Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nonclassical nucleation and growth of inorganic nanoparticles

Abstract

The synthesis of nanoparticles with particular compositions and structures can lead to nanoparticles with notable physicochemical properties, thus promoting their use in various applications. In this area of nanoscience, the focus is shifting from size- and shape-uniform single-component nanoparticles to multicomponent nanoparticles with enhanced performance and/or multifunctionality. With the increasing complexity of synthetic reactions, an understanding of the formation mechanisms of the nanoparticles is needed to enable a systematic synthetic approach. This Review highlights mechanistic studies underlying the synthesis of nanoparticles, with an emphasis on nucleation and growth behaviours that are not expected from classical theories. We discuss the structural properties of nanoclusters that are of a size that bridges molecules and solids. We then describe the role of nanoclusters in the prenucleation process as well as in nonclassical nucleation models. The growth of nanoparticles via the assembly and merging of primary particles is also overviewed. Finally, we present the heterogeneous nucleation mechanisms behind the synthesis of multicomponent nanoparticles.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Structures of cluster molecules and their size-dependent properties.
Figure 2: Nucleation of colloidal nanocrystals via nonclassical pathways.
Figure 3: Stepwise phase transitions and aggregation of nuclei.
Figure 4: Oriented attachment of nanoparticles.
Figure 5: Formation of 2D nanocrystals by assembly.
Figure 6: Multidomain structures of nanoparticles.
Figure 7: Energetics and nucleation probability of heterogeneous nucleation.
Figure 8: Lattice strain and structural properties of multicomponent nanoparticles.

References

  1. 1

    Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    CAS  Google Scholar 

  2. 2

    Rogach, A. L. et al. Organization of matter on different size scales: monodisperse nanocrystals and their superstructures. Adv. Funct. Mater. 12, 653–664 (2002).

    CAS  Google Scholar 

  3. 3

    Yin, Y. & Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664–670 (2005).

    CAS  Google Scholar 

  4. 4

    Park, J., Joo, J., Kwon, S. G., Jang, Y. & Hyeon, T. Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. Engl. 46, 4630–4660 (2007).

    CAS  Google Scholar 

  5. 5

    Talapin, D. V., Lee, J. S., Kovalenko, M. V. & Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2010).

    CAS  Google Scholar 

  6. 6

    Carbone, L. & Cozzoli, P. D. Colloidal heterostructured nanocrystals: synthesis and growth mechanisms. Nano Today 5, 449–493 (2010).

    CAS  Google Scholar 

  7. 7

    Donegá, C. d. M. Synthesis and properties of colloidal heteronanocrystals. Chem. Soc. Rev. 40, 1512–1546 (2011).

    Google Scholar 

  8. 8

    Kovalenko, M. V. et al. Prospects of nanoscience with nanocrystals. ACS Nano 9, 1012–1057 (2015). This paper provides a broad perspective on the current state of nanoscience and nanoparticle synthesis.

    CAS  Google Scholar 

  9. 9

    Cleveland, C. L. et al. Structural evolution of smaller gold nanocrystals: the truncated decahedral motif. Phys. Rev. Lett. 79, 1873–1876 (1997).

    CAS  Google Scholar 

  10. 10

    Kubo, R., Kawabata, A. & Kobayashi, S. Electronic properties of small particles. Annu. Rev. Mater. Sci. 14, 49–66 (1984).

    CAS  Google Scholar 

  11. 11

    Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

    CAS  Google Scholar 

  12. 12

    Kim, J.-Y. & Kotov, N. A. Charge transport dilemma of solution-processed nanomaterials. Chem. Mater. 26, 134–152 (2014).

    CAS  Google Scholar 

  13. 13

    Shirasaki, Y., Supran, G. J., Bawendi, M. G. & Bulovic´, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 7, 13–23 (2013).

    CAS  Google Scholar 

  14. 14

    Choi, M. K. et al. Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 6, 7149 (2015).

    CAS  Google Scholar 

  15. 15

    Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010).

    CAS  Google Scholar 

  16. 16

    Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    CAS  Google Scholar 

  17. 17

    Carey, G. H. et al. Colloidal quantum dot solar cells. Chem. Rev. 115, 12732–12763 (2015).

    CAS  Google Scholar 

  18. 18

    Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

    CAS  Google Scholar 

  19. 19

    Aricò, A. S., Bruce, P., Scrosati, B., Tarascon, J. M. & Schalkwijk, W. V. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005).

    Google Scholar 

  20. 20

    Guo, S., Zhang, S. & Sun, S. Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew. Chem. Int. Ed. Engl. 52, 8526–8544 (2013).

    CAS  Google Scholar 

  21. 21

    Somorjai, G. A. & Park, J. Y. Molecular factors of catalytic selectivity. Angew. Chem. Int. Ed. Engl. 47, 9212–9228 (2008).

    CAS  Google Scholar 

  22. 22

    Somorjai, G. A., Contreras, A. M., Montano, M. & Rioux, R. M. Clusters, surfaces, and catalysis. Proc. Natl Acad. Sci. USA 103, 10577–10583 (2006).

    CAS  Google Scholar 

  23. 23

    Giljohann, D. A. & Mirkin, C. A. Drivers of biodiagnostic development. Nature 462, 461–464 (2009).

    CAS  Google Scholar 

  24. 24

    Lee, N. et al. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem. Rev. 115, 10637–10689 (2015).

    CAS  Google Scholar 

  25. 25

    Medintz, I. L., Uyeda, H. T., Goldman, E. R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435–446 (2005).

    CAS  Google Scholar 

  26. 26

    Costi, R., Saunders, A. E. & Banin, U. Colloidal hybrid nanostructures: a new type of functional materials. Angew. Chem. Int. Ed. Engl. 49, 4878–4897 (2010).

    CAS  Google Scholar 

  27. 27

    Goesmann, H. & Feldmann, C. Nanoparticulate functional materials. Angew. Chem. Int. Ed. Engl. 49, 1362–1395 (2010).

    CAS  Google Scholar 

  28. 28

    Buck, M. R. & Schaak, R. E. Emerging strategies for the total synthesis of inorganic nanostructures. Angew. Chem. Int. Ed. Engl. 52, 6154–6178 (2013).

    CAS  Google Scholar 

  29. 29

    Wang, C., Xu, C., Zeng, H. & Sun, S. Recent progress in syntheses and applications of dumbbell-like nanoparticles. Adv. Mater. 21, 3045–3052 (2009).

    CAS  Google Scholar 

  30. 30

    Wang, F., Richards, V. N., Shields, S. P. & Buhro, W. E. Kinetics and mechanisms of aggregative nanocrystal growth. Chem. Mater. 26, 5–21 (2014).

    Google Scholar 

  31. 31

    Billinge, S. J. L. The nanostructure problem. Physics 3, 25 (2010).

    Google Scholar 

  32. 32

    Sugimoto, T. Preparation of monodispersed colloidal particles. Adv. Colloid Interfac. Sci. 28, 65–108 (1987).

    CAS  Google Scholar 

  33. 33

    Zheng, J., Zhang, C. & Dickson, R. M. Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys. Rev. Lett. 93, 77402 (2004).

    Google Scholar 

  34. 34

    Sadeghi, O., Zakharov, L. N. & Nyman, M. Aqueous formation and manipulation of the iron-oxo Keggin ion. Science 347, 1359–1362 (2015).

    CAS  Google Scholar 

  35. 35

    Miller, J. S. & Drillon, M. (eds) Magnetism: Molecules to materials III: Nanosized Magnetic Materials (Wiley-VCH, 2002).

    Google Scholar 

  36. 36

    Schmid, G. Large clusters and colloids. Metals in the embryonic state. Chem. Rev. 92, 1709–1727 (1992).

    CAS  Google Scholar 

  37. 37

    Gatteschi, D., Caneschi, A., Pardi, L. & Sessoli, R. Large clusters of metal ions: the transition from molecular to bulk magnets. Science 265, 1054–1058 (1994).

    CAS  Google Scholar 

  38. 38

    Soloviev, V. N., Eichhöfer, A., Fenske, D. & Banin, U. Size-dependent optical spectroscopy of a homologous series of CdSe cluster molecules. J. Am. Chem. Soc. 123, 2354–2364 (2001).

    CAS  Google Scholar 

  39. 39

    Martin, T. P. Shells of atoms. Phys. Rep. 273, 199–241 (1996).

    CAS  Google Scholar 

  40. 40

    Marks, L. D. Experimental studies of small particle structures. Rep. Prog. Phys. 57, 603–649 (1994).

    CAS  Google Scholar 

  41. 41

    Baletto, F. & Ferrando, R. Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev. Mod. Phys. 77, 371–423 (2005).

    CAS  Google Scholar 

  42. 42

    Häkkinen, H. Atomic and electronic structure of gold clusters: understanding flakes, cages and superatoms from simple concepts. Chem. Soc. Rev. 37, 1847–1859 (2008).

    Google Scholar 

  43. 43

    Schmid, G. The relevance of shape and size of Au55 clusters. Chem. Soc. Rev. 37, 1909–1930 (2008).

    CAS  Google Scholar 

  44. 44

    Heaven, M. W., Dass, A., White, P. S., Holt, K. M. & Murray, R. W. Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J. Am. Chem. Soc. 130, 3754–3755 (2008).

    CAS  Google Scholar 

  45. 45

    Akola, J., Walter, M., Whetten, R. L., Häkkinen, H. & Grönbeck, H. On the structure of thiolate-protected Au25 . J. Am. Chem. Soc. 130, 3756–3757 (2008).

    CAS  Google Scholar 

  46. 46

    Häkkinen, H. The gold–sulfur interface at the nanoscale. Nat. Chem. 4, 443–455 (2012).

    Google Scholar 

  47. 47

    Qian, H., Zhu, M., Wu, Z. & Jin, R. Quantum sized gold nanoclusters with atomic precision. Acc. Chem. Res. 45, 1470–1479 (2012).

    CAS  Google Scholar 

  48. 48

    Zhu, M., Aikens, C. M., Hollander, F. J., Schatz, G. C. & Jin, R. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 130, 5883–5885 (2008).

    CAS  Google Scholar 

  49. 49

    Jadzinsky, P. D., Calero, G., Ackerson, C. J., Bushnell, D. A. & Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1. 1 Å resolution. Science 318, 430–433 (2007).

    CAS  Google Scholar 

  50. 50

    Walter, M. et al. A unified view of ligand-protected gold clusters as superatom complexes. Proc. Natl Acad. Sci. USA 105, 9157–9162 (2008).

    CAS  Google Scholar 

  51. 51

    Azubel, M. et al. Electron microscopy of gold nanoparticles at atomic resolution. Science 345, 909–912 (2014).

    CAS  Google Scholar 

  52. 52

    Negishi, Y. et al. A critical size for emergence of nonbulk electronic and geometric structures in dodecanethiolate-protected Au clusters. J. Am. Chem. Soc. 137, 1206–1212 (2015).

    CAS  Google Scholar 

  53. 53

    Cha, S. H., Kim, J. U., Kim, K. H. & Lee, J. C. Preparation and photoluminescent properties of gold(I)-alkanethiolate complexes having highly ordered supramolecular structures. Chem. Mater. 19, 6297–6303 (2007).

    CAS  Google Scholar 

  54. 54

    Devadas, M. S. et al. Temperature-dependent optical absorption properties of monolayer-protected Au25 and Au38 clusters. J. Phys. Chem. Lett. 2, 2752–2758 (2011).

    CAS  Google Scholar 

  55. 55

    Tian, S. et al. Structural isomerism in gold nanoparticles revealed by X-ray crystallography. Nat. Commun. 6, 8667 (2015).

    CAS  Google Scholar 

  56. 56

    Parker, J. F., Fields-Zinna, C. A. & Murray, R. W. The story of a monodisperse gold nanoparticle: Au25L18 . Acc. Chem. Res. 43, 1289–1296 (2010).

    CAS  Google Scholar 

  57. 57

    Xu, W. W. & Gao, Y. Unraveling the atomic structures of the Au68(SR)34 nanoparticles. J. Phys. Chem. C 119, 14224–14229 (2015).

    CAS  Google Scholar 

  58. 58

    Soloviev, V. N., Eichhofer, A., Fenske, D. & Banin, U. Molecular limit of a bulk semiconductor: size dependence of the “band gap” in CdSe cluster molecules. J. Am. Chem. Soc. 122, 2673–2674 (2000).

    CAS  Google Scholar 

  59. 59

    Beecher, A. N. et al. Atomic structures and gram scale synthesis of three tetrahedral quantum dots. J. Am. Chem. Soc. 136, 10645–10653 (2014).

    CAS  Google Scholar 

  60. 60

    Kasuya, A. et al. Ultra-stable nanoparticles of CdSe revealed from mass spectrometry. Nat. Mater. 3, 99–102 (2004).

    CAS  Google Scholar 

  61. 61

    Jasieniak, J., Smith, L., Embden, J. v., Mulvaney, P. & Califano, M. Re-examination of the size-dependent absorption properties of CdSe quantum dots. J. Phys. Chem. C 113, 19468–19474 (2009).

    CAS  Google Scholar 

  62. 62

    Yang, J. et al. Route to the smallest doped semiconductor: Mn2+-doped (CdSe)13 clusters. J. Am. Chem. Soc. 137, 12776–12779 (2015).

    CAS  Google Scholar 

  63. 63

    Murray, C. B., Kagan, C. R. & Bawendi, M. G. Synthesis and characterization of monodiserse nanocryastals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000).

    CAS  Google Scholar 

  64. 64

    Ashoori, R. C. Electrons in artificial atoms. Nature 379, 413–419 (1996).

    CAS  Google Scholar 

  65. 65

    Liu, T., Diemann, E., Li, H., Dress, A. W. M. & Müller, A. Self-assembly in aqueous solution of wheel-shaped Mo154 oxide clusters into vesicles. Nature 426, 59–62 (2003).

    CAS  Google Scholar 

  66. 66

    Long, D.-L., Tsunashima, R. & Cronin, L. Polyoxometalates: building blocks for functional nanoscale systems. Angew. Chem. Int. Ed. Engl. 49, 1736–1758 (2010).

    CAS  Google Scholar 

  67. 67

    Keggin, J. F. Structure of the molecule of 12-phosphotungstic acid. Nature 131, 908–909 (1933).

    CAS  Google Scholar 

  68. 68

    Dawson, B. The structure of the 9(18)-heteropoly anion in potassium 9(18)-tungstophosphate, K6(P2W18O62) · 14H2O. Acta Cryst. 6, 113–126 (1953).

    CAS  Google Scholar 

  69. 69

    Anderson, J. S. Constitution of the poly-acids. Nature 140, 850–850 (1937).

    CAS  Google Scholar 

  70. 70

    Khanna, S. N. & Jena, P. Assembling crystals from clusters. Phys. Rev. Lett. 69, 1664–1667 (1992).

    CAS  Google Scholar 

  71. 71

    Collier, C. P., Vossmeyer, T. & Heath, J. R. Nanocrystal superlattices. Annu. Rev. Phys. Chem. 49, 371–404 (1998).

    CAS  Google Scholar 

  72. 72

    Medeiros-Ribeiro, G., Ohlberg, D. A. A., Williams, R. S. & Heath, J. R. Rehybridization of electronic structure in compressed two-dimensional quantum dot superlattices. Phys. Rev. B 59, 1633–1636 (1999).

    CAS  Google Scholar 

  73. 73

    Choi, C. L. & Alivisatos, A. P. From artificial atoms to nanocrystal molecules: preparation and properties of more complex nanostructures. Annu. Rev. Phys. Chem. 61, 369–389 (2010).

    CAS  Google Scholar 

  74. 74

    Cölfen, H. & Antonietti, M. Mesocrystals and Nonclassical Crystallization (Wiley, 2008).

    Google Scholar 

  75. 75

    De Yoreo, J. J. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349, aaa6760 (2015). This paper introduces various crystallization processes that do not belong to the picture of classical crystal growth theory.

    Google Scholar 

  76. 76

    Larson, R. B. The physics of star formation. Rep. Prog. Phys. 66, 1651–1697 (2003).

    Google Scholar 

  77. 77

    Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    CAS  Google Scholar 

  78. 78

    Mullin, J. W. Crystallization 4th edn (Butterworth-Heinemann, 2001).

    Google Scholar 

  79. 79

    Kwon, S. G. & Hyeon, T. Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small 7, 2685–2702 (2011). Two representative size distribution control methods for monodisperse nanoparticles are fully discussed with experimental evidence and theoretical models.

    CAS  Google Scholar 

  80. 80

    Kwon, S. G. et al. Kinetics of monodisperse iron oxide nanocrystal formation by “heating-up” process. J. Am. Chem. Soc. 129, 12571–12584 (2007).

    CAS  Google Scholar 

  81. 81

    LaMer, V. K. & Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 72, 4847–4854 (1950).

    CAS  Google Scholar 

  82. 82

    Cahn, J. W. On spinodal decomposition. Acta Mater. 9, 795–801 (1961).

    CAS  Google Scholar 

  83. 83

    Baumgartner, J. et al. Nucleation and growth of magnetite from solution. Nat. Mater. 12, 310–314 (2013). Conditions for the formation of amorphous nuclei and amorphous-to-crystalline phase transition are discussed in this paper.

    CAS  Google Scholar 

  84. 84

    Watzky, M. A. & Finke, R. G. Transition metal nanocluster formation kinetic and mechanistic studies. A new mechanism when hydrogen is the reductant: slow, continuous nucleation and fast autocatalytic surface growth. J. Am. Chem. Soc. 119, 10382–10400 (1997). This study established autocatalytic formation kinetics of nanoclusters with emphasis on the interaction between the precursor and the preformed nanoclusters.

    CAS  Google Scholar 

  85. 85

    Fang, J., Ding, B. & Gleiter, H. Mesocrystals: syntheses in metals and applications. Chem. Soc. Rev. 40, 5347–5360 (2011).

    CAS  Google Scholar 

  86. 86

    Lu, Y. & Chen, W. Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem. Soc. Rev. 41, 3594–3623 (2012).

    CAS  Google Scholar 

  87. 87

    Yu, J., Patel, S. A. & Dickson, R. M. In vitro and intracellular production of peptide-encapsulated fluorescent silver nanoclusters. Angew. Chem. Int. Ed. Engl. 46, 2028–2030 (2007).

    CAS  Google Scholar 

  88. 88

    Kudera, S. et al. Sequential growth of magic-size CdSe nanocrystals. Adv. Mater. 19, 548–552 (2007).

    CAS  Google Scholar 

  89. 89

    Dagtepe, P., Chikan, V., Jasinski, J. & Leppert, V. J. Quantized growth of CdTe quantum dots; observation of magic-sized CdTe quantum dots. J. Phys. Chem. C 111, 14977–14983 (2007).

    CAS  Google Scholar 

  90. 90

    Evans, C. M., Guo, L., Peterson, J. J., Maccagnano-Zacher, S. & Krauss, T. D. Ultrabright PbSe magic-sized clusters. Nano Lett. 8, 2896–2899 (2008).

    CAS  Google Scholar 

  91. 91

    Chen, H. S. & Kumar, R. V. Discontinuous growth of colloidal CdSe nanocrystals in the magic structure. J. Phys. Chem. C 113, 31–36 (2009).

    CAS  Google Scholar 

  92. 92

    Yu, Q. & Liu, C. Y. Study of magic-size-cluster mediated formation of CdS nanocrystals: properties of the magic-size clusters and mechanism implication. J. Phys. Chem. C 113, 12766–12771 (2009).

    CAS  Google Scholar 

  93. 93

    Zanella, M., Abbasi, A. Z., Schaper, A. K. & Parak, W. J. Discontinuous growth of II–VI semiconductor nanocrystals from different materials. J. Phys. Chem. C 114, 6205–6215 (2010).

    CAS  Google Scholar 

  94. 94

    Harrell, S. M., McBride, J. R. & Rosenthal, S. J. Synthesis of ultrasmall and magic-sized CdSe nanocrystals. Chem. Mater. 25, 1199–1210 (2013).

    CAS  Google Scholar 

  95. 95

    Kim, B. H. et al. Sizing by weighing: characterizing sizes of ultrasmall-sized iron oxide nanocrystals using MALDI-TOF mass spectrometry. J. Am. Chem. Soc. 135, 2407–2410 (2013).

    CAS  Google Scholar 

  96. 96

    Jensen, K. M. Ø . et al. Mechanisms for iron oxide formation under hydrothermal conditions: an in situ total scattering study. ACS Nano 8, 10704–10714 (2014).

    CAS  Google Scholar 

  97. 97

    Gebauer, D., Völkel, A. & Cölfen, H. Stable prenucleation calcium carbonate clusters. Science 322, 1819–1822 (2008).

    CAS  Google Scholar 

  98. 98

    Gary, D. C., Terban, M. W., Billinge, S. J. L. & Cossairt, B. M. Two-step nucleation and growth of InP quantum dots via magic-sized cluster intermediates. Chem. Mater. 27, 1432–1441 (2015).

    CAS  Google Scholar 

  99. 99

    Peng, Z. A. & Peng, X. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J. Am. Chem. Soc. 124, 3343–3353 (2002).

    CAS  Google Scholar 

  100. 100

    Jiang, Z. J. & Kelley, D. F. Role of magic-sized clusters in the synthesis of CdSe nanorods. ACS Nano 4, 1561–1572 (2010).

    CAS  Google Scholar 

  101. 101

    Joo, J., Son, J. S., Kwon, S. G., Yu, J. H. & Hyeon, T. Low-temperature solution-phase synthesis of quantum well structured CdSe nanoribbons. J. Am. Chem. Soc. 128, 5632–5633 (2006).

    CAS  Google Scholar 

  102. 102

    Yu, J. H. et al. Giant Zeeman splitting in nucleation-controlled doped CdSe:Mn2+ quantum nanoribbons. Nat. Mater. 9, 47–53 (2010).

    CAS  Google Scholar 

  103. 103

    Zhang, T. H. & Liu, X. Y. How does a transient amorphous precursor template crystallization. J. Am. Chem. Soc. 129, 13520–13526 (2007).

    CAS  Google Scholar 

  104. 104

    Zhang, T. H. & Liu, X. Y. Nucleation: what happens at the initial stage? Angew. Chem. Int. Ed. Engl. 48, 1308–1312 (2009).

    CAS  Google Scholar 

  105. 105

    Zhang, T. H. & Liu, X. Y. Multistep crystal nucleation: a kinetic study based on colloidal crystallization. J. Phys. Chem. B 111, 14001–14005 (2007).

    CAS  Google Scholar 

  106. 106

    Savage, J. R. & Dinsmore, A. D. Experimental evidence for two-step nucleation in colloidal crystallization. Phys. Rev. Lett. 102, 198302 (2009).

    CAS  Google Scholar 

  107. 107

    Wolde, P. R. t. & Frenkel, D. Enhancement of protein crystal nucleation by critical density fluctuations. Science 277, 1975–1978 (1997).

    Google Scholar 

  108. 108

    Vekilov, P. G. The two-step mechanism of nucleation of crystals in solution. Nanoscale 2, 2346–2357 (2010).

    CAS  Google Scholar 

  109. 109

    Navrotsky, A. Energetic clues to pathways to biomineralization: precursors, clusters, and nanoparticles. Proc. Natl Acad. Sci. USA 101, 12096–12101 (2004).

    CAS  Google Scholar 

  110. 110

    Navrotsky, A. Nanoscale effects on thermodynamics and phase equilibria in oxide systems. ChemPhysChem 12, 2207–2215 (2011).

    CAS  Google Scholar 

  111. 111

    Zhang, H. & Banfield, J. F. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2 . J. Phys. Chem. B 104, 3481–3487 (2000).

    CAS  Google Scholar 

  112. 112

    Van Santen, R. A. The Ostwald step rule. J. Phys. Chem. 88, 5768–5769 (1984).

    CAS  Google Scholar 

  113. 113

    Garvie, R. C. Stabilization of the tetragonal structure in zirconia microcrystals. J. Phys. Chem. 82, 218–224 (1978).

    CAS  Google Scholar 

  114. 114

    Joo, J. et al. Multigram scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals. J. Am. Chem. Soc. 125, 6553–6557 (2003).

    CAS  Google Scholar 

  115. 115

    Garzón, I. L. & Posada-Amarillas, A. Structural and vibrational analysis of amorphous Au55 clusters. Phys. Rev. B 54, 11796–11802 (1996).

    Google Scholar 

  116. 116

    Chen, X., Samia, A. C. S., Lou, Y. & Burda, C. Investigation of the crystallization process in 2 nm CdSe quantum dots. J. Am. Chem. Soc. 127, 4372–4375 (2005).

    CAS  Google Scholar 

  117. 117

    Gilbert, B., Huang, F., Zhang, H., Waychunas, G. A. & Banfield, J. F. Nanoparticles: strained and stiff. Science 305, 651–654 (2004).

    CAS  Google Scholar 

  118. 118

    Masadeh, A. S. et al. Quantitative size-dependent structure and strain determination of CdSe nanoparticles using atomic pair distribution function analysis. Phys. Rev. B 76, 115413 (2007).

    Google Scholar 

  119. 119

    Piepenbrock, M. O. M., Stirner, T., O'Neill, M. & Kelly, S. M. Growth dynamics of CdTe nanoparticles in liquid and crystalline phases. J. Am. Chem. Soc. 129, 7674–7679 (2007).

    CAS  Google Scholar 

  120. 120

    Pouget, E. M. et al. The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM. Science 323, 1455–1458 (2009).

    CAS  Google Scholar 

  121. 121

    Laven, J. et al. Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nat. Commun. 4, 1507 (2013).

    Google Scholar 

  122. 122

    Wang, L. & Nancollas, G. H. Calcium orthophosphates: crystallization and dissolution. Chem. Rev. 108, 4628–4669 (2008).

    CAS  Google Scholar 

  123. 123

    Weiner, S. & Addadi, L. Crystallization pathways in biomineralization. Annu. Rev. Mater. Res. 41, 21–40 (2011).

    CAS  Google Scholar 

  124. 124

    Gower, L. B. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem. Rev. 108, 4551–4627 (2008).

    CAS  Google Scholar 

  125. 125

    Wang, Z., Wang, F., Peng, Y., Zheng, Z. & Han, Y. Imaging the homogeneous nucleation during the melting of superheated colloidal crystals. Science 338, 87–90 (2012).

    CAS  Google Scholar 

  126. 126

    Huang, F., Zhang, H. & Banfield, J. F. Two-stage crystal-growth kinetics observed during hydrothermal coarsening of nanocrystalline ZnS. Nano Lett. 3, 373–378 (2003).

    CAS  Google Scholar 

  127. 127

    Zheng, H. et al. Observation of single colloidal platinum nanocrystal growth trajectories. Science 324, 1309–1312 (2009).

    CAS  Google Scholar 

  128. 128

    Evans, J. E., Jungjohann, K. L., Browning, N. D. & Arslan, I. Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett. 11, 2809–2813 (2011).

    CAS  Google Scholar 

  129. 129

    Chai, J., Liao, X., Giam, L. R. & Mirkin, C. A. Nanoreactors for studying single nanoparticle coarsening. J. Am. Chem. Soc. 134, 158–161 (2012).

    CAS  Google Scholar 

  130. 130

    Yuk, J. M. et al. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336, 61–64 (2012).

    CAS  Google Scholar 

  131. 131

    Liao, H.-G., Cui, L., Whitelam, S. & Zheng, H. Real-time imaging of Pt3Fe nanorod growth in solution. Science 336, 1011–1014 (2012).

    CAS  Google Scholar 

  132. 132

    Wang, C., Qiao, Q., Shokuhfar, T. & Klie, R. F. High-resolution electron microscopy and spectroscopy of ferritin in biocompatible graphene liquid cells and graphene sandwiches. Adv. Mater. 26, 3410–3414 (2014).

    CAS  Google Scholar 

  133. 133

    Li, Z. Y. et al. Three-dimensional atomic-scale structure of size-selected gold nanoclusters. Nature 451, 46–49 (2008).

    CAS  Google Scholar 

  134. 134

    Scott, M. C. et al. Electron tomography at 2.4-ångström resolution. Nature 483, 444–448 (2012).

    CAS  Google Scholar 

  135. 135

    Aert, S. V., Batenburg, K. J., Rossell, M. D., Erni, R. & Tendeloo, G. V. Three-dimensional atomic imaging of crystalline nanoparticles. Nature 470, 374–377 (2011).

    Google Scholar 

  136. 136

    Park, J. et al. 3D structure of individual nanocrystals in solution by electron microscopy. Science 349, 290–295 (2015).

    CAS  Google Scholar 

  137. 137

    Chen, C.-C. et al. Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution. Nature 496, 74–77 (2013).

    CAS  Google Scholar 

  138. 138

    Rieger, J. et al. Precursor structures in the crystallization/precipitation processes of CaCO3 and control of particle formation by polyelectrolytes. Faraday Discuss. 136, 265–277 (2007).

    CAS  Google Scholar 

  139. 139

    Pouget, E. M. et al. The development of morphology and structure in hexagonal vaterite. J. Am. Chem. Soc. 132, 11560–11565 (2010).

    CAS  Google Scholar 

  140. 140

    Davis, T. M. et al. Mechanistic principles of nanoparticle evolution to zeolite crystals. Nat. Mater. 5, 400–408 (2006).

    CAS  Google Scholar 

  141. 141

    Shields, S. P., Richards, V. N. & Buhro, W. E. Nucleation control of size and dispersity in aggregative nanoparticle growth. A study of the coarsening kinetics of thiolate-capped gold nanocrystals. Chem. Mater. 22, 3212–3225 (2010).

    CAS  Google Scholar 

  142. 142

    Banfield, J. F., Welch, S. A., Zhang, H., Ebert, T. T. & Penn, R. L. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289, 751–754 (2000).

    CAS  Google Scholar 

  143. 143

    Penn, R. L. & Banfield, J. F. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281, 969–971 (1998).

    CAS  Google Scholar 

  144. 144

    Penn, R. L. & Banfield, J. F. Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: insights from nanocrystalline TiO2 . Am. Miner. 83, 1077–1082 (1998).

    CAS  Google Scholar 

  145. 145

    Penn, R. L. & Banfield, J. F. Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania. Geochim. Cosmochim. Acta 63, 1549–1557 (1999).

    CAS  Google Scholar 

  146. 146

    Li, D. et al. Direction-specific interactions control crystal growth by oriented attachment. Science 336, 1014–1018 (2012).

    CAS  Google Scholar 

  147. 147

    Pacholski, C., Kornowski, A. & Weller, H. Self-assembly of ZnO: from nanodots to nanorods. Angew. Chem. Int. Ed. Engl. 41, 1188–1191 (2002).

    CAS  Google Scholar 

  148. 148

    Tang, Z., Kotov, N. A. & Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297, 237–240 (2002).

    CAS  Google Scholar 

  149. 149

    Yu, J. H. et al. Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism. J. Am. Chem. Soc. 127, 5662–5670 (2005).

    CAS  Google Scholar 

  150. 150

    Yuwono, V. M., Burrows, N. D., Soltis, J. A. & Penn, R. L. Oriented aggregation: formation and transformation of mesocrystal intermediates revealed. J. Am. Chem. Soc. 132, 2163–2165 (2010).

    CAS  Google Scholar 

  151. 151

    Shanbhag, S. & Kotov, N. A. On the origin of a permanent dipole moment in nanocrystals with a cubic crystal lattice: effects of truncation, stabilizers, and medium for CdS tetrahedral homologues. J. Phys. Chem. B 110, 12211–12217 (2006).

    CAS  Google Scholar 

  152. 152

    Huis, M. A. v. et al. Low-temperature nanocrystal unification through rotations and relaxations probed by in situ transmission electron microscopy. Nano Lett. 8, 3959–3963 (2008).

    Google Scholar 

  153. 153

    Min, Y., Akbulut, M., Kristiansen, K., Golan, Y. & Israelachvili, J. The role of interparticle and external forces in nanoparticle assembly. Nat. Mater. 7, 527–538 (2008).

    CAS  Google Scholar 

  154. 154

    Bishop, K. J. M., Wilmer, C. E., Soh, S. & Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 5, 1600–1630 (2009).

    CAS  Google Scholar 

  155. 155

    Batista, C. A. S., Larson, R. G. & Kotov, N. A. Nonadditivity of nanoparticle interactions. Science 350, 1242477(2015). The complexity of nanoparticle interactions is discussed in detail in this paper.

    Google Scholar 

  156. 156

    Nie, Z. et al. Self-assembly of metal–polymer analogues of amphiphilic triblock copolymers. Nat. Mater. 6, 609–614 (2007).

    CAS  Google Scholar 

  157. 157

    Li, M., Schnablegger, H. & Mann, S. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature 402, 393–395 (1999).

    CAS  Google Scholar 

  158. 158

    Talapin, D. V. et al. Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 461, 964–967 (2009).

    CAS  Google Scholar 

  159. 159

    Keys, A. S. & Glotzer, S. C. How do quasicrystals grow? Phys. Rev. Lett. 99, 235503 (2007).

    Google Scholar 

  160. 160

    Tang, Z., Zhang, Z., Wang, Y., Glotzer, S. C. & Kotov, N. A. Self-assembly of CdTe nanocrystals into free-floating sheets. Science 314, 274–278 (2006).

    CAS  Google Scholar 

  161. 161

    Zhang, Z., Tang, Z., Kotov, N. A. & Glotzer, S. C. Simulations and analysis of self-assembly of CdTe nanoparticles into wires and sheets. Nano Lett. 7, 1670–1675 (2007).

    CAS  Google Scholar 

  162. 162

    Schliehe, C. et al. Ultrathin PbS sheets by two-dimensional oriented attachment. Science 329, 550–553 (2010).

    CAS  Google Scholar 

  163. 163

    Zherebetskyy, D. et al. Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. Science 344, 1380–1384 (2014).

    CAS  Google Scholar 

  164. 164

    Son, J. S. et al. Large-scale soft colloidal template synthesis of 1.4 nm thick CdSe nanosheets. Angew. Chem. Int. Ed. Engl. 48, 6861–6864 (2009).

    CAS  Google Scholar 

  165. 165

    Son, J. S. et al. Dimension-controlled synthesis of CdS nanocrystals: from 0D quantum dots to 2D nanoplates. Small 8, 2394–2402 (2012).

    CAS  Google Scholar 

  166. 166

    Son, J. S. et al. Colloidal synthesis of ultrathin two-dimensional semiconductor nanocrystals. Adv. Mater. 23, 3214–3219 (2011).

    CAS  Google Scholar 

  167. 167

    Yang, J., Son, J. S., Yu, J. H., Joo, J. & Hyeon, T. Advances in the colloidal synthesis of two-dimensional semiconductor nanoribbons. Chem. Mater. 25, 1190–1198 (2013).

    CAS  Google Scholar 

  168. 168

    Liu, Y.-H., Wang, F., Wang, Y., Gibbons, P. C. & Buhro, W. E. Lamellar assembly of cadmium selenide nanoclusters into quantum belts. J. Am. Chem. Soc. 133, 17005–17013 (2011).

    CAS  Google Scholar 

  169. 169

    Wang, F. et al. Two-dimensional semiconductor nanocrystals: properties, templated formation, and magic-size nanocluster intermediates. Acc. Chem. Res. 48, 13–21 (2015).

    Google Scholar 

  170. 170

    Lhuillier, E. et al. Two-dimensional colloidal metal chalcogenides semiconductors: synthesis, spectroscopy, and applications. Acc. Chem. Res. 48, 22–30 (2015).

    CAS  Google Scholar 

  171. 171

    Ithurria, S., Bousquet, G. & Dubertret, B. Continuous transition from 3D to 1D confinement observed during the formation of CdSe nanoplatelets. J. Am. Chem. Soc. 133, 3070–3077 (2011).

    CAS  Google Scholar 

  172. 172

    Li, Z. & Peng, X. Size/shape-controlled synthesis of colloidal CdSe quantum disks: ligand and temperature effects. J. Am. Chem. Soc. 133, 6578–6586 (2011).

    CAS  Google Scholar 

  173. 173

    Chen, D., Gao, Y., Chen, Y., Ren, Y. & Peng, X. Structure identification of two-dimensional colloidal semiconductor nanocrystals with atomic flat basal planes. Nano Lett. 15, 4477–4482 (2015).

    CAS  Google Scholar 

  174. 174

    Herrmann, G., Gleiter, H. & Bäro, G. Investigation of low energy grain boundaries in metal by a sintering technique. Acta Metall. 24, 353–359 (1976).

    Google Scholar 

  175. 175

    Ouyang, G., Wang, C. X. & Yang, G. W. Surface energy of nanostructural materials with negative curvature and related size effects. Chem. Rev. 109, 4221–4247 (2009).

    CAS  Google Scholar 

  176. 176

    Boneschanscher, M. P. et al. Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices. Science 344, 1377–1380 (2014).

    CAS  Google Scholar 

  177. 177

    Sandeep, C. S. S. et al. Epitaxially connected PbSe quantum-dot films: controlled neck formation and optoelectronic properties. ACS Nano 8, 11499–11511 (2014).

    CAS  Google Scholar 

  178. 178

    Liao, H.-G. et al. Facet development during platinum nanocube growth. Science 345, 916–919 (2014).

    CAS  Google Scholar 

  179. 179

    Bergström, L., Sturm, E. V., Salazar-Alvarez, G. & Cölfen, H. Mesocrystals in biominerals and colloidal arrays. Acc. Chem. Res. 48, 1391–1402 (2015).

    Google Scholar 

  180. 180

    Zhou, L. & O'Brien, P. Mesocrystals — properties and applications. J. Phys. Chem. Lett. 3, 620–628 (2012).

    CAS  Google Scholar 

  181. 181

    Schwahn, D., Ma, Y. & Cölfen, H. Mesocrystal to single crystal transformation of D,L-alanine evidenced by small angle neutron scattering. J. Phys. Chem. C 111, 3224–3227 (2007).

    CAS  Google Scholar 

  182. 182

    Cölfen, H. & Mann, S. Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew. Chem. Int. Ed. Engl. 42, 2350–2365 (2003).

    Google Scholar 

  183. 183

    Wang, Y., He, J., Liu, C., Chong, W. H. & Chen, H. Thermodynamics versus kinetics in nanosynthesis. Angew. Chem. Int. Ed. Engl. 54, 2022–2051 (2015).

    CAS  Google Scholar 

  184. 184

    Gu, J., Zhang, Y.-W. & Tao, F. Shape control of bimetallic nanocatalysts through well-designed colloidal chemistry approaches. Chem. Soc. Rev. 41, 8050–8065 (2012).

    CAS  Google Scholar 

  185. 185

    Fletcher, N. H. Size effect in heterogeneous nucleation. J. Chem. Phys. 29, 572–576 (1958).

    CAS  Google Scholar 

  186. 186

    Winkler, P. M. et al. Heterogeneous nucleation experiments bridging the scale from molecular ion clusters to nanoparticles. Science 319, 1374–1377 (2008).

    CAS  Google Scholar 

  187. 187

    Pruppacher, H. R. & Klett, J. D. Microphysics of Clouds and Precipitation (Kluwer, 1997).

    Google Scholar 

  188. 188

    Reiss, P., Protière, M. & Li, L. Core/shell semiconductor nanocrystals. Small 5, 154–168 (2009).

    CAS  Google Scholar 

  189. 189

    Zhong, X., Xie, R., Zhang, Y., Basché, T. & Knoll, W. High-quality violet- to red-emitting ZnSe/CdSe core/shell nanocrystals. Chem. Mater. 17, 4038–4042 (2005).

    CAS  Google Scholar 

  190. 190

    Kwon, S. G. et al. Heterogeneous nucleation and shape transformation of multicomponent metallic nanostructures. Nat. Mater. 14, 215–223 (2015). Heterogeneous nucleation kinetics of nanoparticles and their nucleation-induced structural changes are studied.

    CAS  Google Scholar 

  191. 191

    Ithurria, S., Guyot-Sionnest, P., Mahler, B. & Dubertret, B. Mn2+ as a radial pressure gauge in colloidal core/shell nanocrystals. Phys. Rev. Lett. 99, 265501 (2007).

    Google Scholar 

  192. 192

    Jesser, W. A. & Kuhlmann-Wilsdorf, D. On the theory of interfacial energy and elastic strain of epitaxial overgrowths in parallel alignment on single crystal substrates. Phys. Stat. Sol. 19, 95–105 (1967).

    CAS  Google Scholar 

  193. 193

    Matthews, J. W. & Blakeslee, A. E. Defects in epitaxial multilayers. I. Misfit dislocations. J. Cryst.Growth 27, 118–125 (1974).

    CAS  Google Scholar 

  194. 194

    Smith, A. M., Mohs, A. M. & Nie, S. Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat. Nanotechnol. 4, 56–63 (2009).

    CAS  Google Scholar 

  195. 195

    Grünwald, M., Lutker, K., Alivisatos, A. P., Rabani, E. & Geissler, P. L. Metastability in pressure-induced structural transformations of CdSe/ZnS core/shell nanocrystals. Nano Lett. 13, 1367–1372 (2013).

    Google Scholar 

  196. 196

    Tolbert, S. H. & Alivisatos, A. P. The wurtzite to rock salt structural transformation in CdSe nanocrystals under high pressure. J. Chem. Phys. 102, 4642–4656 (1995).

    CAS  Google Scholar 

  197. 197

    Strasser, P. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010).

    CAS  Google Scholar 

  198. 198

    Zhang, S. et al. Tuning nanoparticle structure and surface strain for catalysis optimization. J. Am. Chem. Soc. 136, 7734–7739 (2014).

    CAS  Google Scholar 

  199. 199

    Moseley, P. & Curtin, W. A. Computational design of strain in core–shell nanoparticles for optimizing catalytic activity. Nano Lett. 15, 4089–4095 (2015).

    CAS  Google Scholar 

  200. 200

    Brokman, A. & Balluffi, R. W. Coincidence lattice model for the structure and energy of grain boundaries. Acta Mater. 29, 1703–1719 (1981).

    CAS  Google Scholar 

  201. 201

    Trampert, A. & Ploog, K. H. Heteroepitaxy of large-misfit systems: role of coincidence lattice. Cryst. Res. Technol. 35, 793–806 (2000).

    CAS  Google Scholar 

  202. 202

    Kwon, K. W. & Shim, M. γ-Fe2O3/II–VI sulfide nanocrystal heterojunctions. J. Am. Chem. Soc. 127, 10269–10275 (2005).

    CAS  Google Scholar 

  203. 203

    Buonsanti, R. et al. Seeded growth of asymmetric binary nanocrystals made of a semiconductor TiO2 rodlike section and a magnetic γ-Fe2O3 spherical domain. J. Am. Chem. Soc. 128, 16953–16970 (2006).

    CAS  Google Scholar 

  204. 204

    Mokari, T., Rothenberg, E., Popov, I., Costi, R. & Banin, U. Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 304, 1787–1790 (2004).

    CAS  Google Scholar 

  205. 205

    Mokari, T., Sztrum, C. G., Salant, A., Rabani, E. & Banin, U. Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods. Nat. Mater. 4, 855–863 (2005).

    CAS  Google Scholar 

  206. 206

    Zhang, J., Tang, Y., Lee, K. & Ouyang, M. Nonepitaxial growth of hybrid core–shell nanostructures with large lattice mismatches. Science 327, 1634–1638 (2010).

    CAS  Google Scholar 

  207. 207

    Gu, H., Zheng, R., Zhang, X. & Xu, B. Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles. J. Am. Chem. Soc. 126, 5664–5665 (2004).

    CAS  Google Scholar 

  208. 208

    Buck, M. R., Bondi, J. F. & Schaak, R. E. A total-synthesis framework for the construction of high-order colloidal hybrid nanoparticles. Nat. Chem. 4, 37–44 (2012).

    CAS  Google Scholar 

  209. 209

    Wu, H. et al. Formation of heterodimer nanocrystals: UO2/In2O3 and FePt/In2O3 . J. Am. Chem. Soc. 133, 14327–14337 (2011).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Institute for Basic Science (IBS) in Republic of Korea (IBS-R006-D1 and IBS-R006-Y1).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Soon Gu Kwon or Taeghwan Hyeon.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Yang, J., Kwon, S. et al. Nonclassical nucleation and growth of inorganic nanoparticles. Nat Rev Mater 1, 16034 (2016). https://doi.org/10.1038/natrevmats.2016.34

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing