Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bound states in the continuum

Abstract

Bound states in the continuum (BICs) are waves that remain localized even though they coexist with a continuous spectrum of radiating waves that can carry energy away. Their very existence defies conventional wisdom. Although BICs were first proposed in quantum mechanics, they are a general wave phenomenon and have since been identified in electromagnetic waves, acoustic waves in air, water waves and elastic waves in solids. These states have been studied in a wide range of material systems, such as piezoelectric materials, dielectric photonic crystals, optical waveguides and fibres, quantum dots, graphene and topological insulators. In this Review, we describe recent developments in this field with an emphasis on the physical mechanisms that lead to BICs across seemingly very different materials and types of waves. We also discuss experimental realizations, existing applications and directions for future work.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Illustration of a BIC.
Figure 2: Symmetry-protected bound states.
Figure 3: Fabry–Pérot BICs.
Figure 4: Single-resonance parametric BICs.
Figure 5: A BIC through inverse construction.
Figure 6: Applications of BICs and quasi-BICs.

References

  1. 1

    Moiseyev, N. Non-Hermitian Quantum Mechanics Ch. 4 (Cambridge Univ. Press, 2011).

    Book  Google Scholar 

  2. 2

    Kukulin, V. I., Krasnopol'sky, V. M. & Horáccˇek, J. Theory of Resonances: Principles and Applications Ch. 2 (Springer, 1989).

    Book  Google Scholar 

  3. 3

    von Neumann, J. & Wigner, E. Über merkwürdige diskrete Eigenwerte. Phys. Z. 30, 465–467 (in German) (1929). This paper proposes the possibility of BICs using an engineered quantum potential as an example.

    Google Scholar 

  4. 4

    Parker, R. Resonance effects in wake shedding from parallel plates: some experimental observations. J. Sound Vib. 4, 62–72 (1966). This paper reports the observation of symmetry-protected BICs in acoustic waveguides.

    Article  Google Scholar 

  5. 5

    Parker, R. Resonance effects in wake shedding from parallel plates: calculation of resonant frequencies. J. Sound Vib. 5, 330–343 (1967).

    Article  Google Scholar 

  6. 6

    Cumpsty, N. A. & Whitehead, D. S. The excitation of acoustic resonances by vortex shedding. J. Sound Vib. 18, 353–369 (1971).

    Article  Google Scholar 

  7. 7

    Koch, W. Resonant acoustic frequencies of flat plate cascades. J. Sound Vib. 88, 233–242 (1983).

    Article  Google Scholar 

  8. 8

    Parker, R. & Stoneman, S. A. T. The excitation and consequences of acoustic resonances in enclosed fluid flow around solid bodies. Proc. Inst. Mech. Eng. C 203, 9–19 (1989).

    Article  Google Scholar 

  9. 9

    Evans, D. V., Levitin, M. & Vassiliev, D. Existence theorems for trapped modes. J. Fluid Mech. 261, 21–31 (1994).

    Article  Google Scholar 

  10. 10

    Evans, D. V., Linton, C. M. & Ursell, F. Trapped mode frequencies embedded in the continuous spectrum. Q. J. Mech. Appl. Math. 46, 253–274 (1993).

    Article  Google Scholar 

  11. 11

    Groves, M. D. Examples of embedded eigenvalues for problems in acoustic waveguides. Math. Meth. Appl. Sci. 21, 479–488 (1998).

    Article  Google Scholar 

  12. 12

    Linton, C. & McIver, M. Trapped modes in cylindrical waveguides. Q. J. Mech. Appl. Math. 51, 389–412 (1998).

    Article  Google Scholar 

  13. 13

    Davies, E. & Parnovski, L. Trapped modes in acoustic waveguides. Q. J. Mech. Appl. Math. 51, 477–492 (1998).

    Article  Google Scholar 

  14. 14

    Ursell, F. Trapping modes in the theory of surface waves. Math. Proc. Cambridge Philos. Soc. 47, 347–358 (1951).

    Article  Google Scholar 

  15. 15

    Jones, D. S. The eigenvalues of 2u + λ u = 0 when the boundary conditions are given on semi-infinite domains. Math. Proc. Cambridge Philos. Soc. 49, 668–684 (1953).

    Article  Google Scholar 

  16. 16

    Callan, M., Linton, C. M. & Evans, D. V. Trapped modes in two-dimensional waveguides. J. Fluid Mech. 229, 51–64 (1991).

    Article  Google Scholar 

  17. 17

    Retzler, C. H. Trapped modes: an experimental investigation. Appl. Ocean Res. 23, 249–250 (2001).

    Article  Google Scholar 

  18. 18

    Cobelli, P. J., Pagneux, V., Maurel, A. & Petitjeans, P. Experimental observation of trapped modes in a water wave channel. Euro. Phys. Lett. 88, 20006 (2009).

    Article  CAS  Google Scholar 

  19. 19

    Cobelli, P. J., Pagneux, V., Maurel, A. & Petitjeans, P. Experimental study on water-wave trapped modes. J. Fluid Mech. 666, 445–476 (2011).

    Article  Google Scholar 

  20. 20

    Pagneux, V. in Dynamic Localization Phenomena in Elasticity, Acoustics and Electromagnetism (eds Craster, R. & Kaplunov, J. ) 181–223 (Springer, 2013).

    Book  Google Scholar 

  21. 21

    Schult, R. L., Ravenhall, D. G. & Wyld, H. W. Quantum bound states in a classically unbound system of crossed wires. Phys. Rev. B 39, 5476–5479 (1989).

    Article  CAS  Google Scholar 

  22. 22

    Exner, P., Šeba, P., Tater, M. & Vaneˇk, D. Bound states and scattering in quantum waveguides coupled laterally through a boundary window. J. Math. Phys. 37, 4867–4887 (1996).

    Article  Google Scholar 

  23. 23

    Moiseyev, N. Suppression of Feshbach resonance widths in two-dimensional waveguides and quantum dots: a lower bound for the number of bound states in the continuum. Phys. Rev. Lett. 102, 167404 (2009).

    Article  CAS  Google Scholar 

  24. 24

    Cederbaum, L. S., Friedman, R. S., Ryaboy, V. M. & Moiseyev, N. Conical intersections and bound molecular states embedded in the continuum. Phys. Rev. Lett. 90, 013001 (2003).

    Article  CAS  Google Scholar 

  25. 25

    Longhi, S. Transfer of light waves in optical waveguides via a continuum. Phys. Rev. A 78, 013815 (2008).

    Article  CAS  Google Scholar 

  26. 26

    Longhi, S. Optical analog of population trapping in the continuum: classical and quantum interference effects. Phys. Rev. A 79, 023811 (2009).

    Article  CAS  Google Scholar 

  27. 27

    Dreisow, F. et al. Adiabatic transfer of light via a continuum in optical waveguides. Opt. Lett. 34, 2405–2407 (2009). This paper realizes light transfer based on symmetry-protected and Fabry–Peérot BICs in a coupled-waveguide array.

    Article  CAS  Google Scholar 

  28. 28

    Plotnik, Y. et al. Experimental observation of optical bound states in the continuum. Phys. Rev. Lett. 107, 183901 (2011). This paper realizes an optical symmetry-protected BIC in a coupled-waveguide array.

    Article  CAS  Google Scholar 

  29. 29

    Shipman, S. P., Ribbeck, J., Smith, K. H. & Weeks, C. A. Discrete model for resonance near embedded bound states. IEEE Photonics J. 2, 911–923 (2010).

    Article  Google Scholar 

  30. 30

    Ptitsyna, N. & Shipman, S. P. A lattice model for resonance in open periodic waveguides. Discrete Contin. Dyn. Syst. S 5, 989–1020 (2012).

    Article  Google Scholar 

  31. 31

    Ladrón de Guevara, M. L., Claro, F. & Orellana, P. A. Ghost Fano resonance in a double quantum dot molecule attached to leads. Phys. Rev. B 67, 195335 (2003).

    Article  CAS  Google Scholar 

  32. 32

    Orellana, P. A., Ladrón de Guevara, M. L. & Claro, F. Controlling Fano and Dicke effects via a magnetic flux in a two-site Anderson model. Phys. Rev. B 70, 233315 (2004).

    Article  CAS  Google Scholar 

  33. 33

    Ladrón de Guevara, M. L. & Orellana, P. A. Electronic transport through a parallel-coupled triple quantum dot molecule: Fano resonances and bound states in the continuum. Phys. Rev. B 73, 205303 (2006).

    Article  CAS  Google Scholar 

  34. 34

    Voo, K.-K. & Chu, C. S. Localized states in continuum in low-dimensional systems. Phys. Rev. B 74, 155306 (2006).

    Article  CAS  Google Scholar 

  35. 35

    Solís, B., Ladrón de Guevara, M. L. & Orellan, P. A. Friedel phase discontinuity and bound states in the continuum in quantum dot systems. Phys. Lett. A 372, 4736–4739 (2008).

    Article  CAS  Google Scholar 

  36. 36

    Gong, W., Han, Y. & Wei, G. Antiresonance and bound states in the continuum in electron transport through parallel-coupled quantum-dot structures. J. Phys. Condens. Matter 21, 175801 (2009).

    Article  CAS  Google Scholar 

  37. 37

    Han, Y., Gong, W. & Wei, G. Bound states in the continuum in electronic transport through parallel-coupled quantum-dot structures. Phys. Status Solidi B 246, 1634–1641 (2009).

    Article  CAS  Google Scholar 

  38. 38

    Vallejo, M. L., Ladrón de Guevara, M. L. & Orellana, P. A. Triple Rashba dots as a spin filter: bound states in the continuum and Fano effect. Phys. Lett. A 374, 4928–4932 (2010).

    Article  CAS  Google Scholar 

  39. 39

    Yan, J.-X. & Fu, H.-H. Bound states in the continuum and Fano antiresonance in electronic transport through a four-quantum-dot system. Phys. B 410, 197–200 (2013).

    Article  CAS  Google Scholar 

  40. 40

    Ramos, J. P. & Orellana, P. A. Bound states in the continuum and spin filter in quantum-dot molecules. Phys. B 455, 66–70 (2014).

    Article  CAS  Google Scholar 

  41. 41

    Álvarez, C., Domínguez-Adame, F., Orellana, P. A. & Díaz, E. Impact of electron–vibron interaction on the bound states in the continuum. Phys. Lett. A 379, 1062–1066 (2015).

    Article  CAS  Google Scholar 

  42. 42

    González, J. W., Pacheco, M., Rosales, L. & Orellana, P. A. Bound states in the continuum in graphene quantum dot structures. Euro. Phys. Lett. 91, 66001 (2010).

    Article  CAS  Google Scholar 

  43. 43

    Cortés, N., Chico, L., Pacheco, M., Rosales, L. & Orellana, P. A. Bound states in the continuum: localization of Dirac-like fermions. Euro. Phys. Lett. 108, 46008 (2014).

    Article  CAS  Google Scholar 

  44. 44

    Bulgakov, E. N., Pichugin, K. N., Sadreev, A. F. & Rotter, I. Bound states in the continuum in open Aharonov–Bohm rings. JETP Lett. 84, 430–435 (2006).

    Article  CAS  Google Scholar 

  45. 45

    Voo, K.-K. Trapped electromagnetic modes in forked transmission lines. Wave Motion 45, 795–803 (2008).

    Article  Google Scholar 

  46. 46

    Guessi, L. H. et al. Catching the bound states in the continuum of a phantom atom in graphene. Phys. Rev. B 92, 045409 (2015).

    Article  CAS  Google Scholar 

  47. 47

    Guessi, L. H. et al. Quantum phase transition triggering magnetic bound states in the continuum in graphene. Phys. Rev. B 92, 245107 (2015).

    Article  CAS  Google Scholar 

  48. 48

    Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of Light Ch. 8,9 (Princeton Univ. Press, 2008).

    Google Scholar 

  49. 49

    Ulrich, R. in Symposium on optical and acoustical micro-electronics (ed. Fox, J. ) 359–376 (New York, 1975). This work observes a symmetry-protected BIC in a periodic metal grid.

    Google Scholar 

  50. 50

    Bonnet-Bendhia, A.-S. & Starling, F. Guided waves by electromagnetic gratings and non-uniqueness examples for the diffraction problem. Math. Meth. Appl. Sci. 17, 305–338 (1994).

    Article  Google Scholar 

  51. 51

    Paddon, P. & Young, J. F. Two-dimensional vector-coupled-mode theory for textured planar waveguides. Phys. Rev. B 61, 2090–2101 (2000).

    Article  CAS  Google Scholar 

  52. 52

    Pacradouni, V. et al. Photonic band structure of dielectric membranes periodically textured in two dimensions. Phys. Rev. B 62, 4204–4207 (2000).

    Article  CAS  Google Scholar 

  53. 53

    Ochiai, T. & Sakoda, K. Dispersion relation and optical transmittance of a hexagonal photonic crystal slab. Phys. Rev. B 63, 125107 (2001).

    Article  CAS  Google Scholar 

  54. 54

    Fan, S. & Joannopoulos, J. D. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65, 235112 (2002).

    Article  CAS  Google Scholar 

  55. 55

    Tikhodeev, S. G., Yablonskii, A. L., Muljarov, E. A., Gippius, N. A. & Ishihara, T. Quasiguided modes and optical properties of photonic crystal slabs. Phys. Rev. B 66, 045102 (2002).

    Article  CAS  Google Scholar 

  56. 56

    Shipman, S. P. & Venakides, S. Resonant transmission near nonrobust periodic slab modes. Phys. Rev. E 71, 026611 (2005).

    Article  CAS  Google Scholar 

  57. 57

    Lee, J. et al. Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs. Phys. Rev. Lett. 109, 067401 (2012).

    Article  CAS  Google Scholar 

  58. 58

    Henry, C. H., Kazarinov, R. F., Logan, R. A. & Yen, R. Observation of destructive interference in the radiation loss of second-order distributed feedback lasers. IEEE J. Quantum Electron. 21, 151–154 (1985). This paper demonstrates lasing through a symmetry-protected BIC in a distributed feedback laser with 1D periodicity.

    Article  Google Scholar 

  59. 59

    Kazarinov, R. F. & Henry, C. H. Second-order distributed feedback lasers with mode selection provided by first-order radiation losses. IEEE J. Quantum Electron. 21, 144–150 (1985).

    Article  Google Scholar 

  60. 60

    Lim, T. C. & Farnell, G. W. Character of pseudo surface waves on anisotropic crystals. J. Acoust. Soc. Am. 45, 845–851 (1969).

    Article  CAS  Google Scholar 

  61. 61

    Farnell, G. W. in Physical Acoustics Vol. 6 (eds Mason, W. P. & Thurston, R. N. ) 109–166 (Academic Press, 1970).

    Google Scholar 

  62. 62

    Alshits, V. I. & Lothe, J. Comments on the relation between surface wave theory and the theory of reflection. Wave Motion 3, 297–310 (1981).

    Article  Google Scholar 

  63. 63

    Chadwick, P. The behaviour of elastic surface waves polarized in a plane of material symmetry I. General analysis. Proc. R. Soc. A 430, 213–240 (1990).

    Article  Google Scholar 

  64. 64

    Alshits, V. I., Darinskii, A. N. & Shuvalov, A. L. Elastic waves in infinite and semi-infinite anisotropic media. Phys. Scr. 1992, 85 (1992).

    Article  Google Scholar 

  65. 65

    Shipman, S. P. & Welters, A. in Proceedings of the 2012 international conference on mathematical methods in electromagnetic theory (MMET) 227–232 (Kharkiv, 2012).

    Book  Google Scholar 

  66. 66

    Robnik, M. A simple separable Hamiltonian having bound states in the continuum. J. Phys. A 19, 3845 (1986). This paper proposes BICs in a quantum well based on separability.

    Article  Google Scholar 

  67. 67

    Nockel, J. U. Resonances in quantum-dot transport. Phys. Rev. B 46, 15348 (1992).

    Article  CAS  Google Scholar 

  68. 68

    Duclos, P., Exner, P. & Meller, B. Open quantum dots: resonances from perturbed symmetry and bound states in strong magnetic fields. Rep. Math. Phys. 47, 253–267 (2001).

    Article  Google Scholar 

  69. 69

    Prodanovic´, N., Milanovic´, V., Ikonic´, Z., Indjin, D. & Harrison, P. Bound states in continuum: quantum dots in a quantum well. Phys. Lett. A 377, 2177–2181 (2013).

    Article  CAS  Google Scholar 

  70. 70

    Čtyroký, J. Photonic bandgap structures in planar waveguides. J. Opt. Soc. Am. A 18, 435–441 (2001).

    Article  Google Scholar 

  71. 71

    Kawakami, S. Analytically solvable model of photonic crystal structures and novel phenomena. J. Lightwave Technol. 20, 1644–1650 (2002).

    Article  Google Scholar 

  72. 72

    Watts, M. R., Johnson, S. G., Haus, H. A. & Joannopoulos, J. D. Electromagnetic cavity with arbitrary Q and small modal volume without a complete photonic bandgap. Opt. Lett. 27, 1785–1787 (2002).

    Article  CAS  Google Scholar 

  73. 73

    Apalkov, V. M. & Raikh, M. E. Strongly localized mode at the intersection of the phase slips in a photonic crystal without band gap. Phys. Rev. Lett. 90, 253901 (2003).

    Article  CAS  Google Scholar 

  74. 74

    Rivera, N. et al. Controlling directionality and dimensionality of radiation by perturbing separable bound states in the continuum. Preprint at http://arxiv.org/abs/1507.00923 (2016).

  75. 75

    Fan, S., Suh, W. & Joannopoulos, J. D. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A 20, 569–572 (2003).

    Article  Google Scholar 

  76. 76

    Haus, H. A. Waves and Fields in Optoelectronics Ch. 7 (Prentice-Hall, 1984).

    Google Scholar 

  77. 77

    Fan, S. et al. Theoretical analysis of channel drop tunneling processes. Phys. Rev. B 59, 15882–15892 (1999).

    Article  CAS  Google Scholar 

  78. 78

    Manolatou, C. et al. Coupling of modes analysis of resonant channel add-drop filters. IEEE J. Quantum Electron. 35, 1322–1331 (1999).

    Article  CAS  Google Scholar 

  79. 79

    Wang, Z. & Fan, S. Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines. Phys. Rev. E 68, 066616 (2003).

    Article  CAS  Google Scholar 

  80. 80

    McIver, M. An example of non-uniqueness in the two-dimensional linear water wave problem. J. Fluid Mech. 315, 257–266 (1996). This paper proposes a Fabry–Pérot BIC for water waves by engineering the shapes of two obstacles.

    Article  Google Scholar 

  81. 81

    Linton, C. M. & Kuznetsov, N. G. Non-uniqueness in two-dimensional water wave problems: numerical evidence and geometrical restrictions. Proc. R. Soc. A 453, 2437–2460 (1997).

    Article  Google Scholar 

  82. 82

    Evans, D. V. & Porter, R. An example of non-uniqueness in the two-dimensional linear water-wave problem involving a submerged body. Proc. R. Soc. A 454, 3145–3165 (1998).

    Article  Google Scholar 

  83. 83

    McIver, M. Trapped modes supported by submerged obstacles. Proc. R. Soc. A 456, 1851–1860 (2000).

    Article  Google Scholar 

  84. 84

    Kuznetsov, N., McIver, P. & Linton, C. M. On uniqueness and trapped modes in the water-wave problem for vertical barriers. Wave Motion 33, 283–307 (2001).

    Article  Google Scholar 

  85. 85

    Porter, R. Trapping of water waves by pairs of submerged cylinders. Proc. R. Soc. A 458, 607–624 (2002).

    Article  Google Scholar 

  86. 86

    Linton, C. M. & McIver, P. Embedded trapped modes in water waves and acoustics. Wave Motion 45, 16–29 (2007). This paper reviews theoretical studies of BICs in acoustic and water waves.

    Article  Google Scholar 

  87. 87

    Shahbazyan, T. V. & Raikh, M. E. Two-channel resonant tunneling. Phys. Rev. B 49, 17123–17129 (1994).

    Article  CAS  Google Scholar 

  88. 88

    Kim, C. S. & Satanin, A. M. Dynamic confinement of electrons in time-dependent quantum structures. Phys. Rev. B 58, 15389–15392 (1998).

    Article  CAS  Google Scholar 

  89. 89

    Rotter, I. & Sadreev, A. F. Zeros in single-channel transmission through double quantum dots. Phys. Rev. E 71, 046204 (2005).

    Article  CAS  Google Scholar 

  90. 90

    Sadreev, A. F., Bulgakov, E. N. & Rotter, I. Trapping of an electron in the transmission through two quantum dots coupled by a wire. JETP Lett. 82, 498–503 (2005).

    Article  CAS  Google Scholar 

  91. 91

    Ordonez, G., Na, K. & Kim, S. Bound states in the continuum in quantum-dot pairs. Phys. Rev. A 73, 022113 (2006).

    Article  CAS  Google Scholar 

  92. 92

    Tanaka, S., Garmon, S., Ordonez, G. & Petrosky, T. Electron trapping in a one-dimensional semiconductor quantum wire with multiple impurities. Phys. Rev. B 76, 153308 (2007).

    Article  CAS  Google Scholar 

  93. 93

    Cattapan, G. & Lotti, P. Bound states in the continuum in two-dimensional serial structures. Eur. Phys. J. B 66, 517–523 (2008).

    Article  CAS  Google Scholar 

  94. 94

    Díaz-Tendero, S., Borisov, A. G. & Gauyacq, J.-P. Extraordinary electron propagation length in a metallic double chain supported on a metal surface. Phys. Rev. Lett. 102, 166807 (2009).

    Article  CAS  Google Scholar 

  95. 95

    Sadreev, A. F., Maksimov, D. N. & Pilipchuk, A. S. Gate controlled resonant widths in double-bend waveguides: bound states in the continuum. J. Phys. Condens. Matter 27, 295303 (2015).

    Article  CAS  Google Scholar 

  96. 96

    Suh, W., Yanik, M. F., Solgaard, O. & Fan, S. Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs. Appl. Phys. Lett. 82, 1999–2001 (2003).

    Article  CAS  Google Scholar 

  97. 97

    Suh, W., Solgaard, O. & Fan, S. Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs. J. Appl. Phys. 98, 033102 (2005).

    Article  CAS  Google Scholar 

  98. 98

    Liu, V., Povinelli, M. & Fan, S. Resonance-enhanced optical forces between coupled photonic crystal slabs. Opt. Express 17, 21897–21909 (2009).

    Article  CAS  Google Scholar 

  99. 99

    Marinica, D. C., Borisov, A. G. & Shabanov, S. V. Bound states in the continuum in photonics. Phys. Rev. Lett. 100, 183902 (2008).

    Article  CAS  Google Scholar 

  100. 100

    Ndangali, R. F. & Shabanov, S. V. Electromagnetic bound states in the radiation continuum for periodic double arrays of subwavelength dielectric cylinders. J. Math. Phys. 51, 102901 (2010).

    Article  Google Scholar 

  101. 101

    Bulgakov, E. N. & Sadreev, A. F. Bound states in the continuum in photonic waveguides inspired by defects. Phys. Rev. B 78, 075105 (2008).

    Article  CAS  Google Scholar 

  102. 102

    Longhi, S. Optical analogue of coherent population trapping via a continuum in optical waveguide arrays. J. Mod. Opt. 56, 729–737 (2009).

    Article  Google Scholar 

  103. 103

    Hein, S., Koch, W. & Nannen, L. Trapped modes and Fano resonances in two-dimensional acoustical duct-cavity systems. J. Fluid Mech. 692, 257–287 (2012).

    Article  Google Scholar 

  104. 104

    Sato, Y. et al. Strong coupling between distant photonic nanocavities and its dynamic control. Nat. Photonics 6, 56–61 (2012).

    Article  CAS  Google Scholar 

  105. 105

    Zheng, H. & Baranger, H. U. Persistent quantum beats and long-distance entanglement from waveguide-mediated interactions. Phys. Rev. Lett. 110, 113601 (2013).

    Article  CAS  Google Scholar 

  106. 106

    van Loo, A. F. et al. Photon-mediated interactions between distant artificial atoms. Science 342, 1494–1496 (2013).

    Article  CAS  Google Scholar 

  107. 107

    Peleg, O., Plotnik, Y., Moiseyev, N., Cohen, O. & Segev, M. Self-trapped leaky waves and their interactions. Phys. Rev. A 80, 041801 (2009).

    Article  CAS  Google Scholar 

  108. 108

    Hsu, C. W. et al. Bloch surface eigenstates within the radiation continuum. Light Sci. Appl. 2, e84 (2013).

    Article  CAS  Google Scholar 

  109. 109

    Longhi, S. Bound states in the continuum in a single-level Fano–Anderson model. Eur. Phys. J. B 57, 45–51 (2007).

    Article  CAS  Google Scholar 

  110. 110

    Weimann, S. et al. Compact surface Fano states embedded in the continuum of waveguide arrays. Phys. Rev. Lett. 111, 240403 (2013). This work realizes a Fabry–Pérot BIC in a coupled-waveguide array.

    Article  CAS  Google Scholar 

  111. 111

    McIver, P. & McIver, M. Trapped modes in an axisymmetric water-wave problem. Q. J. Mech. Appl. Math. 50, 165–178 (1997).

    Article  Google Scholar 

  112. 112

    Kuznetsov, N. & McIver, P. On uniqueness and trapped modes in the water-wave problem for a surface-piercing axisymmetric body. Q. J. Mech. Appl. Math. 50, 565–580 (1997).

    Article  Google Scholar 

  113. 113

    Suh, W., Wang, Z. & Fan, S. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE J. Quantum Electron. 40, 1511–1518 (2004).

    Article  CAS  Google Scholar 

  114. 114

    Devdariani, A. Z., Ostrovskii, V. N. & Sebyakin, Y. N. Crossing of quasistationary levels. Sov. Phys. JETP 44, 477 (1976).

    Google Scholar 

  115. 115

    Friedrich, H. & Wintgen, D. Interfering resonances and bound states in the continuum. Phys. Rev. A 32, 3231–3242 (1985). This paper proposes that a BIC can arise from two interfering resonances.

    Article  CAS  Google Scholar 

  116. 116

    Remacle, F., Munster, M., Pavlov-Verevkin, V. B. & Desouter-Lecomte, M. Trapping in competitive decay of degenerate states. Phys. Lett. A 145, 265–268 (1990).

    Article  Google Scholar 

  117. 117

    Berkovits, R., von Oppen, F. & Kantelhardt, J. W. Discrete charging of a quantum dot strongly coupled to external leads. Euro. Phys. Lett. 68, 699 (2004).

    Article  CAS  Google Scholar 

  118. 118

    Fonda, L. & Newton, R. G. Theory of resonance reactions. Ann. Phys. 10, 490–515 (1960).

    Article  Google Scholar 

  119. 119

    Friedrich, H. & Wintgen, D. Physical realization of bound states in the continuum. Phys. Rev. A 31, 3964–3966 (1985).

    Article  CAS  Google Scholar 

  120. 120

    Neukammer, J. et al. Autoionization inhibited by internal interferences. Phys. Rev. Lett. 55, 1979–1982 (1985).

    Article  CAS  Google Scholar 

  121. 121

    Volya, A. & Zelevinsky, V. Non-Hermitian effective Hamiltonian and continuum shell model. Phys. Rev. C 67, 054322 (2003).

    Article  CAS  Google Scholar 

  122. 122

    Deb, B. & Agarwal, G. S. Creation and manipulation of bound states in the continuum with lasers: applications to cold atoms and molecules. Phys. Rev. A 90, 063417 (2014).

    Article  CAS  Google Scholar 

  123. 123

    Sablikov, V. A. & Sukhanov, A. A. Helical bound states in the continuum of the edge states in two dimensional topological insulators. Phys. Lett. A 379, 1775–1779 (2015).

    Article  CAS  Google Scholar 

  124. 124

    Texier, C. Scattering theory on graphs: II. The Friedel sum rule. J. Phys. A 35, 3389 (2002).

    Article  Google Scholar 

  125. 125

    Sadreev, A. F., Bulgakov, E. N. & Rotter, I. Bound states in the continuum in open quantum billiards with a variable shape. Phys. Rev. B 73, 235342 (2006).

    Article  CAS  Google Scholar 

  126. 126

    Sadreev, A. F. & Babushkina, T. V. Two-electron bound states in a continuum in quantum dots. JETP Lett. 88, 312–317 (2008).

    Article  CAS  Google Scholar 

  127. 127

    Boretz, Y., Ordonez, G., Tanaka, S. & Petrosky, T. Optically tunable bound states in the continuum. Phys. Rev. A 90, 023853 (2014).

    Article  CAS  Google Scholar 

  128. 128

    Lyapina, A. A., Maksimov, D. N., Pilipchuk, A. S. & Sadreev, A. F. Bound states in the continuum in open acoustic resonators. J. Fluid Mech. 780, 370–387 (2015).

    Article  CAS  Google Scholar 

  129. 129

    Lepetit, T., Akmansoy, E., Ganne, J.-P. & Lourtioz, J.-M. Resonance continuum coupling in high-permittivity dielectric metamaterials. Phys. Rev. B 82, 195307 (2010).

    Article  CAS  Google Scholar 

  130. 130

    Lepetit, T. & Kanté, B. Controlling multipolar radiation with symmetries for electromagnetic bound states in the continuum. Phys. Rev. B 90, 241103 (2014).

    Article  CAS  Google Scholar 

  131. 131

    Gentry, C. M. & Popovic´, M. A. Dark state lasers. Opt. Lett. 39, 4136–4139 (2014).

    Article  Google Scholar 

  132. 132

    Hsu, C. W. et al. Observation of trapped light within the radiation continuum. Nature 499, 188–191 (2013). This work realizes a single-resonance parametric BIC in a PhC slab.

    Article  CAS  Google Scholar 

  133. 133

    Gansch, R. et al. Measurement of bound states in the continuum by a detector embedded in a photonic crystal. Light Sci. Appl. http://dx.doi.org/10.1038/lsa.2016.147 (2016).

    Google Scholar 

  134. 134

    Evans, D. V. & Porter, R. On the existence of embedded surface waves along arrays of parallel plates. Q. J. Mech. Appl. Math. 55, 481–494 (2002).

    Article  Google Scholar 

  135. 135

    Porter, R. & Evans, D. V. Embedded Rayleigh–Bloch surface waves along periodic rectangular arrays. Wave Motion 43, 29–50 (2005).

    Article  Google Scholar 

  136. 136

    Bulgakov, E. N. & Sadreev, A. F. Bloch bound states in the radiation continuum in a periodic array of dielectric rods. Phys. Rev. A 90, 053801 (2014).

    Article  CAS  Google Scholar 

  137. 137

    Bulgakov, E. N. & Sadreev, A. F. Light trapping above the light cone in a one-dimensional array of dielectric spheres. Phys. Rev. A 92, 023816 (2015).

    Article  CAS  Google Scholar 

  138. 138

    Longhi, S. & Della Valle, G. Floquet bound states in the continuum. Sci. Rep. 3, 2219 (2013).

    Article  Google Scholar 

  139. 139

    Yang, Y., Peng, C., Liang, Y., Li, Z. & Noda, S. Analytical perspective for bound states in the continuum in photonic crystal slabs. Phys. Rev. Lett. 113, 037401 (2014).

    Article  CAS  Google Scholar 

  140. 140

    Gao, X. et al. Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs. Preprint at http://arxiv.org/abs/1603.02815 (2016).

  141. 141

    Zhen, B., Hsu, C. W., Lu, L., Stone, A. D. & Soljacˇic´, M. Topological nature of optical bound states in the continuum. Phys. Rev. Lett. 113, 257401 (2014). This paper explains the topological nature of BICs in PhC slabs.

    Article  CAS  Google Scholar 

  142. 142

    Yang, B.-J., Bahramy, M. S. & Nagaosa, N. Topological protection of bound states against the hybridization. Nat. Commun. 4, 1524 (2013).

    Article  CAS  Google Scholar 

  143. 143

    Linton, C. M., McIver, M., McIver, P., Ratcliffe, K. & Zhang, J. Trapped modes for off-centre structures in guides. Wave Motion 36, 67–85 (2002).

    Article  Google Scholar 

  144. 144

    Evans, D. & Porter, R. Trapped modes embedded in the continuous spectrum. Q. J. Mech. Appl. Math. 51, 263–274 (1998).

    Article  Google Scholar 

  145. 145

    McIver, M., Linton, C. M., McIver, P., Zhang, J. & Porter, R. Embedded trapped modes for obstacles in two-dimensional waveguides. Q. J. Mech. Appl. Math. 54, 273–293 (2001).

    Article  Google Scholar 

  146. 146

    McIver, M., Linton, C. M. & Zhang, J. The branch structure of embedded trapped modes in two-dimensional waveguides. Q. J. Mech. Appl. Math. 55, 313–326 (2002).

    Article  Google Scholar 

  147. 147

    Koch, W. Acoustic resonances in rectangular open cavities. AIAA J. 43, 2342–2349 (2005).

    Article  Google Scholar 

  148. 148

    Duan, Y., Koch, W., Linton, C. M. & McIver, M. Complex resonances and trapped modes in ducted domains. J. Fluid Mech. 571, 119–147 (2007).

    Article  Google Scholar 

  149. 149

    Kim, C. S., Satanin, A. M., Joe, Y. S. & Cosby, R. M. Resonant tunneling in a quantum waveguide: effect of a finite-size attractive impurity. Phys. Rev. B 60, 10962–10970 (1999).

    Article  CAS  Google Scholar 

  150. 150

    Linton, C. M. & Ratcliffe, K. Bound states in coupled guides. I. Two dimensions. J. Math. Phys. 45, 1359–1379 (2004).

    Article  Google Scholar 

  151. 151

    Cattapan, G. & Lotti, P. Fano resonances in stubbed quantum waveguides with impurities. Eur. Phys. J. B 60, 51–60 (2007).

    Article  CAS  Google Scholar 

  152. 152

    Olendski, O. & Mikhailovska, L. Bound-state evolution in curved waveguides and quantum wires. Phys. Rev. B 66, 035331 (2002).

    Article  CAS  Google Scholar 

  153. 153

    Olendski, O. & Mikhailovska, L. Fano resonances of a curved waveguide with an embedded quantum dot. Phys. Rev. B 67, 035310 (2003).

    Article  CAS  Google Scholar 

  154. 154

    Chen, Y. et al. Mechanical bound state in the continuum for optomechanical microresonators. New J. Phys. 18, 063031 (2016).

    Article  Google Scholar 

  155. 155

    Zou, C.-L. et al. Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators. Laser Photon. Rev. 9, 114–119 (2015).

    Article  CAS  Google Scholar 

  156. 156

    Penunuri, D. & Lakin, K. M. in 1975 IEEE Ultrason. Symp. 478–483 (IEEE, Los Angeles, 1975).

    Book  Google Scholar 

  157. 157

    Stegeman, G. I. Normal-mode surface waves in the pseudobranch on the (001) plane of gallium arsenide. J. Appl. Phys. 47, 1712–1713 (1976).

    Article  CAS  Google Scholar 

  158. 158

    Aleksandrov, V. V. et al. New data concerning surface Mandelstamm–Brillouin light scattering from the basal plane of germanium crystal. Phys. Lett. A 162, 418–422 (1992).

    Article  CAS  Google Scholar 

  159. 159

    Aleksandrov, V. V., Velichkina, T. S., Potapova, J. B. & Yakovlev, I. A. Mandelstamm–Brillouin studies of peculiarities of the phonon frequency distribution at cubic crystal (001) surfaces. Phys. Lett. A 171, 103–106 (1992).

    Article  CAS  Google Scholar 

  160. 160

    Taylor, D. B. Surface waves in anisotropic media: the secular equation and its numerical solution. Proc. R. Soc. A 376, 265–300 (1981).

    Article  CAS  Google Scholar 

  161. 161

    Gundersen, S. A., Wang, L. & Lothe, J. Secluded supersonic elastic surface waves. Wave Motion 14, 129–143 (1991).

    Article  Google Scholar 

  162. 162

    Barnett, D. M., Chadwick, P. & Lothe, J. The behaviour of elastic surface waves polarized in a plane of material symmetry. I. Addendum. Proc. R. Soc. A 433, 699–710 (1991).

    Article  Google Scholar 

  163. 163

    Maznev, A. A. & Every, A. G. Secluded supersonic surface waves in germanium. Phys. Lett. A 197, 423–427 (1995).

    Article  CAS  Google Scholar 

  164. 164

    Darinskii, A. N., Alshits, V. I., Lothe, J., Lyubimov, V. N. & Shuvalov, A. L. An existence criterion for the branch of two-component surface waves in anisotropic elastic media. Wave Motion 28, 241–257 (1998).

    Article  Google Scholar 

  165. 165

    Xu, Y. & Aizawa, T. Pseudo surface wave on the (1012) plane of sapphire. J. Appl. Phys. 86, 6507–6511 (1999).

    Article  CAS  Google Scholar 

  166. 166

    Maznev, A. A., Lomonosov, A. M., Hess, P. & Kolomenskii, A. Anisotropic effects in surface acoustic wave propagation from a point source in a crystal. Eur. Phys. J. B 35, 429–439 (2003).

    Article  CAS  Google Scholar 

  167. 167

    Trzupek, D. & Zielin´ski, P. Isolated true surface wave in a radiative band on a surface of a stressed auxetic. Phys. Rev. Lett. 103, 075504 (2009).

    Article  CAS  Google Scholar 

  168. 168

    Every, A. G. Supersonic surface acoustic waves on the 001 and 110 surfaces of cubic crystals. J. Acoust. Soc. Am. 138, 2937–2944 (2015).

    Article  CAS  Google Scholar 

  169. 169

    Every, A. G. Guided elastic waves at a periodic array of thin coplanar cavities in a solid. Phys. Rev. B 78, 174104 (2008).

    Article  CAS  Google Scholar 

  170. 170

    Maznev, A. A. & Every, A. G. Surface acoustic waves in a periodically patterned layered structure. J. Appl. Phys. 106, 113531 (2009).

    Article  CAS  Google Scholar 

  171. 171

    Every, A. G. & Maznev, A. A. Elastic waves at periodically-structured surfaces and interfaces of solids. AIP Adv. 4, 124401 (2014).

    Article  Google Scholar 

  172. 172

    Yamanouchi, K. & Shibayama, K. Propagation and amplification of rayleigh waves and piezoelectric leaky surface waves in LiNbO3 . J. Appl. Phys. 43, 856–862 (1972). This work predicts and measures an acoustic single-resonance parametric BIC on the surface of a piezoelectric solid.

    Article  CAS  Google Scholar 

  173. 173

    Lewis, M. F. Acoustic wave devices employing surface skimming bulk waves. US Patent 4159435 (1979).

  174. 174

    Ueda, M. et al. Surface acoustic wave device using a leaky surface acoustic wave with an optimized cut angle of a piezoelectric substrate. US Patent 6037847 (2000).

  175. 175

    Kawachi, O. et al. Optimal cut for leaky SAW on LiTaO3 for high performance resonators and filters. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1442–1448 (2001).

    Article  CAS  Google Scholar 

  176. 176

    Naumenko, N. & Abbot, B. in Proc. 2002 IEEE Ultrason. Symp. 1, 385–390 (IEEE, 2002).

    Article  Google Scholar 

  177. 177

    Simon, B. On positive eigenvalues of one-body Schrödinger operators. Commun. Pure Appl. Math. 22, 531–538 (1969).

    Article  Google Scholar 

  178. 178

    Stillinger, F. H. & Herrick, D. R. Bound states in the continuum. Phys. Rev. A 11, 446–454 (1975).

    Article  CAS  Google Scholar 

  179. 179

    Jain, A. & Shastry, C. Bound states in the continuum for separable nonlocal potentials. Phys. Rev. A 12, 2237 (1975).

    Article  Google Scholar 

  180. 180

    Molina, M. I., Miroshnichenko, A. E. & Kivshar, Y. S. Surface bound states in the continuum. Phys. Rev. Lett. 108, 070401 (2012).

    Article  CAS  Google Scholar 

  181. 181

    Gallo, N. & Molina, M. Bulk and surface bound states in the continuum. J. Phys. A: Math. Theor. 48, 045302 (2015).

    Article  Google Scholar 

  182. 182

    Simon, B. Some Schrödinger operators with dense point spectrum. Proc. Amer. Math. Soc. 125, 203–208 (1997).

    Article  Google Scholar 

  183. 183

    Moses, H. E. & Tuan, S. Potentials with zero scattering phase. Il Nuovo Cimento 13, 197–206 (1959).

    Article  Google Scholar 

  184. 184

    Gazdy, B. On the bound states in the continuum. Phys. Lett. A 61, 89–90 (1977).

    Article  Google Scholar 

  185. 185

    Meyer-Vernet, N. Strange bound states in the Schrödinger wave equation: when usual tunneling does not occur. Am. J. Phys. 50, 354–356 (1982).

    Article  Google Scholar 

  186. 186

    Pivovarchik, V. N., Suzko, A. A. & Zakhariev, B. N. New exactly solved models with bound states above the scattering threshold. Phys. Scr. 34, 101 (1986).

    Article  Google Scholar 

  187. 187

    Naboko, S. N. Dense point spectra of Schrödinger and Dirac operators. Theor. Math. Phys. 68, 646–653 (1986).

    Article  Google Scholar 

  188. 188

    Darboux, M. G. Sur une proposition relative aux équations liéaires. C. R. Acad. Sci. 94, 1456–1459 (in French) (1882).

    Google Scholar 

  189. 189

    Svirsky, R. An application of double commutation to the addition of bound states to the spectrum of a Schrodinger operator. Inverse Probl. 8, 483 (1992).

    Article  Google Scholar 

  190. 190

    Pappademos, J., Sukhatme, U. & Pagnamenta, A. Bound states in the continuum from supersymmetric quantum mechanics. Phys. Rev. A 48, 3525 (1993).

    Article  CAS  Google Scholar 

  191. 191

    Stahlhofen, A. A. Completely transparent potentials for the Schrödinger equation. Phys. Rev. A 51, 934–943 (1995).

    Article  CAS  Google Scholar 

  192. 192

    Weber, T. A. & Pursey, D. L. Continuum bound states. Phys. Rev. A 50, 4478–4487 (1994).

    Article  CAS  Google Scholar 

  193. 193

    Kocˇinac, S. L. S. & Milanovic´, V. Bound states in continuum generated by point interaction and supersymmetric quantum mechanics. Modern Phys. Lett. B 26, 1250177 (2012).

    Article  CAS  Google Scholar 

  194. 194

    Ranjani, S. S., Kapoor, A. & Panigrahi, P. Normalizable states through deformation of Lamé and the associated Lamé potentials. J. Phys. A Math. Theor. 41, 285302 (2008).

    Article  Google Scholar 

  195. 195

    Prodanovic´, N., Milanovic´, V. & Radovanovic´, J. Photonic crystals with bound states in continuum and their realization by an advanced digital grading method. J. Phys. A 42, 415304 (2009).

    Article  Google Scholar 

  196. 196

    Petrovic´, J. S., Milanovic´, V. & Ikonic´, Z. Bound states in continuum of complex potentials generated by supersymmetric quantum mechanics. Phys. Lett. A 300, 595–602 (2002).

    Article  Google Scholar 

  197. 197

    Andrianov, A. A. & Sokolov, A. V. Resolutions of identity for some non-Hermitian Hamiltonians. I. Exceptional point in continuous spectrum. SIGMAhttp://dx.doi.org/10.3842/SIGMA.2011.111 (2011).

  198. 198

    Sokolov, A. V. Resolutions of identity for some non-Hermitian Hamiltonians. II. Proofs. SIGMAhttp://dx.doi.org/10.3842/SIGMA.2011.112 (2011).

  199. 199

    Longhi, S. & Della Valle, G. Optical lattices with exceptional points in the continuum. Phys. Rev. A 89, 052132 (2014).

    Article  CAS  Google Scholar 

  200. 200

    Longhi, S. Bound states in the continuum in PT-symmetric optical lattices. Opt. Lett. 39, 1697–1700 (2014). This paper classifies and compares two types of BICs in parity-time symmetric systems.

    Article  Google Scholar 

  201. 201

    Fernández-García, N., Hernández, E., Jáuregui, A. & Mondragón, A. Bound states at exceptional points in the continuum. J. Phys. Conf. Ser. 512, 012023 (2014).

    Article  Google Scholar 

  202. 202

    Garmon, S., Gianfreda, M. & Hatano, N. Bound states, scattering states, and resonant states in PT-symmetric open quantum systems. Phys. Rev. A 92, 022125 (2015).

    Article  CAS  Google Scholar 

  203. 203

    Demic´, A., Milanovic´, V. & Radovanovic´, J. Bound states in the continuum generated by supersymmetric quantum mechanics and phase rigidity of the corresponding wavefunctions. Phys. Lett. A 379, 2707–2714 (2015).

    Article  CAS  Google Scholar 

  204. 204

    Correa, F., Jakubský, V. & Plyushchay, M. S. PT-symmetric invisible defects and confluent Darboux–Crum transformations. Phys. Rev. A 92, 023839 (2015).

    Article  CAS  Google Scholar 

  205. 205

    Pursey, D. & Weber, T. Scattering from a shifted von Neumann–Wigner potential. Phys. Rev. A 52, 3932 (1995).

    Article  CAS  Google Scholar 

  206. 206

    Weber, T. A. & Pursey, D. L. Scattering from a truncated von Neumann–Wigner potential. Phys. Rev. A 57, 3534–3545 (1998).

    Article  CAS  Google Scholar 

  207. 207

    Longhi, S. Non-Hermitian tight-binding network engineering. Phys. Rev. A 93, 022102 (2016).

    Article  CAS  Google Scholar 

  208. 208

    Corrielli, G., Della Valle, G., Crespi, A., Osellame, R. & Longhi, S. Observation of surface states with algebraic localization. Phys. Rev. Lett. 111, 220403 (2013). This work demonstrates a BIC in a tight-binding lattice with engineered hopping rates.

    Article  CAS  Google Scholar 

  209. 209

    McIver, M. & Porter, R. Trapping of waves by a submerged elliptical torus. J. Fluid Mech. 456, 277–293 (2002).

    Article  Google Scholar 

  210. 210

    McIver, P. & Newman, J. N. Trapping structures in the three-dimensional water-wave problem. J. Fluid Mech. 484, 283–301 (2003).

    Article  Google Scholar 

  211. 211

    McIver, P. & McIver, M. Trapped modes in the water-wave problem for a freely floating structure. J. Fluid Mech. 558, 53–67 (2006).

    Article  Google Scholar 

  212. 212

    McIver, P. & McIver, M. Motion trapping structures in the three-dimensional water-wave problem. J. Eng. Math. 58, 67–75 (2007).

    Article  Google Scholar 

  213. 213

    Porter, R. & Evans, D. V. Water-wave trapping by floating circular cylinders. J. Fluid Mech. 633, 311–325 (2009).

    Article  Google Scholar 

  214. 214

    Meier, M. et al. Laser action from two-dimensional distributed feedback in photonic crystals. Appl. Phys. Lett. 74, 7–9 (1999).

    Article  CAS  Google Scholar 

  215. 215

    Imada, M. et al. Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure. Appl. Phys. Lett. 75, 316–318 (1999).

    Article  CAS  Google Scholar 

  216. 216

    Noda, S., Yokoyama, M., Imada, M., Chutinan, A. & Mochizuki, M. Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design. Science 293, 1123–1125 (2001).

    Article  CAS  Google Scholar 

  217. 217

    Miyai, E. et al. Photonics: lasers producing tailored beams. Nature 441, 946–946 (2006).

    Article  CAS  Google Scholar 

  218. 218

    Matsubara, H. et al. GaN photonic-crystal surface-emitting laser at blue-violet wavelengths. Science 319, 445–447 (2008).

    Article  CAS  Google Scholar 

  219. 219

    Hirose, K. et al. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat. Photonics 8, 406–411 (2014). This paper shows continuous-wave lasing through a quasi-BIC with a high output-power and a low threshold at room temperature.

    Article  CAS  Google Scholar 

  220. 220

    Yanik, A. A. et al. Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proc. Natl Acad. Sci. USA 108, 11784–11789 (2011).

    Article  Google Scholar 

  221. 221

    Zhen, B. et al. Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals. Proc. Natl Acad. Sci. USA 110, 13711–13716 (2013).

    Article  Google Scholar 

  222. 222

    Foley, J. M., Young, S. M. & Phillips, J. D. Symmetry-protected mode coupling near normal incidence for narrow-band transmission filtering in a dielectric grating. Phys. Rev. B 89, 165111 (2014).

    Article  CAS  Google Scholar 

  223. 223

    Iwahashi, S. et al. Higher-order vector beams produced by photonic-crystal lasers. Opt. Express 19, 11963–11968 (2011).

    Article  Google Scholar 

  224. 224

    Kitamura, K., Sakai, K., Takayama, N., Nishimoto, M. & Noda, S. Focusing properties of vector vortex beams emitted by photonic-crystal lasers. Opt. Lett. 37, 2421–2423 (2012).

    Article  Google Scholar 

  225. 225

    Zhan, Q. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photonics 1, 1–57 (2009).

    Article  CAS  Google Scholar 

  226. 226

    Fan, X. & White, I. M. Optofluidic microsystems for chemical and biological analysis. Nat. Photonics 5, 591–597 (2011).

    Article  CAS  Google Scholar 

  227. 227

    Morgan, D. Surface Acoustic Wave Filters: With Applications to Electronic Communications and Signal Processing Ch. 11 (Academic Press, 2007).

    Google Scholar 

  228. 228

    Benabid, F., Knight, J. C., Antonopoulos, G. & Russell, P. S. J. Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science 298, 399–402 (2002).

    Article  CAS  Google Scholar 

  229. 229

    Couny, F., Benabid, F., Roberts, P. J., Light, P. S. & Raymer, M. G. Generation and photonic guidance of multi-octave optical-frequency combs. Science 318, 1118–1121 (2007).

    Article  CAS  Google Scholar 

  230. 230

    Benabid, F., Couny, F., Knight, J., Birks, T. & Russell, P. S. J. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres. Nature 434, 488–491 (2005).

    Article  CAS  Google Scholar 

  231. 231

    Dudley, J. M. & Taylor, J. R. Ten years of nonlinear optics in photonic crystal fibre. Nat. Photonics 3, 85–90 (2009).

    Article  CAS  Google Scholar 

  232. 232

    Benoît, A. et al. Over-five octaves wide Raman combs in high-power picosecond-laser pumped H2-filled inhibited coupling Kagome fiber. Opt. Express 23, 14002–14009 (2015).

    Article  CAS  Google Scholar 

  233. 233

    Debord, B. et al. Hypocycloid-shaped hollow-core photonic crystal fiber part I: arc curvature effect on confinement loss. Opt. Express 21, 28597–28608 (2013).

    Article  CAS  Google Scholar 

  234. 234

    Mur-Petit, J. & Molina, R. A. Chiral bound states in the continuum. Phys. Rev. B 90, 035434 (2014).

    Article  CAS  Google Scholar 

  235. 235

    Zhang, J. M., Braak, D. & Kollar, M. Bound states in the continuum realized in the one-dimensional two-particle Hubbard model with an impurity. Phys. Rev. Lett. 109, 116405 (2012).

    Article  CAS  Google Scholar 

  236. 236

    Zhang, J. M., Braak, D. & Kollar, M. Bound states in the one-dimensional two-particle Hubbard model with an impurity. Phys. Rev. A 87, 023613 (2013).

    Article  CAS  Google Scholar 

  237. 237

    Longhi, S. & Della Valle, G. Tamm–Hubbard surface states in the continuum. J. Phys. Condens. Matter 25, 235601 (2013).

    Article  CAS  Google Scholar 

  238. 238

    Della Valle, G. & Longhi, S. Floquet–Hubbard bound states in the continuum. Phys. Rev. B 89, 115118 (2014).

    Article  CAS  Google Scholar 

  239. 239

    Vicencio, R. A. et al. Observation of localized states in Lieb photonic lattices. Phys. Rev. Lett. 114, 245503 (2015).

    Article  CAS  Google Scholar 

  240. 240

    Mukherjee, S. et al. Observation of a localized flat-band state in a photonic Lieb lattice. Phys. Rev. Lett. 114, 245504 (2015).

    Article  CAS  Google Scholar 

  241. 241

    Koirala, M. et al. Critical states embedded in the continuum. New J. Phys. 17, 013003 (2015).

    Article  Google Scholar 

  242. 242

    Joglekar, Y. N., Scott, D. D. & Saxena, A. PT-symmetry breaking with divergent potentials: lattice and continuum cases. Phys. Rev. A 90, 032108 (2014).

    Article  CAS  Google Scholar 

  243. 243

    Molina, M. I. & Kivshar, Y. S. Embedded states in the continuum for PT-symmetric systems. Studies Appl. Math. 133, 337–350 (2014).

    Article  Google Scholar 

  244. 244

    Longhi, S. Invisible surface defects in a tight-binding lattice. Eur. Phys. J. B 87, 189 (2014).

    Article  CAS  Google Scholar 

  245. 245

    Regensburger, A. et al. Observation of defect states in PT-Symmetric optical lattices. Phys. Rev. Lett. 110, 223902 (2013). This paper demonstrates a BIC in a pair of parity-time symmetric coupled fibre loops.

    Article  CAS  Google Scholar 

  246. 246

    Capasso, F. et al. Observation of an electronic bound state above a potential well. Nature 358, 565–567 (1992).

    Article  CAS  Google Scholar 

  247. 247

    Albo, A., Fekete, D. & Bahir, G. Electronic bound states in the continuum above (Ga, In)(As, N)/(Al, Ga)As quantum wells. Phys. Rev. B 85, 115307 (2012).

    Article  CAS  Google Scholar 

  248. 248

    Bulgakov, E. N. & Sadreev, A. F. Robust bound state in the continuum in a nonlinear microcavity embedded in a photonic crystal waveguide. Opt. Lett. 39, 5212–5215 (2014).

    Article  CAS  Google Scholar 

  249. 249

    Bulgakov, E., Pichugin, K. & Sadreev, A. Channel dropping via bound states in the continuum in a system of two nonlinear cavities between two linear waveguides. J. Phys. Condens. Matter 25, 395304 (2013).

    Article  CAS  Google Scholar 

  250. 250

    Bulgakov, E. N., Pichugin, K. N. & Sadreev, A. F. All-optical light storage in bound states in the continuum and release by demand. Opt. Express 23, 22520–22531 (2015).

    Article  CAS  Google Scholar 

  251. 251

    Lannebere, S. & Silveirinha, M. G. Optical meta-atom for localization of light with quantized energy. Nat. Commun. 6, 8766 (2015).

    Article  CAS  Google Scholar 

  252. 252

    Pichugin, K. N. & Sadreev, A. F. Frequency comb generation by symmetry-protected bound state in the continuum. J. Opt. Soc. Am. B 32, 1630–1636 (2015).

    Article  CAS  Google Scholar 

  253. 253

    Crespi, A. et al. Particle statistics affects quantum decay and Fano interference. Phys. Rev. Lett. 114, 090201 (2015).

    Article  CAS  Google Scholar 

  254. 254

    Silveirinha, M. G. Trapping light in open plasmonic nanostructures. Phys. Rev. A 89, 023813 (2014). This paper proposes 3D confinement of light using an ε = 0 material and provides a non-existence theorem when ε ≠ 0 (see Box 1).

  255. 255

    Monticone, F. & Alù, A. Embedded photonic eigenvalues in 3D nanostructures. Phys. Rev. Lett. 112, 213903 (2014).

    Article  CAS  Google Scholar 

  256. 256

    Hrebikova, I., Jelinek, L. & Silveirinha, M. G. Embedded energy state in an open semiconductor heterostructure. Phys. Rev. B 92, 155303 (2015).

    Article  CAS  Google Scholar 

  257. 257

    Mermin, N. D. The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591 (1979).

    Article  CAS  Google Scholar 

  258. 258

    Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Maznev, N. Rivera, F. Wang, H. Zhou, M. Segev, N. Moiseyev, S. Longhi, P. McIver, M. McIver, F. Benabid, and S. G. Johnson for discussions. This work was partially supported by the National Science Foundation through grant no. DMR-1307632 and by the Army Research Office through the Institute for Soldier Nanotechnologies under contract no. W911NF-13-D-0001. B.Z., J.D.J. and M.S. were partially supported by S3TEC (analysis and reading of the manuscript), an Energy Frontier Research Center funded by the US Department of Energy under grant no. DE-SC0001299. B.Z. was partially supported by the United States–Israel Binational Science Foundation (BSF) under award no. 2013508.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Chia Wei Hsu or Bo Zhen.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hsu, C., Zhen, B., Stone, A. et al. Bound states in the continuum. Nat Rev Mater 1, 16048 (2016). https://doi.org/10.1038/natrevmats.2016.48

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing