Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Van der Waals heterostructures and devices

Abstract

Two-dimensional layered materials (2DLMs) have been a central focus of materials research since the discovery of graphene just over a decade ago. Each layer in 2DLMs consists of a covalently bonded, dangling-bond-free lattice and is weakly bound to neighbouring layers by van der Waals interactions. This makes it feasible to isolate, mix and match highly disparate atomic layers to create a wide range of van der Waals heterostructures (vdWHs) without the constraints of lattice matching and processing compatibility. Exploiting the novel properties in these vdWHs with diverse layering of metals, semiconductors or insulators, new designs of electronic devices emerge, including tunnelling transistors, barristors and flexible electronics, as well as optoelectronic devices, including photodetectors, photovoltaics and light-emitting devices with unprecedented characteristics or unique functionalities. We review the recent progress and challenges, and offer our perspective on the exploration of 2DLM-based vdWHs for future application in electronics and optoelectronics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Two-dimensional layered materials and van der Waals heterostructures.
Figure 2: Assembly and characterization of 2D−2D vdWHs.
Figure 3: Interlayer coupling in transition metal dichalchogenide vdWHs.
Figure 4: Planar 2D transistor based on van der Waals vertical contacts.
Figure 5: Graphene-based van der Waals vertical transistors.
Figure 6: Non-graphene-based van der Waals diodes and transistors.
Figure 7: Van der Waals heterostructure optoelectronics.

References

  1. 1

    Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192–200 (2012).

    Article  CAS  Google Scholar 

  2. 2

    Schwierz, F. Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010).

    Article  CAS  Google Scholar 

  3. 3

    Weiss, N. O. et al. Graphene: an emerging electronic material. Adv. Mater. 24, 5782–5825 (2012).

    Article  CAS  Google Scholar 

  4. 4

    Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    CAS  Article  Google Scholar 

  5. 5

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013). A comprehensive review of stacking 2DLMs into diverse vdWHs.

    Article  CAS  Google Scholar 

  6. 6

    Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).

    Article  Google Scholar 

  7. 7

    Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2013).

    Article  CAS  Google Scholar 

  8. 8

    Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J. & Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8, 1102–1120 (2014).

    Article  CAS  Google Scholar 

  9. 9

    Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 9, 9451–9469 (2015).

    Article  CAS  Google Scholar 

  10. 10

    Liu, Y. et al. Plasmon resonance enhanced multicolour photodetection by graphene. Nat. Commun. 2, 579 (2011).

    Article  CAS  Google Scholar 

  11. 11

    Konstantatos, G. et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363–368 (2012).

    Article  CAS  Google Scholar 

  12. 12

    Liao, L. et al. High-k oxide nanoribbons as gate dielectrics for high mobility top-gated graphene transistors. Proc. Natl Acad. Sci. USA 107, 6711–6715 (2010). This study represents one the first reports of van der Waals integration of 2DLM (graphene) with other diverse nanostructures, which can minimize the damage to 2DLM atomic lattices and retain their intrinsic electronic properties.

    Article  Google Scholar 

  13. 13

    Liao, L. et al. High-speed graphene transistors with a self-aligned nanowire gate. Nature 467, 305–308 (2010).

    Article  CAS  Google Scholar 

  14. 14

    Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010). This study represents one of the earliest report of van der Waals integration of two different 2DLMs to create 2DLM vdWHs.

    Article  CAS  Google Scholar 

  15. 15

    Britnell, L. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 12, 1707–1710 (2012).

    Article  CAS  Google Scholar 

  16. 16

    Withers, F. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015).

    Article  CAS  Google Scholar 

  17. 17

    Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  18. 18

    Lee, C. et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    Article  CAS  Google Scholar 

  19. 19

    Neto, A. C. et al. The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009).

    Article  CAS  Google Scholar 

  20. 20

    Novoselov, K. S. et al. Unconventional quantum Hall effect and Berry's phase of 2π in bilayer graphene. Nat. Phys. 2, 177–180 (2006).

    Article  CAS  Google Scholar 

  21. 21

    Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature. 459, 820–823 (2009).

    Article  CAS  Google Scholar 

  22. 22

    Luican, A. et al. Single layer behavior and its breakdown in twisted graphene layers. Phys. Rev. Lett. 106, 126802 (2011).

    Article  CAS  Google Scholar 

  23. 23

    Mayorov, A. S. et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11, 2396–2399 (2011).

    Article  CAS  Google Scholar 

  24. 24

    Meric, I. et al. in 2011 IEEE International Electron Devices Meeting 2.1.1–2.1.4 (Washington, 2011).

    Google Scholar 

  25. 25

    Ci, L. et al. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9, 430–43 5 (2010).

    Article  CAS  Google Scholar 

  26. 26

    Duan, X., Wang, C., Pan, A., Yu, R. & Duan, X. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chem. Soc. Rev. 44, 8859–8876 (2015).

    Article  CAS  Google Scholar 

  27. 27

    Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010). This represents one of the earliest studies reporting the indirect-to-direct band transition in MoS2, which ignited the intense interest in TMD materials.

    Article  CAS  Google Scholar 

  28. 28

    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    Article  CAS  Google Scholar 

  29. 29

    Reale, F. Sharda, K. & Mattevi, C. et al. From bulk crystals to atomically thin layers of group VI transition metal dichalcogenides vapour phase synthesis. Appl. Mater. Today 3, 11–22 (2016).

    Article  Google Scholar 

  30. 30

    Lee, Y. H. et al. Synthesis of large area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).

    Article  CAS  Google Scholar 

  31. 31

    Shaw, J. C. et al. Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano. Res. 7, 511–517 (2014).

    Article  CAS  Google Scholar 

  32. 32

    Zhou, H. et al. Large area growth and electrical properties of p-type WSe2 atomic layers. Nano. Lett. 15, 709–713 (2014).

    Article  CAS  Google Scholar 

  33. 33

    Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

    Article  CAS  Google Scholar 

  34. 34

    Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    Article  CAS  Google Scholar 

  35. 35

    Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490–493 (2012).

    Article  CAS  Google Scholar 

  36. 36

    Ye, J. et al. Superconducting dome in a gate-tuned band insulator. Science 338, 1193–1196 (2012).

    Article  CAS  Google Scholar 

  37. 37

    Kong, D. & Cui, Y. Opportunities in chemistry and materials science for topological insulators and their nanostructures. Nat. Chem. 3, 845–849 (2011).

    Article  CAS  Google Scholar 

  38. 38

    Sun, Y. et al. Atomically thick bismuth selenide freestanding single layers achieving enhanced thermoelectric energy harvesting. J. Am. Chem. Soc. 134, 20294–20297 (2012).

    Article  CAS  Google Scholar 

  39. 39

    Min, Y. et al. Surfactant-free scalable synthesis of Bi2Te3 and Bi2Se3 nanoflakes and enhanced thermoelectric properties of their nanocomposites. Adv. Mater. 25, 1425–1429 (2013).

    Article  CAS  Google Scholar 

  40. 40

    Hong, M., Chen, Z., Yang, L., Han, G. & Zou, J. Enhanced thermoelectric performance of ultrathin Bi2Se3 nanosheets through thickness control. Adv. Electron. Mater. 1, 1500025 (2015).

    Article  CAS  Google Scholar 

  41. 41

    Naguib, M., Mochalin, V. N., Barsoum, M. W. & Gogotsi, Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014).

    Article  CAS  Google Scholar 

  42. 42

    Qiao, J., Kong, X., Hu, Z.-X., Yang, F. & Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014).

    Article  CAS  Google Scholar 

  43. 43

    Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).

    Article  CAS  Google Scholar 

  44. 44

    Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 8, 4033–4041 (2014).

    Google Scholar 

  45. 45

    Osada, M. & Sasaki, T. Exfoliated oxide nanosheets: new solution to nanoelectronics. J. Mater. Chem. 19, 2503–2511 (2009).

    Article  CAS  Google Scholar 

  46. 46

    Subramanian, M. et al. A new high-temperature superconductor: Bi2Sr3−xCax Cu2O8+y . Science 239, 1015–1017 (1988).

    Article  CAS  Google Scholar 

  47. 47

    Wang, Q. & O'Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 112, 4124–4155 (2012).

    Article  CAS  Google Scholar 

  48. 48

    Colson, J. W. et al. Oriented 2D covalent organic famework thin films on single-layer graphene. Science 332, 228–231 (2011).

    Article  CAS  Google Scholar 

  49. 49

    Duan, X. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9, 1024–1030 (2014).

    Article  CAS  Google Scholar 

  50. 50

    Nair, R. R. et al. Fluorographene: a two-dimensional counterpart of teflon. Small 6, 2877–2884 (2010).

    Article  CAS  Google Scholar 

  51. 51

    Elias, D. C. et al. Control of graphene's properties by reversible hydrogenation: evidence for graphane. Science 323, 610–613 (2009).

    Article  CAS  Google Scholar 

  52. 52

    Duan, X. et al. Synthesis of WS2xSe2−2x alloy nanosheets with composition-tunable electronic properties. Nano Lett. 16, 264–269 (2016).

    Article  CAS  Google Scholar 

  53. 53

    Li, H. et al. Lateral growth of composition graded atomic layer MoS2(1−x) Se2x nanosheets. J. Am. Chem. Soc. 137, 5284–5287 (2015).

    Article  CAS  Google Scholar 

  54. 54

    Zhang, W. et al. CVD synthesis of Mo(1−x)WxS2 and MoS2(1−x)Se2x alloy monolayers aimed at tuning the bandgap of molybdenum disulfide. Nanoscale 7, 13554–13560 (2015).

    Article  CAS  Google Scholar 

  55. 55

    Feng, Q. et al. Growth of MoS2(1−x)Se2x (x = 0.41–1.00) monolayer alloys with controlled morphology by physical vapor deposition. ACS Nano 9, 7450–7455 (2015).

    Article  CAS  Google Scholar 

  56. 56

    Li, M.-Y. et al. Epitaxial growth of a monolayer WSe2–MoS2 lateral pn junction with an atomically sharp interface. Science 349, 524–528 (2015).

    Article  CAS  Google Scholar 

  57. 57

    Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).

    Article  CAS  Google Scholar 

  58. 58

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  59. 59

    Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Nati. Acad. Sci. USA 102, 10451–10453 (2005).

    Article  CAS  Google Scholar 

  60. 60

    Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S. & Coleman, J. N. Liquid exfoliation of layered materials. Science 340, http://dx.doi.org/10.1126/science.1226419 (2013).

  61. 61

    Halim, U. et al. A rational design of cosolvent exfoliation of layered materials by directly probing liquid–solid interaction. Nat. Commun. 4, 2213 (2013).

    Article  CAS  Google Scholar 

  62. 62

    Lu, Q., Yu, Y., Ma, Q., Chen, B. & Zhang, H. 2D Transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 28, 1917–1933 (2016).

    Article  CAS  Google Scholar 

  63. 63

    Song, L. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209–3215 (2010).

    Article  CAS  Google Scholar 

  64. 64

    Liu, L. et al. Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges. Science 343, 163–167 (2014).

    Article  CAS  Google Scholar 

  65. 65

    Yu, J. Li, J., Zhang, W. & Chang, H. Synthesis of high quality two-dimensional materials via chemical vapor deposition. Chem. Sci. 6, 6705–6716 (2015).

    Article  CAS  Google Scholar 

  66. 66

    Lu, G. et al. Synthesis of large single-crystal hexagonal boron nitride grains on Cu–Ni alloy. Nat. Commun. 6, 6160 (2015).

    Article  CAS  Google Scholar 

  67. 67

    Wu, T. et al. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu–Ni alloys. Nat. Mater. 15, 43–47 (2016).

    Article  CAS  Google Scholar 

  68. 68

    Andres, C.-G. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).

    Article  CAS  Google Scholar 

  69. 69

    Zomer, P. J., Dash, S. P., Tombros, N. & Wees, B. J. A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride. Appl. Phys. Lett. 99, 232104 (2011).

    Article  CAS  Google Scholar 

  70. 70

    Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science. 342, 614–617 (2013). This study represents the first report of the edge-contact geometry for making contact to 2DLMs, which is important for constructing complex vdWH devices.

    Article  CAS  Google Scholar 

  71. 71

    Haigh, S. J. et al. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11, 764–767 (2012).

    Article  CAS  Google Scholar 

  72. 72

    Yan, A. et al. Direct growth of single- and few-layer MoS2 on h-BN with preferred relative rotation angles. Nano Lett. 15, 6324–6331 (2015).

    Article  CAS  Google Scholar 

  73. 73

    Woods, C. R. et al. Commensurate–incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451–456 (2014).

    Article  CAS  Google Scholar 

  74. 74

    Liu, Y. et al. Towards barrier free contact to molybdenum disulfide using graphene electrodes. Nano Lett. 15, 3030–3034 (2015). This study presents the highest FET mobility achieved in MoS2 using a barrier-free coplanar graphene contact, with a peak mobility of 1,300 cm2 V−1 s−1.

    Article  CAS  Google Scholar 

  75. 75

    Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015). This study presents the highest Hall mobility achieved in MoS2 using multiterminal staggered graphene contact, with a peak mobility of 34,000 cm2 V−1 s−1.

    Article  CAS  Google Scholar 

  76. 76

    Avsar, A. et al. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano 9, 4138–4145 (2015).

    Article  CAS  Google Scholar 

  77. 77

    Cheng, H. C. et al. Van der Waals heterojunction devices based on organohalide perovskites and two-dimensional materials. Nano Lett. 16, 367–373 (2016).

    Article  CAS  Google Scholar 

  78. 78

    Fiori, G., Bruzzone, S. & Iannaccone, G. Very Large current modulation in vertical heterostructure graphene/hBN transistors. IEEE Trans. Electron Devices 60, 268–273 (2013).

    Article  CAS  Google Scholar 

  79. 79

    Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012).

    Article  CAS  Google Scholar 

  80. 80

    Xue, J. et al. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat. Mater. 10, 282–285 (2011).

    Article  CAS  Google Scholar 

  81. 81

    Zhao, W. et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2 . ACS Nano 7, 791–797 (2012).

    Article  CAS  Google Scholar 

  82. 82

    Das, S. et al. Tunable transport gap in phosphorene. Nano Lett. 14, 5733–5739 (2014).

    Article  CAS  Google Scholar 

  83. 83

    Chiu, M.-H. et al. Spectroscopic signatures for interlayer coupling in MoS2–WSe2 van der Waals stacking. ACS Nano 8, 9649–9656 (2014).

    Article  CAS  Google Scholar 

  84. 84

    Ponomarenko, L. A. et al. Tunable metal–insulator transition in double-layer graphene heterostructures. Nat. Phys. 7, 958–961 (2011).

    Article  CAS  Google Scholar 

  85. 85

    Fang, H. et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Nati. Acad. Sci. USA 111, 6198–6202 (2014).

    Article  CAS  Google Scholar 

  86. 86

    Liu, K. et al. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 5, 4966 (2014).

    Article  CAS  Google Scholar 

  87. 87

    Hong, X. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682–686 (2014).

    Article  CAS  Google Scholar 

  88. 88

    Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 6, 6242 (2015).

    Article  CAS  Google Scholar 

  89. 89

    Ceballos, F., Bellus, M. Z., Chiu, H.-Y. & Zhao, H. Probing charge transfer excitons in a MoSe2–WS2 van der Waals heterostructure. Nanoscale 7, 17523–17528 (2015).

    Article  CAS  Google Scholar 

  90. 90

    Bellus, M. Z., Ceballos, F., Chiu, H.-Y. & Zhao, H. Tightly bound trions in transition metal dichalcogenide heterostructures. ACS Nano 9, 6459–6464 (2015).

    Article  CAS  Google Scholar 

  91. 91

    Cheng, R. et al. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun. 5, 5143 (2014). This study reports the highest performance MoS2 transistors with self-aligned geometry and optimized contact to enable an intrinsic cut-off frequency of 42 GHz, and a maximum power-gain frequency of 50 GHz.

    Article  CAS  Google Scholar 

  92. 92

    Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015).

    Article  CAS  Google Scholar 

  93. 93

    Das, S., Chen, H.-Y., Penumatcha, A. V. & Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2012).

    Article  CAS  Google Scholar 

  94. 94

    Qu, D., Liu, X., Ahmed, F., Lee, D. & Yoo, W. J. Self-screened high performance multi-layer MoS2 transistor formed by using a bottom graphene electrode. Nanoscale 7, 19273–19281 (2015).

    Article  CAS  Google Scholar 

  95. 95

    Roy, T. et al. Field-effect transistors built from all two-dimensional material components. ACS Nano 8, 6259–6264 (2014).

    Article  CAS  Google Scholar 

  96. 96

    Chuang, H.-J. et al. High mobility WSe2 p-and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts. Nano Lett. 14, 3594–3601 (2014).

    Article  CAS  Google Scholar 

  97. 97

    Das, S., Gulotty, R., Sumant, A. V. & Roelofs, A. All two-dimensional, flexible, transparent, and thinnest thin film transistor. Nano Lett. 14, 2861–2866 (2014).

    Article  CAS  Google Scholar 

  98. 98

    Yoon, J. et al. Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes. Small 9, 3295–3300 (2013).

    CAS  Google Scholar 

  99. 99

    Yu, L. et al. Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett. 14, 3055–3063 (2014).

    Article  CAS  Google Scholar 

  100. 100

    Lee, G.-H. et al. Highly stable, dual-gated MoS2 transistors encapsulated by hexagonal noron nitride with gate-controllable contact, resistance, and threshold Voltage. ACS Nano 9, 7019–7026 (2015).

    Article  CAS  Google Scholar 

  101. 101

    Das, S. & Appenzeller, J. Where does the current flow in two-dimensional layered systems? Nano Lett. 13, 3396–3402 (2013).

    Article  CAS  Google Scholar 

  102. 102

    Das, S. & Appenzeller, J. Screening and interlayer coupling in multilayer MoS2 . Phys. Stat. Sol. 7, 268–273 (2013).

    CAS  Google Scholar 

  103. 103

    Wang, Y. et al. Does p-type ohmic contact exist in WSe2–metal interfaces? Nanoscale 8, 1179–1191 (2016).

    Article  CAS  Google Scholar 

  104. 104

    Kang, J., Liu, W. & Banerjee, K. High-performance MoS2 transistors with low-resistance molybdenum contacts. Appl. Phys. Lett. 104, 093106 (2014).

    Article  CAS  Google Scholar 

  105. 105

    Yang, L. et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2 . Nano Lett. 14, 6275–6280 (2014).

    Article  CAS  Google Scholar 

  106. 106

    Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

    Article  CAS  Google Scholar 

  107. 107

    Kiriya, D., Tosun, M., Zhao, P., Kang, J. S. & Javey, A. Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 136, 7853–7856 (2014).

    Article  CAS  Google Scholar 

  108. 108

    Leong, W. S. et al. Low resistance metal contacts to MoS2 devices with nickel-etched-graphene electrodes. ACS Nano 9, 869–877 (2014).

    Article  CAS  Google Scholar 

  109. 109

    Du, Y. et al. Field-effect transistors with graphene/metal heterocontacts. IEEE Electron Device Lett. 35, 599–601 (2014).

    Article  CAS  Google Scholar 

  110. 110

    Jena, D., Banerjee, K. & Xing, G. H. 2D crystal semiconductors: intimate contacts. Nat. Mater. 13, 1076–1078 (2014).

    Article  CAS  Google Scholar 

  111. 111

    English, C. D., Shine, G., Dorgan, V. E., Saraswat, K. C. & Pop, E. in 72nd Device Research Conference 193–194 (Santa Barbara, 2014).

    Google Scholar 

  112. 112

    Ma, Y., Dai, Y., Guo, M., Niu, C. & Huang, B. Graphene adhesion on MoS2 monolayer: an ab initio study. Nanoscale 3, 3883–3887 (2011).

    Article  CAS  Google Scholar 

  113. 113

    Kang, J., Liu, W., Sarkar, D., Jena, D. & Banerjee, K. Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys. Rev. X 4, 031005 (2014).

    Google Scholar 

  114. 114

    Cho, S. et al. Phase patterning for ohmic homojunction contact in MoTe2 . Science 349, 625–628 (2015).

    Article  CAS  Google Scholar 

  115. 115

    Li, X. et al. Performance potential and limit of MoS2 transistors. Adv. Mater. 27, 1547–1552 (2015).

    Article  CAS  Google Scholar 

  116. 116

    Yu, W. J. et al. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 12, 246–252 (2013).

    Article  CAS  Google Scholar 

  117. 117

    Moriya, R. et al. Vertical field effect transistor based on graphene/transition metal dichalcogenide van der Waals heterostructure. ECS Trans. 69, 357–363 (2015).

    Article  CAS  Google Scholar 

  118. 118

    Georgiou, T. et al. Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 8, 100–103 (2013).

    Article  CAS  Google Scholar 

  119. 119

    Moriya, R. et al. Large current modulation in exfoliated-graphene/MoS2/metal vertical heterostructures. Appl. Phys. Lett. 105, 083119 (2014).

    Article  CAS  Google Scholar 

  120. 120

    Moriya, R. et al. Influence of the density of states of graphene on the transport properties of graphene/MoS2/metal vertical field-effect transistors. Appl. Phys. Lett. 106, 223103 (2015).

    Article  CAS  Google Scholar 

  121. 121

    Sata, Y. et al. Electric field modulation of Schottky barrier height in graphene/MoSe2 van der Waals heterointerface. Appl. Phys. Lett. 107, 023109 (2015).

    Article  CAS  Google Scholar 

  122. 122

    Yang, H. et al. Graphene barristor, a triode device with a gate-controlled Schottky barrier. Science 336, 1140–1143 (2012). This is the first report of a graphene-based vertical thermionic transistor, in which graphene is used as an active contact rather than the channel material.

    Article  CAS  Google Scholar 

  123. 123

    Heo, J. et al. Graphene and thin-film semiconductor heterojunction transistors integrated on wafer scale for low-power electronics. Nano Lett. 13, 5967–5971 (2013).

    Article  CAS  Google Scholar 

  124. 124

    Liu, Y. et al. Highly flexible electronics from scalable vertical thin film transistors. Nano Lett. 14, 1413–1418 (2014). This study demonstrates that the unique concept of graphene-based vertical transistors can enable thin-film electronics with unusual flexibility.

    Article  CAS  Google Scholar 

  125. 125

    Parui, S. et al. Gate-controlled energy barrier at a graphene/molecular semiconductor junction. Adv. Funct. Mater. 25, 2972–2979 (2015).

    Article  CAS  Google Scholar 

  126. 126

    Lemaitre, M. G. et al. Improved transfer of graphene for gated Schottky-junction, vertical, organic, field-effect transistors. ACS Nano 6, 9095–9102 (2012).

    Article  CAS  Google Scholar 

  127. 127

    Hlaing, H. et al. Low-voltage organic electronics based on a gate-tunable injection barrier in vertical graphene–organic semiconductor heterostructures. Nano Lett. 15, 69–74 (2014).

    Article  CAS  Google Scholar 

  128. 128

    He, D. et al. Two-dimensional quasi-freestanding molecular crystals for high-performance organic field-effect transistors. Nat. Commun. 5, 5162 (2014).

    Article  CAS  Google Scholar 

  129. 129

    Liu, Y., Zhou, H., Weiss, N. O., Huang, Y. & Duan, X. High-performance organic vertical thin film transistor using graphene as a tunable contact. ACS Nano 9, 11102–11108 (2015).

    Article  CAS  Google Scholar 

  130. 130

    Kim, K. et al. Structural and electrical investigation of C60-graphene vertical heterostructures. ACS Nano 9, 5922–5928 (2015).

    Article  CAS  Google Scholar 

  131. 131

    Appenzeller, J., Lin, Y.-M., Knoch, J. & Avouris, P. Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 93, 196805 (2004).

    Article  CAS  Google Scholar 

  132. 132

    Luryi, S. Quantum capacitance devices. Appl. Phys. Lett. 52, 501–503 (1988).

    Article  Google Scholar 

  133. 133

    Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012). This is the first report of a graphene-based vertical tunnelling transistor, based on graphene–BN–graphene vdWHs.

    Article  CAS  Google Scholar 

  134. 134

    Britnell, L. et al. Resonant tunnelling and negative differential conductance in graphene transistors. Nat. Commun. 4, 1794 (2013).

    Article  CAS  Google Scholar 

  135. 135

    Mishchenko, A. et al. Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nat. Nanotechnol. 9, 808–813 (2014).

    Article  CAS  Google Scholar 

  136. 136

    Greenaway, M. et al. Resonant tunnelling between the chiral Landau states of twisted graphene lattices. Nat. Phys. 11, 1057–1062 (2015).

    Article  CAS  Google Scholar 

  137. 137

    Liu, Y. et al. High Current density vertical tunneling transistors from graphene/highly-doped silicon heterostructures. Adv. Mater. 28, 4120–4125 (2016).

    Article  CAS  Google Scholar 

  138. 138

    Sze, S. M. & Ng, K. K. Physics of semiconductor devices (Wiley, 2006).

    Book  Google Scholar 

  139. 139

    Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat. Nanotechnol. 9, 268–272 (2014).

    Article  CAS  Google Scholar 

  140. 140

    Pospischil, A., Furchi, M. M. & Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat. Nanotechnol. 9, 257–261 (2014).

    Article  CAS  Google Scholar 

  141. 141

    Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 9, 262–267 (2014).

    Article  CAS  Google Scholar 

  142. 142

    Sarkar, D. et al. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526, 91–95 (2015).

    Article  CAS  Google Scholar 

  143. 143

    Roy, T. et al. Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. ACS Nano 9, 2071–2079 (2015).

    Article  CAS  Google Scholar 

  144. 144

    Jariwala, D. et al. Gate-tunable carbon nanotube–MoS2 heterojunction pn diode. Proc. Natl. Acad. Sci. USA 110, 18076–18080 (2013).

    Article  Google Scholar 

  145. 145

    Chuang, S. et al. Near-ideal electrical properties of InAs/WSe2 van der Waals heterojunction diodes. Appl. Phys. Lett. 102, 242101 (2013).

    Article  CAS  Google Scholar 

  146. 146

    Furchi, M. M., Pospischil, A., Libisch, F., Burgdörfer, J. & Mueller, T. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. 14, 4785–4791 (2014).

    Article  CAS  Google Scholar 

  147. 147

    Shim, G. W. et al. Large-area single-layer MoSe2 and its van der Waals heterostructures. ACS Nano 8, 6655–6662 (2014).

    Article  CAS  Google Scholar 

  148. 148

    Lee, C.-H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014).

    Article  CAS  Google Scholar 

  149. 149

    Yu, J. H. et al. Vertical heterostructure of two-dimensional MoS2 and WSe2 with vertically aligned layers. Nano Lett. 15, 1031–1035 (2015).

    Article  CAS  Google Scholar 

  150. 150

    Deng, Y. et al. Black phosphorus–monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano 8, 8292–8299 (2014).

    Article  CAS  Google Scholar 

  151. 151

    Cheng, R. et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Lett. 14, 5590–5597 (2014).

    Article  CAS  Google Scholar 

  152. 152

    Jeon, P. J. et al. Enhanced device performances of WSe2–MoS2 van der Waals junction p–n diode by fluoropolymer encapsulation. J. Mater. Chem. C 3, 2751–2758 (2015).

    Article  CAS  Google Scholar 

  153. 153

    Wang, F. et al. Tunable GaTe–MoS2 van der Waals pn junctions with novel optoelectronic performance. Nano Lett. 15, 7558–7566 (2015).

    Article  CAS  Google Scholar 

  154. 154

    Liu, F. et al. Van der Waals p–n junction based on an organic–inorganic heterostructure. Adv. Funct. Mater. 25, 5865–5871 (2015).

    Article  CAS  Google Scholar 

  155. 155

    Jariwala, D. et al. Large-area, low-voltage, antiambipolar heterojunctions from solution-processed semiconductors. Nano Lett. 15, 416–421 (2014).

    Article  CAS  Google Scholar 

  156. 156

    Lam, K. T., Seol, G. & Guo, J. Operating principles of vertical transistors based on monolayer two-dimensional semiconductor heterojunctions. Appl. Phys. Lett. 105, 013112 (2014).

    Article  CAS  Google Scholar 

  157. 157

    Gan, X. et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 7, 883–887 (2013).

    Article  CAS  Google Scholar 

  158. 158

    Pospischil, A. et al. CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photonics 7, 892–896 (2013).

    Article  CAS  Google Scholar 

  159. 159

    Wang, X., Cheng, Z., Xu, K., Tsang, H. K. & Xu, J.-B. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photonics 7, 888–891 (2013).

    Article  CAS  Google Scholar 

  160. 160

    Shiue, R.-J. et al. High-responsivity graphene–boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit. Nano Lett. 15, 7288–7293 (2015).

    Article  CAS  Google Scholar 

  161. 161

    Urich, A., Unterrainer, K. & Mueller, T. Intrinsic response time of graphene photodetectors. Nano Lett. 11, 2804–2808 (2011).

    Article  CAS  Google Scholar 

  162. 162

    Mak, K. F., Ju, L., Wang, F. & Heinz, T. F. Optical spectroscopy of graphene: from the far infrared to the ultraviolet. Solid State Commun. 152, 1341–1349 (2012).

    Article  CAS  Google Scholar 

  163. 163

    Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010).

    Article  CAS  Google Scholar 

  164. 164

    Echtermeyer, T. et al. Strong plasmonic enhancement of photovoltage in graphene. Nat. Commun. 2, 458 (2011).

    Article  CAS  Google Scholar 

  165. 165

    Carvalho, A., Ribeiro, R. M. & Castro Neto, A. H. Band nesting and the optical response of two-dimensional semiconducting transition metal dichalcogenides. Phys. Rev. B 88, 115205 (2013).

    Article  CAS  Google Scholar 

  166. 166

    Kozawa, D. et al. Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides. Nat. Commun. 5, 4543 (2014).

    Article  CAS  Google Scholar 

  167. 167

    Britnell, L. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013).

    Article  CAS  Google Scholar 

  168. 168

    Yu, W. J et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 8, 952–958 (2013).

    Article  CAS  Google Scholar 

  169. 169

    Massicotte, M. et al. Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 11, 42–46 (2016).

    Article  CAS  Google Scholar 

  170. 170

    Lopez-Sanchez, O. et al. Light generation and harvesting in a van der Waals heterostructure. ACS Nano 8, 3042–3048 (2014).

    Article  CAS  Google Scholar 

  171. 171

    Yamakoshi, S., Sanada, T., Wada, O., Umebu, I. & Sakurai, T. Direct observation of electron leakage in InGaAsP/InP double heterostructure. Appl. Phys. Lett. 40, 144–146 (1982).

    Article  CAS  Google Scholar 

  172. 172

    Withers, F. et al. WSe2 light-emitting tunneling transistors with enhanced brightness at room temperature. Nano Lett. 15, 8223–8228 (2015).

    Article  CAS  Google Scholar 

  173. 173

    Li, D. et al. Electric-field-induced strong enhancement of electroluminescence in multilayer molybdenum disulfide. Nat. Commun. 6, 7509 (2015).

    Article  Google Scholar 

  174. 174

    Liu, F. et al. High-sensitivity photodetectors based on multilayer GaTe flakes. ACS Nano 8, 752–760 (2014).

    Article  CAS  Google Scholar 

  175. 175

    Julien, C., Chevy, A. & Siapkas, D. Optical properties of In2Se3 phases. Phys. Status Solidi A 118, 553–559 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

X.D. acknowledges the support by ONR Award N00014-15-1-2368. Y.H. acknowledges the support by National Science Foundation EFRI-1433541.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yu Huang or Xiangfeng Duan.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Weiss, N., Duan, X. et al. Van der Waals heterostructures and devices. Nat Rev Mater 1, 16042 (2016). https://doi.org/10.1038/natrevmats.2016.42

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing