparation. Energy Technol. 1, 265–272 (2013).

    Article  CAS  Google Scholar 

  21. Kim, D., Kim, Y., Choi, K., Grunlan, J. C. & Yu, C. H. Improved thermoelectric behavior of nanotube-filled polymer composites with poly(3,4-ethylenedioxythiophene poly(styrenesulfonate). ACS Nano 4, 513–523 (2010).

    Article  CAS  Google Scholar 

  22. Choi, K. & Yu, C. Highly doped carbon nanotubes with gold nanoparticles and their influence on electrical conductivity and thermopower of nanocomposites. PloS One 7, e44977 (2012).

    Article  CAS  Google Scholar 

  23. Coates, N. E. et al. Effect of interfacial properties on polymer-nanocrystal thermoelectric transport. Adv. Mater. 25, 1629–1633 (2013).

    Article  CAS  Google Scholar 

  24. Yee, S. K., Coates, N. E., Majumdar, A., Urban, J. J. & Segalman, R. A. Thermoelectric power factor optimization in PEDOT:PSS tellurium nanowire hybrid composites. Phys. Chem. Chem. Phys. 15, 4024–4032 (2013).

    Article  CAS  Google Scholar 

  25. Ireland, R. M. et al. Effects of pulsing and interfacial potentials on tellurium–organic heterostructured films. ACS Appl. Mater. Interface 5, 1604–1611 (2013).

    Article  CAS  Google Scholar 

  26. Ireland, R. M., Zhang, L. S., Gopalan, P. & Katz, H. E. Tellurium thin films in hybrid organic electronics: morphology and mobility. Adv. Mater. 25, 4358–4364 (2013).

    Article  CAS  Google Scholar 

  27. Sinha, J., Ireland, R. M., Lee, S. J. & Katz, H. E. Synergistic thermoelectric power factor increase in films incorporating tellurium and thiophene-based semiconductors. MRS Commun. 3, 97–100 (2013).

    Article  CAS  Google Scholar 

  28. Yu, C., Choi, K., Yin, L. & Grunlan, J. C. Light-weight flexible carbon nanotube based organic composites with large thermoelectric power factors. ACS Nano 5, 7885–7892 (2011).

    Article  CAS  Google Scholar 

  29. Yu, C., Kim, Y. S., Kim, D. & Grunlan, J. C. Thermoelectric behavior of segregated-network polymer nanocomposites. Nano Lett. 8, 4428–4432 (2008).

    Article  CAS  Google Scholar 

  30. Hardigree, J. F. M. et al. Reducing leakage currents in n-channel organic field-effect transistors using molecular dipole mono layers on nanoscale oxides. ACS Appl. Mater. Interfaces 5, 7025–7032 (2013).

    Article  Google Scholar 

  31. Dun, C. et al. Layered Bi2Se3 nanoplate/polyvinylidene fluoride composite based n-type thermoelectric fabrics. ACS Appl. Mater. Interfaces 7, 7054–7059 (2015).

    Article  CAS  Google Scholar 

  32. Hewitt, C. A. et al. Multilayered carbon nanotube/polymer composite based thermoelectric fabrics. Nano Lett. 12, 1307–1310 (2012).

    Article  CAS  Google Scholar 

  33. Shakouri, A. Recent developments in semiconductor thermoelectric physics and materials. Annu. Rev. Mater. Res. 41, 399–431 (2011).

    Article  CAS  Google Scholar 

  34. Beekman, M., Morelli, D. T. & Nolas, G. S. Better thermoelectrics through glass-like crystals. Nat. Mater. 14, 1182–1185 (2015).

    Article  CAS  Google Scholar 

  35. Coropceanu, V. et al. Charge transport in organic semiconductors. Chem. Rev. 107, 926–952 (2007).

    Article  CAS  Google Scholar 

  36. Bredas, J. L. & Street, G. B. Polarons, bipolarons, and solitons in conducting polymers. Acc. Chem. Res. 18, 309–315 (1985).

    Article  CAS  Google Scholar 

  37. Anthony, J. E., Facchetti, A., Heeney, M., Marder, S. R. & Zhan, X. n-Type organic semiconductors in organic electronics. Adv. Mater. 22, 3876–3892 (2010).

    Article  CAS  Google Scholar 

  38. Guo, X., Baumgarten, M. & Müllen, K. Designing π-conjugated polymers for organic electronics. Prog. Polym. Sci. 38, 1832–1908 (2013).

    Article  CAS  Google Scholar 

  39. Holliday, S., Donaghey, J. E. & McCulloch, I. Advances in charge carrier mobilities of semiconducting polymers used in organic transistors. Chem. Mater. 26, 647–663 (2014).

    Article  CAS  Google Scholar 

  40. Mei, J. & Bao, Z. Side chain engineering in solution-processable conjugated polymers. Chem. Mater. 26, 604–615 (2014).

    Article  CAS  Google Scholar 

  41. Chabinyc, M. Thermoelectric polymers: behind organics' thermopower. Nat. Mater. 13, 119–121 (2014).

    Article  CAS  Google Scholar 

  42. Heeger, A. J., Kivelson, S., Schrieffer, J. & Su, W.-P. Solitons in conducting polymers. Rev. Mod. Phys. 60, 781 (1988).

    Article  CAS  Google Scholar 

  43. Noriega, R. et al. A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12, 1038–1044 (2013).

    Article  CAS  Google Scholar 

  44. Rivnay, J. et al. Large modulation of carrier transport by grain-boundary molecular packing and microstructure in organic thin films. Nat. Mater. 8, 952–958 (2009).

    Article  CAS  Google Scholar 

  45. Venkateshvaran, D. et al. Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515, 384–388 (2014).

    Article  CAS  Google Scholar 

  46. Mei, J. G., Kim, D. H., Ayzner, A. L., Toney, M. F. & Bao, Z. A. Siloxane-terminated solubilizing side chains: bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors. J. Am. Chem. Soc. 133, 20130–20133 (2011).

    Article  CAS  Google Scholar 

  47. Fabretto, M. V. et al. Polymeric material with metal-like conductivity for next generation organic electronic devices. Chem. Mater. 24, 3998–4003 (2012).

    Article  CAS  Google Scholar 

  48. Heeger, A. J. Semiconducting and metallic polymers: the fourth generation of polymeric materials†. J. Phys. Chem. B 105, 8475–8491 (2001).

    Article  CAS  Google Scholar 

  49. Worfolk, B. J. et al. Ultrahigh electrical conductivity in solution-sheared polymeric transparent films. Proc. Natl Acad. Sci. USA 112, 14138–14143 (2015).

    Article  CAS  Google Scholar 

  50. Walzer, K., Maennig, B., Pfeiffer, M. & Leo, K. Highly efficient organic devices based on electrically doped transport layers. Chem. Rev. 107, 1233–1271 (2007).

    Article  CAS  Google Scholar 

  51. Zaumseil, J. & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. Chem. Rev. 107, 1296–1323 (2007).

    Article  CAS  Google Scholar 

  52. Anthopoulos T. D. Anyfantis G. C. Papavassiliou G. C. & de Leeuw D. M. Air-stable ambipolar organic transistors. Appl. Phys. Lett. 90 122105 (2007).

    Article  Google Scholar 

  53. de Leeuw, D. M., Simenon, M. M. J., Brown, A. R. & Einerhand, R. E. F. Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices. Synth. Met. 87, 53–59 (1997).

    Article  CAS  Google Scholar 

  54. Nicolai, H. T. et al. Unification of trap-limited electron transport in semiconducting polymers. Nat. Mater. 11, 882–887 (2012).

    Article  CAS  Google Scholar 

  55. Jung, B. J., Tremblay, N. J., Yeh, M.-L. & Katz, H. E. Molecular design and synthetic approaches to electron-transporting organic transistor semiconductors†. Chem. Mater. 23, 568–582 (2011).

    Article  CAS  Google Scholar 

  56. Russ, B. et al. Power factor enhancement in solution-processed organic n-type thermoelectrics through molecular design. Adv. Mater. 26, 3473–3477 (2014).

    Article  CAS  Google Scholar 

  57. Schlitz, R. A. et al. Solubility-limited extrinsic n-type doping of a high electron mobility polymer for thermoelectric applications. Adv. Mater. 26, 2825–2830 (2014).

    Article  CAS  Google Scholar 

  58. Shi, H., Liu, C., Jiang, Q. & Xu, J. Effective approaches to improve the electrical conductivity of PEDOT:PSS: a review. Adv. Electron Mater. 1, 1500017 (2015).

    Article  Google Scholar 

  59. Bubnova, O. et al. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat. Mater. 10, 429–433 (2011). This paper demonstrated routes for tuning the thermoelectric properties of PEDOT for optimal performance and demonstrated a first proof-of-principle OTE device.

    Article  CAS  Google Scholar 

  60. Winther-Jensen, B. & West, K. Vapor-phase polymerization of 3,4-ethylenedioxythiophene: a route to highly conducting polymer surface layers. Macromolecules 37, 4538–4543 (2004).

    Article  CAS  Google Scholar 

  61. Wei, P. et al. 2-(2-Methoxyphenyl)-1,3-dimethyl-1H-benzoimidazol-3-ium iodide as a new air-stable n-type dopant for vacuum-processed organic semiconductor thin films. J. Am. Chem. Soc. 134, 3999–4002 (2012).

    Article  CAS  Google Scholar 

  62. Guo, S. et al. n-Doping of organic electronic materials using air-stable organometallics. Adv. Mater. 24, 699–703 (2012).

    Article  CAS  Google Scholar 

  63. Lussem, B., Riede, M. & Leo, K. Doping of organic semiconductors. Phys. Status Solidi A 210, 9–43 (2013).

    Article  Google Scholar 

  64. Li, J. et al. Introducing solubility control for improved organic p-type dopants. Chem. Mater. 27, 5765–5774 (2015).

    Article  CAS  Google Scholar 

  65. Qi, Y. et al. Solution doping of organic semiconductors using air-stable n-dopants. Appl. Phys. Lett. 100, 083305 (2012).

    Article  Google Scholar 

  66. Chan, C. K., Kim, E. G., Brédas, J. L. & Kahn, A. Molecular n-type doping of 1,4,5,8-naphthalene tetracarboxylic dianhydride by pyronin B studied using direct and inverse photoelectron spectroscopies. Adv. Funct. Mater. 16, 831–837 (2006).

    Article  CAS  Google Scholar 

  67. Li, F. et al. Acridine orange base as a dopant for n doping of C60 thin films. J. Appl. Phys. 100, 23716–23900 (2006).

    Article  Google Scholar 

  68. Li, F., Werner, A., Pfeiffer, M., Leo, K. & Liu, X. Leuco crystal violet as a dopant for n-doping of organic thin films of fullerene C60 . J. Phys. Chem. B 108, 17076–17082 (2004).

    Article  CAS  Google Scholar 

  69. Naab, B. D. et al. Mechanistic study on the solution-phase n-doping of 1,3-dimethyl-2-aryl-2,3-dihydro-1H-benzoimidazole derivatives. J. Am. Chem. Soc. 135, 15018–15025 (2013).

    Article  CAS  Google Scholar 

  70. Shi, K. et al. Toward high performance n-type thermoelectric materials by rational modification of BDPPV backbones. J. Am. Chem. Soc. 137, 6979–6982 (2015).

    Article  CAS  Google Scholar 

  71. Russ, B. et al. Tethered tertiary amines as solid-state n-type dopants for solution-processable organic semiconductors. Chem. Sci. 7, 1914–1919 (2016).

    Article  CAS  Google Scholar 

  72. Cochran, J. E. et al. Molecular interactions and ordering in electrically doped polymers: blends of PBTTT and F4TCNQ. Macromolecules 47, 6836–6846 (2014).

    Article  CAS  Google Scholar 

  73. Duong, D. T., Wang, C., Antono, E., Toney, M. F. & Salleo, A. The chemical and structural origin of efficient p-type doping in P3HT. Org. Electron. 14, 1330–1336 (2013).

    Article  CAS  Google Scholar 

  74. Winokur, M. et al. X-ray scattering from sodium-doped polyacetylene: incommensurate–commensurate and order–disorder transformations. Phys. Rev. Lett. 58, 2329 (1987).

    Article  CAS  Google Scholar 

  75. Winokur, M., Wamsley, P., Moulton, J., Smith, P. & Heeger, A. Structural evolution in iodine-doped poly (3-alkylthiophenes). Macromolecules 24, 3812–3815 (1991).

    Article  CAS  Google Scholar 

  76. Tashiro, K., Kobayashi, M., Kawai, T. & Yoshino, K. Crystal structural change in poly(3-alkyl thiophene)s induced by iodine doping as studied by an organized combination of X-ray diffraction, infrared/Raman spectroscopy and computer simulation techniques. Polymer 38, 2867–2879 (1997).

    Article  CAS  Google Scholar 

  77. Mai, C.-K. et al. Varying the ionic functionalities of conjugated polyelectrolytes leads to both p-and n-type carbon nanotube composites for flexible thermoelectrics. Energy Environ. Sci. 8, 2341–2346 (2015).

    Article  CAS  Google Scholar 

  78. Mai, C.-K. et al. Side-chain effects on the conductivity, morphology, and thermoelectric properties of self-doped narrow-band-gap conjugated polyelectrolytes. J. Am. Chem. Soc. 136, 13478–13481 (2014).

    Article  CAS  Google Scholar 

  79. Pingel, P. & Neher, D. Comprehensive picture of p-type doping of P3HT with the molecular acceptor F4TCNQ. Phys. Rev. B 87, 115209 (2013).

    Article  Google Scholar 

  80. Xuan, Y. et al. Thermoelectric properties of conducting polymers: the case of poly (3-hexylthiophene). Phys. Rev. B 82, 115454 (2010).

    Article  Google Scholar 

  81. Wang, Z., Li, C., Scherr, E., MacDiarmid, A. & Epstein, A. Three dimensionality of ‘metallic’ states in conducting polymers: polyaniline. Phys. Rev. Lett. 66, 1745 (1991).

    Article  CAS  Google Scholar 

  82. Yoon, C. O. et al. Hopping transport in doped conducting polymers in the insulating regime near the metal–insulator boundary: polypyrrole, polyaniline and polyalkylthiophenes. Synth. Met. 75, 229–239 (1995).

    Article  CAS  Google Scholar 

  83. Paloheimo, J., Laakso, K., Isotalo, H. & Stubb, H. Conductivity, thermoelectric-power and field-effect mobility in self-assembled films of polyanilines and oligoanilines. Synth. Met. 68, 249–257 (1995).

    Article  CAS  Google Scholar 

  84. van de Ruit, K. et al. Quasi-one dimensional in-plane conductivity in filamentary films of PEDOT:PSS. Adv. Funct. Mater. 23, 5778–5786 (2013).

    Article  CAS  Google Scholar 

  85. Wang, S., Ha, M., Manno, M., Frisbie, C. D. & Leighton, C. Hopping transport and the Hall effect near the insulator–metal transition in electrochemically gated poly(3-hexylthiophene) transistors. Nat. Commun. 3, 1210 (2012).

    Article  Google Scholar 

  86. Epstein, A. et al. Inhomogeneous disorder and the modified Drude metallic state of conducting polymers. Synth. Met. 65, 149–157 (1994).

    Article  CAS  Google Scholar 

  87. Kim, Y. H. et al. Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells. Adv. Funct. Mater. 21, 1076–1081 (2011).

    Article  CAS  Google Scholar 

  88. Luo, J. et al. Enhancement of the thermoelectric properties of PEDOT:PSS thin films by post-treatment. J. Mater. Chem. A 1, 7576–7583 (2013).

    Article  CAS  Google Scholar 

  89. DeLongchamp, D. M. et al. Influence of a water rinse on the structure and properties of poly(3,4-ethylene dioxythiophene): poly(styrene sulfonate) films. Langmuir 21, 11480–11483 (2005).

    Article  CAS  Google Scholar 

  90. Kim, G. H., Shao, L., Zhang, K. & Pipe, K. P. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat. Mater. 12, 719–723 (2013).

    Article  CAS  Google Scholar 

  91. Scholes, D. T. et al. Overcoming film quality issues for conjugated polymers doped with F4TCNQ by solution sequential processing: Hall effect, structural, and optical measurements. J. Phys. Chem. Lett. 6, 4786–4793 (2015).

    Article  CAS  Google Scholar 

  92. Lazzaroni, R., Lögdlund, M., Stafström, S., Salaneck, W. R. & Brédas, J. L. The poly-3-hexylthiophene/NOPF6 system: a photoelectron spectroscopy study of electronic structural changes induced by the charge transfer in the solid state. J. Chem. Phys. 93, 4433–4439 (1990).

    Article  CAS  Google Scholar 

  93. Lögdlund, M., Lazzaroni, R., Stafström, S., Salaneck, W. R. & Brédas, J. L. Direct observation of charge-induced π-electronic structural changes in a conjugated polymer. Phys. Rev. Lett. 63, 1841–1844 (1989).

    Article  Google Scholar 

  94. Yim, K. H. et al. Controlling electrical properties of conjugated polymers via a solution-based p-type doping. Adv. Mater. 20, 3319–3324 (2008).

    Article  CAS  Google Scholar 

  95. Bubnova, O. et al. Semi-metallic polymers. Nat. Mater. 13, 190–194 (2014). The first report of semi-metallic behaviour in an organic semiconductor resulting from the formation of bipolaron bands is presented in this work.

    Article  CAS  Google Scholar 

  96. Aich, R. B., Blouin, N., Bouchard, A. & Leclerc, M. Electrical and thermoelectric properties of poly(2,7-carbazole) derivatives. Chem. Mater. 21, 751–757 (2009).

    Article  CAS  Google Scholar 

  97. Glaudell, A. M., Cochran, J. E., Patel, S. N. & Chabinyc, M. L. Impact of the doping method on conductivity and thermopower in semiconducting polythiophenes. Adv. Energy Mater. 5, 1401072 (2015).

    Article  Google Scholar 

  98. Zhang, F. J. et al. Modulated thermoelectric properties of organic semiconductors using field-effect transistors. Adv. Funct. Mater. 25, 3004–3012 (2015).

    Article  CAS  Google Scholar 

  99. Inabe, T. et al. Electronic structure of alkali metal doped C60 derived from thermoelectric-power measurements. Phys. Rev. Lett. 69, 3797–3799 (1992).

    Article  CAS  Google Scholar 

  100. Wang, Z. H. et al. Electronic transport properties of KxC70 thin-films. Phys. Rev. B 48, 10657–10660 (1993).

    Article  CAS  Google Scholar 

  101. Sumino M. et al. Thermoelectric properties of n-type C60 thin films and their application in organic thermovoltaic devices. Appl. Phys. Lett. 99 093308 (2011).

    Article  Google Scholar 

  102. Sun, Y. M. et al. Organic thermoelectric materials and devices based on p- and n-type poly(metal 1,1,2,2-ethenetetrathiolate)s. Adv. Mater. 24, 932–937 (2012). The organometallic polymers presented in this study showcase organometallics as a promising class of high-performing p-type and n-type thermoelectric materials.

    Article  CAS  Google Scholar 

  103. Kola, S. et al. Pyromellitic diimide–ethynylene-based homopolymer film as an n-channel organic field-effect transistor semiconductor. ACS Macro Lett. 2, 664–669 (2013).

    Article  CAS  Google Scholar 

  104. Fritzsche, H. A general expression for the thermoelectric power. Solid State Commun. 9, 1813–1815 (1971).

    Article  CAS  Google Scholar 

  105. Park, Y. W., Denenstein, A., Chiang, C. K., Heeger, A. J. & Macdiarmid, A. G. Semiconductor–metal transition in doped (CH)x: thermoelectric power. Solid State Commun. 29, 747–751 (1979).

    Article  CAS  Google Scholar 

  106. Zhang, Q., Sun, Y. M., Xu, W. & Zhu, D. B. What to expect from conducting polymers on the playground of thermoelectricity: lessons learned from four high-mobility polymeric semiconductors. Macromolecules 47, 609–615 (2014).

    Article  CAS  Google Scholar 

  107. Reghu, M., Cao, Y., Moses, D. & Heeger, A. J. Counterion-induced processibility of polyaniline: transport at the metal–insulator boundary. Phys. Rev. B 47, 1758–1764 (1993).

    Article  CAS  Google Scholar 

  108. Yoon, C. O., Reghu, M., Moses, D. & Heeger, A. J. Transport near the metal–insulator-transition: polypyrrole doped with PF6 . Phys. Rev. B 49, 10851–10863 (1994).

    Article  CAS  Google Scholar 

  109. Nogami, Y. et al. On the metallic states in highly conducting iodine-doped polyacetylene. Solid State Commun. 76, 583–586 (1990).

    Article  CAS  Google Scholar 

  110. Kaiser, A. B. Electronic transport properties of conducting polymers and carbon nanotubes. Rep. Prog. Phys. 64, 1 (2001).

    Article  CAS  Google Scholar 

  111. Kaiser, A. B. Thermoelectric-power and conductivity of heterogeneous conducting polymers. Phys. Rev. B 40, 2806–2813 (1989). This paper reported an early analysis of how thermopower and electrical conductivity can vary due to percolation in organic materials.

    Article  CAS  Google Scholar 

  112. Massonnet, N. et al. Improvement of the Seebeck coefficient of PEDOT:PSS by chemical reduction combined with a novel method for its transfer using free-standing thin films. J. Mater. Chem. C 2, 1278–1283 (2014).

    Article  CAS  Google Scholar 

  113. See, K. C. et al. Water-processable polymer–nanocrystal hybrids for thermoelectrics. Nano Lett. 10, 4664–4667 (2010). This study demonstrated that synergetic effects can be realized when rationally combining organic with inorganic thermoelectric materials, resulting in performance exceeding that of either of the individual components alone.

    Article  CAS  Google Scholar 

  114. Massonnet, N., Carella, A., de Geyer, A., Faure-Vincent, J. & Simonato, J.-P. Metallic behaviour of acid doped highly conductive polymers. Chem. Sci. 6, 412–417 (2015).

    Article  CAS  Google Scholar 

  115. Pernstich, K. P., Rossner, B. & Batlogg, B. Field-effect-modulated Seebeck coefficient in organic semiconductors. Nat. Mater. 7, 321–325 (2008).

    Article  CAS  Google Scholar 

  116. Sun, J. et al. Simultaneous increase in Seebeck coefficient and conductivity in a doped poly(alkylthiophene) blend with defined density of states. Macromolecules 43, 2897–2903 (2010).

    Article  CAS  Google Scholar 

  117. Urban, J. J. Prospects for thermoelectricity in quantum dot hybrid arrays. Nat. Nanotechnol. 10, 997–1001 (2015).

    Article  CAS  Google Scholar 

  118. He, M. et al. Thermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at the organic–inorganic semiconductor interface. Energy Environ. Sci. 5, 8351–8358 (2012).

    Article  CAS  Google Scholar 

  119. Zhou, C. et al. Nanowires as building blocks to fabricate flexible thermoelectric fabric: the case of copper telluride nanowires. ACS Appl. Mater. Interface 7, 21015–21020 (2015).

    Article  CAS  Google Scholar 

  120. Ju, Y. S., Kurabayashi, K. & Goodson, K. E. Thermal characterization of anisotropic thin dielectric films using harmonic Joule heating. Thin Solid Films 339, 160–164 (1999).

    Article  CAS  Google Scholar 

  121. Duda, J. C., Hopkins, P. E., Shen, Y. & Gupta, M. C. Exceptionally low thermal conductivities of films of the fullerene derivative PCBM. Phys. Rev. Lett. 110, 015902 (2013).

    Article  Google Scholar 

  122. Wang, X., Liman, C. D., Treat, N. D., Chabinyc, M. L. & Cahill, D. G. Ultralow thermal conductivity of fullerene derivatives. Phys. Rev. B 88, 075310 (2013).

    Article  Google Scholar 

  123. Wang, X., Ho, V., Segalman, R. A. & Cahill, D. G. Thermal conductivity of high-modulus polymer fibers. Macromolecules 46, 4937–4943 (2013).

    Article  CAS  Google Scholar 

  124. Liu, J. et al. Thermal conductivity and elastic constants of PEDOT:PSS with high electrical conductivity. Macromolecules 48, 585–591 (2015).

    Article  CAS  Google Scholar 

  125. Weathers, A. et al. Significant electronic thermal transport in the conducting polymer poly(3,4-ethylenedioxythiophene). Adv. Mater. 27, 2101–2106 (2015).

    Article  CAS  Google Scholar 

  126. Wei, Q., Mukaida, M., Kirihara, K. & Ishida, T. Experimental studies on the anisotropic thermoelectric properties of conducting polymer films. ACS Macro Lett. 3, 948–952 (2014).

    Article  CAS  Google Scholar 

  127. Arias, A. C., MacKenzie, J. D., McCulloch, I., Rivnay, J. & Salleo, A. Materials and applications for large area electronics: solution-based approaches. Chem. Rev. 110, 3–24 (2010).

    Article  CAS  Google Scholar 

  128. Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).

    Article  CAS  Google Scholar 

  129. Schwartz, G. et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 4, 1859 (2013).

    Article  Google Scholar 

  130. Leonov, V. in Wearable Monitoring Systems (eds Bonfiglio, A. & De Rossi, D. ) 27–49 (Springer, 2011).

    Book  Google Scholar 

  131. Sun, T., Peavey, J. L., David Shelby, M., Ferguson, S. & O'Connor, B. T. Heat shrink formation of a corrugated thin film thermoelectric generator. Energy Convers. Manage. 103, 674–680 (2015).

    Article  CAS  Google Scholar 

  132. Goldsmid, H. (ed.) Thermoelectric Refrigeration (Springer, 2013).

    Google Scholar 

  133. Goupil, C., Seifert, W., Zabrocki, K., Müller, E. & Snyder, G. J. Thermodynamics of thermoelectric phenomena and applications. Entropy 13, 1481–1517 (2011).

    Article  Google Scholar 

  134. Bahk, J.-H., Fang, H., Yazawa, K. & Shakouri, A. Flexible thermoelectric materials and device optimization for wearable energy harvesting. J. Mater. Chem. C 3, 10362–10374 (2015).

    Article  CAS  Google Scholar 

  135. Owoyele, O., Ferguson, S. & O'Connor, B. T. Performance analysis of a thermoelectric cooler with a corrugated architecture. Appl. Energy 147, 184–191 (2015).

    Article  Google Scholar 

  136. Fujifilm. Sustainability Report 2013, 18–19 (Fujifilm, 2013).

  137. Kim, S. J., We, J. H. & Cho, B. J. A wearable thermoelectric generator fabricated on a glass fabric. Energy Environ. Sci. 7, 1959–1965 (2014).

    Article  CAS  Google Scholar 

  138. Madan, D., Wang, Z., Wright, P. K. & Evans, J. W. Printed flexible thermoelectric generators for use on low levels of waste heat. Appl. Energy 156, 587–592 (2015).

    Article  CAS  Google Scholar 

  139. Du, Y. et al. Thermoelectric fabrics: toward power generating clothing. Sci. Rep. 5, 6411 (2015).

    Article  CAS  Google Scholar 

  140. Nonoguchi, Y. et al. Systematic conversion of single walled carbon nanotubes into n-type thermoelectric materials by molecular dopants. Sci. Rep. 3, 3344 (2013).

    Article  Google Scholar 

  141. Yu, C. H., Murali, A., Choi, K. W. & Ryu, Y. Air-stable fabric thermoelectric modules made of n- and p-type carbon nanotubes. Energy Environ. Sci. 5, 9481–9486 (2012).

    Article  CAS  Google Scholar 

  142. Søndergaard, R. R., Hösel, M., Espinosa, N., Jørgensen, M. & Krebs, F. C. Practical evaluation of organic polymer thermoelectrics by large-area R2R processing on flexible substrates. Energy Sci. Eng. 1, 81–88 (2013).

    Article  Google Scholar 

  143. Tomlinson, E. P., Hay, M. E. & Boudouris, B. W. Radical polymers and their application to organic electronic devices. Macromolecules 47, 6145–6158 (2014).

    Article  CAS  Google Scholar 

  144. Tomlinson, E. P., Willmore, M. J., Zhu, X., Hilsmier, S. W. A. & Boudouris, B. W. Tuning the thermoelectric properties of a conducting polymer through blending with open-shell molecular dopants. ACS Appl. Mater. Interface 7, 18195–18200 (2015).

    Article  CAS  Google Scholar 

  145. Stavrinidou, E. et al. Direct measurement of ion mobility in a conducting polymer. Adv. Mater. 25, 4488–4493 (2013).

    Article  CAS  Google Scholar 

  146. Wang, H., Ail, U., Gabrielsson, R., Berggren, M. & Crispin, X. Ionic Seebeck effect in conducting polymers. Adv. Energy Mater. 5, 1500044 (2015).

    Article  Google Scholar 

  147. Chang, W. B. et al. Harvesting waste heat in unipolar ion conducting polymers. ACS Macro Lett. 5, 94–98 (2016).

    Article  CAS  Google Scholar 

  148. Chang, W. B. et al. Electrochemical effects in thermoelectric polymers. ACS Macro Lett. 5, 455–459 (2016).

    Article  CAS  Google Scholar 

  149. Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008).

    Article  CAS  Google Scholar 

  150. Onda, K., Masuda, T., Nagata, S. & Nozaki, K. Cycle analyses of thermoelectric power generation and heat pumps using the β′′-alumina electrolyte. J. Power Sources 55, 231–236 (1995).

    Article  CAS  Google Scholar 

  151. Bian, Z. & Shakouri, A. Beating the maximum cooling limit with graded thermoelectric materials. Appl. Phys. Lett. 89, 212101 (2006).

    Article  Google Scholar 

  152. Snyder, G. J., Fleurial, J.-P., Caillat, T., Yang, R. & Chen, G. Supercooling of peltier cooler using a current pulse. J. Appl. Phys. 92, 1564–1569 (2002).

    Article  CAS  Google Scholar 

  153. Zhang F. Zang Y. Huang D. Di C.-a. & Zhu D. Flexible and self-powered temperature–pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat. Commun. 6 8356 (2015).

    Article  CAS  Google Scholar 

  154. Yazawa, K. & Shakouri, A. Scalable cost/performance analysis for thermoelectric waste heat recovery systems. J. Electron. Mater. 41, 1845–1850 (2012).

    Article  CAS  Google Scholar 

  155. Yee, S. K., LeBlanc, S., Goodson, K. E. & Dames, C. $ per W metrics for thermoelectric power generation: beyond ZT. Energy Environ. Sci. 6, 2561–2571 (2013). Important conceptual introduction of alternative metrics to ZT that may better capture the merits of using scalable, flexible thermoelectric devices.

    Article  Google Scholar 

  156. Darian-Smith, I. in Comprehensive Physiology (Wiley, 2011).

    Google Scholar 

  157. Cho, C. et al. Completely organic multilayer thin film with thermoelectric power factor rivaling inorganic tellurides. Adv. Mater. 27, 2996–3001 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the AFOSR-MURI on Controlling Thermal and Electrical Transport in Organic and Hybrid Materials, AFOSR MURI FA9550-12-1-0002, as well as the Molecular Foundry, a LBNL user facility supported by the Office of Science, BES, US DOE, under Contract DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeffrey J. Urban, Michael L. Chabinyc or Rachel A. Segalman.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russ, B., Glaudell, A., Urban, J. et al. Organic thermoelectric materials for energy harvesting and temperature control. Nat Rev Mater 1, 16050 (2016). https://doi.org/10.1038/natrevmats.2016.50

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2016.50

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing