Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Engineering half-Heusler thermoelectric materials using Zintl chemistry

Abstract

Half-Heusler compounds based on XNiSn and XCoSb (X = Ti, Zr or Hf) have rapidly become important thermoelectric materials for converting waste heat into electricity. In this Review, we provide an overview on the electronic properties of half-Heusler compounds in an attempt to understand their basic structural chemistry and physical properties, and to guide their further development. Half-Heusler compounds can exhibit semiconducting transport behaviour even though they are described as ‘intermetallic’ compounds. Therefore, it is most useful to consider these systems as rigid-band semiconductors within the framework of Zintl (or valence-precise) compounds. These considerations aid our understanding of their properties, such as the bandgap and low hole mobility because of interstitial Ni defects in XNiSn. Understanding the structural and bonding characteristics, including the presence of defects, will help to develop different strategies to improve and design better half-Heusler thermoelectric materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic representation of the half-Heusler structure.
Figure 2: Density of states evolution via molecular orbitals.
Figure 3: In-gap states formation via d orbitals from interstitial Ni.
Figure 4: A Pisarenko plot of half-Heusler compounds. The

References

  1. 1

    Rowe, D. M. Handbook of Thermoelectrics Ch. 1 1–10 (CRC Press, 1995).

    Google Scholar 

  2. 2

    Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008).

    CAS  Google Scholar 

  3. 3

    Baja, S. et al. Enhanced thermoelectric performance of dual-element-filled skutterudites BaxCeyCo4Sb12 . Acta Mater. 57, 5135–5139 (2009).

    Google Scholar 

  4. 4

    Sales, B., Mandrus, D. & Williams, R. Filled skutterudite antimonides: a new class of thermoelectric materials. Science 272, 1325–1328 (1996).

    CAS  Google Scholar 

  5. 5

    Shi, B. X. et al. On the design of high-efficiency thermoelectric clathrates through a systematic cross-substitution of framework elements. Adv. Funct. Mater. 30, 755–763 (2010).

    Google Scholar 

  6. 6

    Zhang, H. et al. Atomic interactions in the p-type clathrate I Ba8Au5.3Ge40.7 . Inorg. Chem. 50, 1250–1257 (2011).

    CAS  Google Scholar 

  7. 7

    Saiga, Y., Du, B., Deng, S. K., Kajisa, K. & Takabatake, T. Thermoelectric properties of type-VIII clathrate Ba8Ga16Sn30 doped with Cu. J. Alloy. Comp. 537, 303–307 (2012).

    CAS  Google Scholar 

  8. 8

    Christensen, M., Johnsen, S. & Iversen, B. B. Thermoelectric clathrates of type I. Dalt. Trans. 39, 978–992 (2010).

    CAS  Google Scholar 

  9. 9

    Zeier, W. G. et al. Phonon scattering through a local anisotropic structural disorder in the thermoelectric solid solution Cu2Zn1−xFexGeSe4 . J. Am. Chem. Soc. 135, 726–732 (2013).

    CAS  Google Scholar 

  10. 10

    Zeier, W. G. et al. Influence of a nano phase segregation on the thermoelectric properties of the p-type doped stannite compound Cu2+xZn1−xGeSe4 . J. Am. Chem. Soc. 134, 7147–7154 (2012).

    CAS  Google Scholar 

  11. 11

    Plirdpring, T. et al. Chalcopyrite CuGaTe2: a high-efficiency bulk thermoelectric material. Adv. Mater. 24, 3622–3626 (2012).

    CAS  Google Scholar 

  12. 12

    Pomrehn, G. S., Zevalkink, A., Zeier, W. G., van de Walle, A. & Snyder, G. J. Defect-controlled electronic properties in AZn2Sb2 Zintl phases. Angew. Chem. Int. Ed. Engl. 53, 3422–3426 (2014).

    CAS  Google Scholar 

  13. 13

    Kauzlarich, S. M., Brown, S. R. & Snyder, G. J. Zintl phases for thermoelectric devices. Dalt. Trans. 21, 2099–2107 (2007).

    Google Scholar 

  14. 14

    Toberer, E. S., May, A. F. & Snyder, G. J. Zintl chemistry for designing high efficiency thermoelectric materials. Chem. Mater. 22, 624–634 (2010).

    CAS  Google Scholar 

  15. 15

    Zevalkink, A. et al. Thermoelectric properties of Sr3GaSb3 — a chain-forming Zintl compound. Energy Environ. Sci. 5, 9121–9128 (2012).

    CAS  Google Scholar 

  16. 16

    Zevalkink, A. et al. Nonstoichiometry in the Zintl phase Yb1−dZn2Sb2 as a route to thermoelectric optimization. Chem. Mater. 26, 5710–5717 (2014).

    CAS  Google Scholar 

  17. 17

    Pei, Y., Wang, H. & Snyder, G. J. Band engineering of thermoelectic materials. Adv. Mater. 24, 6124–6135 (2012).

    Google Scholar 

  18. 18

    Pei, Y. et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66–69 (2011). A nice demonstration of the benefit of a multiple valley Fermi surface and the concept of converging bands for optimizing thermoelectric properties.

    CAS  Google Scholar 

  19. 19

    Pei, Y., Heinz, N. A., LaLonde, A. & Snyder, G. J. Combination of large nanostructures and complex band structure for high performance thermoelectric lead telluride. Energy Environ. Sci. 4, 3640–3645 (2011).

    CAS  Google Scholar 

  20. 20

    Zeier, W. G. et al. Band convergence in the non-cubic chalcopyrite compounds Cu2MGeSe4 . J. Mater. Chem. C 2, 10189–10194 (2014).

    CAS  Google Scholar 

  21. 21

    Scharfe, S., Kraus, F., Stegmaier, S., Schier, A. & Fässler, T. F. Zintl ions, cage compounds, and intermetalloid clusters of group 14 and group 15 elements angewandte. Angew. Chem. Int. Ed. Engl. 50, 3630–3670 (2011).

    CAS  Google Scholar 

  22. 22

    Schäfer, H., Eisenmann, B. & Müller, W. Zintl phases: transitions between metallic and ionic bonding. Angew. Chem. Int. Ed. Engl. 12, 694–712 (1973).

    Google Scholar 

  23. 23

    Zintl, E. Intermetallische Verbindungen. Angew. Chem. 52, 1–6 (1939).

    CAS  Google Scholar 

  24. 24

    Nesper, R. The Zintl-Klemm concept — a historical survey. Z. Anorg. Allg. Chem. 640, 2639–2648 (2014). This work provides a good overview over the Zintl–Klemm bonding concept.

    CAS  Google Scholar 

  25. 25

    Klemm, W. Unusual oxidation states. Angew. Chem. 63, 133–142 (1951).

    Google Scholar 

  26. 26

    Toberer, E. S., Zevalkink, A. & Snyder, G. J. Phonon engineering through crystal chemistry. J. Mater. Chem. 21, 15843–15852 (2011).

    CAS  Google Scholar 

  27. 27

    Aydemir, U. et al. Thermoelectric enhancement in BaGa2Sb2 by Zn-doping. Chem. Mater. 27, 1622–1630 (2015).

    CAS  Google Scholar 

  28. 28

    Zeier, W. G., Zevalkink, A., Schechtel, E., Tremel, W. & Snyder, G. J. Thermoelectric properties of Zn-doped Ca3AlSb3 . J. Mater. Chem. 22, 9826–9830 (2012).

    CAS  Google Scholar 

  29. 29

    Zevalkink, A., Toberer, E. S., Zeier, W. G., Flage-Larsen, E. & Snyder, G. J. Ca3AlSb3: an inexpensive, non-toxic thermoelectric material for waste heat recovery. Energy Environ. Sci. 4, 510–518 (2011).

    CAS  Google Scholar 

  30. 30

    Luo, H. et al. A large family of filled skutterudites stabilized by electron count. Nat. Commun. 6, 6489 (2015).

    CAS  Google Scholar 

  31. 31

    Liu, Y. et al. Large enhancements of thermopower and carrier mobility in quantum dot engineered bulk semiconductors. J. Am. Chem. Soc. 135, 7486–7495 (2013).

    CAS  Google Scholar 

  32. 32

    Xie, W. et al. Recent advances in nanostructured thermoelectric half-Heusler compounds. Nanomaterials 2, 379–412 (2012).

    CAS  Google Scholar 

  33. 33

    Graf, T., Felser, C. & Parkin, S. S. P. Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem. 39, 1–50 (2011). This review provides a complete overview of challenges and applications of half-Heusler compounds.

    CAS  Google Scholar 

  34. 34

    Kandpal, H., Felser, C. & Seshadri, R. Covalent bonding and the nature of band gaps in some half-Heusler compounds. J. Phys. D Appl. Phys. 39, 776–785 (2006). This publication introduces the bonding situation in half-Heusler semiconductors.

    CAS  Google Scholar 

  35. 35

    Bos, J. W. & Downie, R. A. Half-Heusler thermoelectrics: a complex class of materials. J. Phys. Condens. Matter 26, 433201 (2014).

    Google Scholar 

  36. 36

    Kimura, Y. & Chai, Y.-W. Ordered structures and thermoelectric properties of MNiSn (M = Ti, Zr, Hf)-based half-Heusler compounds affected by close relationship with Heusler compounds. JOM 67, 233–245 (2015).

    CAS  Google Scholar 

  37. 37

    Martín-González, M., Caballero-Calero, O. & Díaz-Chao, P. Nanoengineering thermoelectrics for 21st century: energy harvesting and other trends in the field. Renewable Sustainable Energy Rev. 24, 288–305 (2013).

    Google Scholar 

  38. 38

    Chen, S. & Ren, Z. Recent progress in half-Heusler for moderate temperature thermoelectric applications. Mater. Today 16, 387–295 (2013).

    CAS  Google Scholar 

  39. 39

    Carrete, J., Li, W., Mingo, N., Wang, S. & Curtarolo, S. Finding unprecedentedly low-thermal-conductivity half-Heusler semiconductors via high-throughput materials modeling. Phys. Rev. X 4, 011019 (2014).

    Google Scholar 

  40. 40

    Carrete, J., Mingo, N., Wang, S. & Curtarolo, S. Nanograined half-Heusler semiconductors as advanced thermoelectrics: an ab initio high-throughput statistical study. Adv. Funct. Mater. 24, 7427–7432 (2014).

    CAS  Google Scholar 

  41. 41

    Chaput, L., Tabola, J., Pecheur, P. & Scherrer, H. Electronic structure and thermopower of Ni(Ti0.5Hf0.5)Sn and related half-Heusler phases. Phys. Rev. B 73, 045121 (2006).

    Google Scholar 

  42. 42

    Larson, P., Mahanti, S. & Kanatzidis, M. G. Structure stability of Ni containing half-Heusler compounds. Phys. Rev. B 62, 12754 (2000).

    CAS  Google Scholar 

  43. 43

    Ögüt, S. & Rabe, K. Band gap and stability in the ternary intermetallic compounds NiSnM (M = Ti, Zr, Hf) — a first princible study. Phys. Rev. B 51, 10443 (1995).

    Google Scholar 

  44. 44

    Yang, J. et al. Evaluation of half-Heulser compounds as thermoelectric materials based on the calculated electrical transport properties. Adv. Funct. Mater. 18, 2880–2888 (2008).

    CAS  Google Scholar 

  45. 45

    Gautier, R. et al. Prediction and accelerated laboratory discovery of previously unknown 18-electron ABX compounds. Nat. Chem. 7, 308–316 (2015).

    CAS  Google Scholar 

  46. 46

    Bende, D., Grin, Y. & Wagner, F. R. Covalence and ionicity in MgAgAs-type compounds. Chem. Eur. J. 20, 9702–9708 (2014).

    CAS  Google Scholar 

  47. 47

    Xie, H.-H. et al. Interrelation between atomic switching disorder and thermoelectric properties of ZrNiSn half-Heusler compounds. CrystEngComm 14, 4467 (2012).

    CAS  Google Scholar 

  48. 48

    Köhler, J., Deng, S., Lee, C. & Whangbo, M.-H. On the origin of a band gap in compounds of diamond-like structures. Inorg. Chem. 46, 1957–1959 (2007). This publication introduces the possible view of half-Heusler materials as Zintl phases.

    Google Scholar 

  49. 49

    Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008). This review illustrates the challenges and possible guidelines in complex thermoelectrics.

    CAS  Google Scholar 

  50. 50

    Bende, D., Wagner, F. R. & Grin, Y. 8−N rule and chemical bonding in main-group MgAgAs-type compounds. Inorg. Chem. 54, 3970–3978 (2015).

    CAS  Google Scholar 

  51. 51

    Kauzlarich, S. M. Chemistry, Structure, and Bonding of Zintl Phases and Ions (Wiley VCH, 1996).

    Google Scholar 

  52. 52

    Mooser, E. & Pearson, W. B. The chemical bond in semiconductors. J. Electron. 1, 629 (1956).

    CAS  Google Scholar 

  53. 53

    Pearson, W. B. The crystal structures of semiconductors and a general valence rule. Acta Cryst. 17, 1–15 (1964).

    CAS  Google Scholar 

  54. 54

    Hoffmann, R. How chemistry and physics meet in the solid state. Angew. Chem. Int. Ed. Engl. 26, 846–878 (1987). This seminal review explains band structures from a chemical perspective.

    Google Scholar 

  55. 55

    Ouardi, S. et al. Electronic structure and optical, mechanical, and transport properties of the pure, electron-doped, and hole-doped Heusler compound CoTiSb. Phys. Rev. B 86, 045116 (2012).

    Google Scholar 

  56. 56

    Xie, H., Yu, C., He, B., Zhu, T. & Zhao, X. Thermoelectric properties and n- to p-type conversion of Co-doped ZrNiSn-based half-Heusler alloys. J. Electron. Mater. 4, 1826–1830 (2012).

    Google Scholar 

  57. 57

    Joshi, G. et al. Enhancement in thermoelectric figure-of-merit of an n-type half-Heusler compound by the nanocomposite approach. Adv. Energy Mater. 1, 643–647 (2011).

    CAS  Google Scholar 

  58. 58

    Muta, H., Kanemitsu, T., Kurosaki, K. & Yamanaka, S. High-temperature thermoelectric properties of Nb-doped MNiSn (M = Ti, Zr) half-Heusler compound. J. Alloys Compd. 469, 50–55 (2009).

    CAS  Google Scholar 

  59. 59

    Ouardi, S. et al. Electronic structure and optical, mechanical, and transport properties of the pure, electron-doped, and hole-doped Heusler compound CoTiSb. Phys. Rev. B 86, 045116 (2012).

    Google Scholar 

  60. 60

    Cox, P. A. The Electronic Structure and Chemistry of Solids Ch. 1 1–60 (Oxford Univ. Press, 1987).

    Google Scholar 

  61. 61

    Culp, S. et al. (Zr,Hf)Co(Sb,Sn) half-Heusler phases as high temperature (>700 °C) p-type thermoelectric materials. Appl. Phys. Lett. 93, 022105 (2008).

    Google Scholar 

  62. 62

    Romaka, L. et al. Electronic structure of the Ti1−xScxNiSn and Zr1−xScxNiSn solid solutions. J. Alloys Compd. 396, 64–68 (2005).

    CAS  Google Scholar 

  63. 63

    Horyn', A. et al. Crystal structure and physical properties of (Ti,Sc)NiSn and (Zr,Sc)NiSn solid solutions. J. Alloys Compd. 363, 10–14 (2004).

    CAS  Google Scholar 

  64. 64

    Schmitt, J., Gibbs, Z. M., Snyder, J. & Felser, C. Resolving the true band gap of ZrNiSn half-Heusler thermoelectric materials. Mater. Horiz. 2, 68–75 (2015).

    CAS  Google Scholar 

  65. 65

    Wang, H., Cao, X., Takagiwa, Y. & Snyder, G. J. Higher mobility in bulk semiconductors by separating the dopants from the charge-conducting band — a case study of thermoelectric PbSe. Mater. Horiz. 2, 323–329 (2015).

    CAS  Google Scholar 

  66. 66

    Zunger, A. Practical doping principles. Appl. Phys. Lett. 83, 57–59 (2003). This work is a guideline for understanding defect chemistry and the influences of defects in semiconductors.

    CAS  Google Scholar 

  67. 67

    Aydemir, U. et al. BaGe5: a new type of intermetallic clathrate. J. Am. Chem. Soc. 132, 10984–10985 (2010).

    CAS  Google Scholar 

  68. 68

    Candolfi, C. et al. Transport properties of the clathrate BaGe5 . J. Appl. Phys. 110, 043715 (2011).

    Google Scholar 

  69. 69

    Aydemir, U. et al. Crystal structure and transport properties of Ba8Ge43 . Dalt. Trans. 39, 1078–1088 (2010).

    CAS  Google Scholar 

  70. 70

    Downie, R. A., Smith, R. I., MacLaren, D. A. & Bos, J.-W. G. Metal distributions, efficient n-type doping, and evidence for in-gap states in TiNiMy Sn (M = Co, Ni, Cu) half-Heusler nanocomposites. Chem. Mater. 27, 2449–2459 (2015).

    CAS  Google Scholar 

  71. 71

    Miyamoto, K. et al. In-gap electronic states responsible for the excellent thermoelectric properties of Ni-based half-Heusler alloys. Appl. Phys. Express 1, 081901 (2008).

    Google Scholar 

  72. 72

    Miyazaki, H. et al. Electronic and local crystal structures of the ZrNiSn half-Heusler thermoelectric material. Mater. Trans. 55, 1209–1214 (2014).

    CAS  Google Scholar 

  73. 73

    Douglas, J. E., Chater, P. a., Brown, C. M., Pollock, T. M. & Seshadri, R. Nanoscale structural heterogeneity in Ni-rich half-Heusler TiNiSn. J. Appl. Phys. 116, 163514 (2014).

    Google Scholar 

  74. 74

    Downie, R. A., Barczak, S. A., Smith, R. I. & Bos, J. W. G. Compositions and thermoelectric properties of XNiSn (X = Ti, Zr, Hf) half-Heusler alloys. J. Mater. Chem. C 3, 10534–10542 (2015).

    CAS  Google Scholar 

  75. 75

    Zhu, T., Fu, C., Xie, H., Liu, Y. & Zhao, X. High efficiency half-Heusler thermoelectric materials for energy harvesting. Adv. Energy Mater. 5, 1500588 (2015).

    Google Scholar 

  76. 76

    Aliev, F. G., Kozyrkov, V. V., Moshchalkoc, V. V., Scolozdra, R. V. & Durczewski, K. Narrow band in the intermetallic compounds MNiSn (M = Ti, Zr, Hf). Z. Phys. B. Condens. Matter 80, 353–357 (1988).

    Google Scholar 

  77. 77

    Slebarski, A., Jezierski, A., Lütkehoff, S. & Neumann, M. Electronic structure of X2ZrSn and XZrSn-type Heusler alloys with X = Co or Ni. Phys. Rev. B 57, 6408–6412 (1998).

    CAS  Google Scholar 

  78. 78

    Seidl, A., Görling, A., Vogl, P., Majewski, J. A. & Levy, M. Generalized Kohn–Sham schemes and the band-gap problem. Phys. Rev. B 53, 3764–3774 (1996).

    CAS  Google Scholar 

  79. 79

    Do, D. T., Mahanti, S. S. & Pulikkoti, J. J. Electronic structure of Zr–Ni–Sn systems: role of clustering and nanostructures in half-Heusler and Heusler limits. J. Phys. Condens. Matter 26, 275501 (2014).

    Google Scholar 

  80. 80

    Xie, H. et al. Interrelation between atomic switsching disorder and thermoelectric properties of ZrNiSn half-Heusler compounds. Cryst. Eng. Comm. 14, 4467 (2012).

    CAS  Google Scholar 

  81. 81

    Xie, H. et al. The intrinsic disorder related alloy scattering in ZrNiSn half-Heusler thermoelectric materials. Sci. Rep. 4, 6888 (2014).

    CAS  Google Scholar 

  82. 82

    Xie, H. et al. Beneficial contribution of alloy disorder to electron and phonon transport in half-Heusler thermoelectric materials. Adv. Funct. Mater. 23, 5123–5130 (2013).

    CAS  Google Scholar 

  83. 83

    Hattori, K., Miyazaki, H., Yoshida, K., Inukai, M. & Nishino, Y. Direct observation of the electronic structure in thermoelectric half-Heusler alloys Zr1−x Mx NiSn (M = Y and Nb). J. Appl. Phys. 117, 205102 (2015).

    Google Scholar 

  84. 84

    Wang, S. et al. Conductivity-limiting bipolar thermal conductivity in semiconductors. Sci. Rep. 5, 10136 (2015).

    CAS  Google Scholar 

  85. 85

    Gibbs, Z. M., Kim, H.-S., Wang, H. & Snyder, G. J. Band gap estimation from temperature dependent Seebeck measurement — deviations from the 2e|S|max T max relation. Appl. Phys. Lett. 106, 22112 (2015).

    Google Scholar 

  86. 86

    Wood, C. Materials for thermoelectric energy conversion. Rep. Prog. Phys. 51, 459–539 (1988).

    CAS  Google Scholar 

  87. 87

    Heinz, N. A., Ikeda, T., Snyder, G. J. & Medlin, D. L. Interfacial disconnections at Sb2Te3 precipitates in PbTe: mechanisms of strain accommodation and phase transformation at a tetradymite/rocksalt telluride interface. Acta Mater. 59, 7724–7735 (2011).

    CAS  Google Scholar 

  88. 88

    Heinz, N. A., Ikeda, T., Pei, Y. & Snyder, G. J. Applying quantitative microstructure control in advanced functional composites. Adv. Funct. Mater. 24, 2135–2153 (2014).

    CAS  Google Scholar 

  89. 89

    Maji, P. et al. Thermoelectric performance of nanostructured p-type Zr0.5Hf0.5Co0.4Rh0.6Sb1−xSnx half-Heusler alloys. J. Solid State Chem. 202, 70–76 (2013).

    CAS  Google Scholar 

  90. 90

    Makongo, J. P. a et al. Simultaneous large enhancements in thermopower and electrical conductivity of bulk nanostructured half-Heusler alloys. J. Am. Chem. Soc. 133, 18843–18852 (2011).

    CAS  Google Scholar 

  91. 91

    Skovsen, I. et al. Multi-temperature synchrotron PXRD and physical properties study of half-Heusler TiCoSb. Dalt. Trans. 39, 10154–10159 (2010).

    CAS  Google Scholar 

  92. 92

    May, A. F., Toberer, E. S., Saramat, A. & Snyder, G. J. Characterization and analysis of thermoelectric transport in n-type Ba8Ga16−xGe30+x . Phys. Rev. B 80, 125205 (2009).

    Google Scholar 

  93. 93

    Ravich, Y. I., Efimova, B. A. & Smirnov, I. A. Semiconducting Lead Chalcogenides (Plenum Press, 1970).

    Google Scholar 

  94. 94

    Singh, D. & Mazin, I. Calculated thermoelectric properties of La-filled skutterudites. Phys. Rev. B 56, R1650(R) (1997).

    Google Scholar 

  95. 95

    Chen, S. et al. Effect of Hf concentration on thermoelectric properties of nanostructured n-type half-Heusler materials HfxZr1−xNiSn0.99Sb0.01 . Adv. Energy Mater. 3, 1210–1214 (2013).

    CAS  Google Scholar 

  96. 96

    Gałazka, K. et al. Improved thermoelectric performance of (Zr0.3Hf0.7)NiSn half-Heusler compounds by Ta substitution. J. Appl. Phys. 115, 183704 (2014).

    Google Scholar 

  97. 97

    Kim, S. W., Kimura, Y. & Mishima, Y. High temperature thermoelectric properties of TiNiSn-based half-Heusler compounds. Intermetallics 15, 349–356 (2007).

    CAS  Google Scholar 

  98. 98

    Lee, P. J., Tseng, S. C. & Chao, L. S. High-temperature thermoelectric properties of Tix(ZrHf)0.99−xV0.01Ni0.9Pd0.1Sn0.99Sb0.01 half-Heusler alloys. J. Alloys Compd. 496, 620–623 (2010).

    CAS  Google Scholar 

  99. 99

    Simonson, J. W. & Poon, S. J. Electronic structure of transition metal-doped XNiSn and XCoSb (X = Hf, Zr) phases in the vicinity of the band gap. J. Phys. Condens. Matter 20, 255220 (2008).

    Google Scholar 

  100. 100

    Simonson, J. W., Wu, D., Xie, W. J., Tritt, T. M. & Poon, S. J. Introduction of resonant states and enhancement of thermoelectric properties in half-Heusler alloys. Phys. Rev. B 83, 235211 (2011).

    Google Scholar 

  101. 101

    Uher, C., Yang, J., Hu, S., Morelli, D. T. & Meisner, G. P. Transport properties of pure and doped MNiSn (M=Zr, Hf). Phys. Rev. B 59, 8615–8621 (1999).

    CAS  Google Scholar 

  102. 102

    Xiao, K., Zhu, T.-J., Yu, C., Yang, S.-H. & Zhao, X.-B. P-type doping of Hf0.6Zr0.4NiSn half-Heusler thermoelectric materials prepared by levitation melting and spark plasma sintering. J. Mater. Res. 26, 1913–1918 (2011).

    CAS  Google Scholar 

  103. 103

    Yu, C. et al. High-performance half-Heusler thermoelectric materials Hf1−xZrxNiSn1−ySby prepared by levitation melting and spark plasma sintering. Acta Mater. 57, 2757–2764 (2009).

    CAS  Google Scholar 

  104. 104

    Yu, C. et al. Reduced grain size and improved thermoelectric properties of melt spun (Hf,Zr)NiSn half-Heusler alloys. J. Electron. Mater. 39, 2008–2012 (2010).

    CAS  Google Scholar 

  105. 105

    Zhu, T. J. et al. Effects of yttrium doping on the thermoelectric properties of Hf0.6 Zr0.4NiSn0.98Sb0.02 half-Heusler alloys. J. Appl. Phys. 108, 044903 (2010).

    Google Scholar 

  106. 106

    Day, T. W., Zeier, W. G., Brown, D. R., Melot, B. C. & Snyder, G. J. Determining conductivity and mobility values of individual components in multiphase composite Cu1.97Ag0.03Se. Appl. Phys. Lett. 105, 172103 (2014).

    Google Scholar 

  107. 107

    Schwall, M. et al. Thermomagnetic properties improved by self-organized flower-like phase separation of ferromagnetic Co2Dy0.5Mn0.5Sn. Adv. Funct. Mater. 22, 1822–1826 (2012).

    CAS  Google Scholar 

  108. 108

    Hazama, H., Matsubara, M., Asahi, R. & Takeuchi, T. Improvement of thermoelectric properties for half-Heusler TiNiSn by interstitial Ni defects. J. Appl. Phys. 110, 063710 (2011).

    Google Scholar 

  109. 109

    Romanaka, V. et al. Peculiarities of structural disorder in Zr- and Hf-containing Heusler and half-Heusler stannides. Intermetallics 35, 45–52 (2013).

    Google Scholar 

  110. 110

    Birkel, C. S. et al. Improving the thermoelectric properties of half-Heusler TiNiSn through inclusion of a second full-Heusler phase: microwave preparation and spark plasma sintering of TiNi(1+x)Sn. Phys. Chem. Chem. Phys. 15, 6990–6997 (2013).

    CAS  Google Scholar 

  111. 111

    Birkel, C. S. et al. Rapid microwave preparation of thermoelectric TiNiSn and TiCoSb half-Heusler compounds. Chem. Mater. 24, 2558–2565 (2012).

    CAS  Google Scholar 

  112. 112

    Schwall, M. & Balke, B. Enhanced thermoelectric performance in the p-type half-Heusler (Ti/Zr/Hf)CoSb0.8Sn0.2 system via phase separation. Phys. Chem. Chem. Phys. 16, 25258–25262 (2014).

    Google Scholar 

  113. 113

    May, A. F., Singh, D. J. & Snyder, G. J. Influence of band structure on the large thermoelectric performance of lanthanum telluride. Phys. Rev. B 79, 153101 (2009).

    Google Scholar 

  114. 114

    Rausch, E., Balke, B., Deschauer, T., Ouardi, S. & Felser, C. Charge carrier concentration optimization of thermoelectric p-type Half-Heulser compounds. APL Mater. 2, 041516 (2015).

    Google Scholar 

  115. 115

    Fu, C. et al. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat. Commun. 6, 8144 (2015).

    Google Scholar 

  116. 116

    Fu, C., Zhu, T., Liu, Y., Xie, H. & Zhao, X. Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit zT >1. Energy Environ. Sci. 8, 216–220 (2015).

    CAS  Google Scholar 

  117. 117

    Nolas, G. S., Poon, J. & Kanatzidis, M. G. Recent developments thermoelectric materials. MRS Bull. 31, 199–205 (2006).

    CAS  Google Scholar 

  118. 118

    Johnsen, S. et al. Nanostructures boost the thermoelectric performance of PbS. J. Am. Chem. Soc. 133, 3460–3470 (2011).

    CAS  Google Scholar 

  119. 119

    Sootsman, J. R., Chung, D. Y. & Kanatzidis, M. G. New and old concepts in thermoelectric materials. Angew. Chem. Int. Ed. Engl. 48, 8616–8639 (2009).

    CAS  Google Scholar 

  120. 120

    Liu, H. et al. Copper ion-phonon liquid thermoelectric materials. Nat. Mater. 11, 422–425 (2012).

    Google Scholar 

  121. 121

    Weldert, K. S. et al. Thermoelectric transport in Cu7PSe6 with high copper ionic mobility. J. Am. Chem. Soc. 136, 12035–12040 (2014).

    CAS  Google Scholar 

  122. 122

    Biswas, K. et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012).

    CAS  Google Scholar 

  123. 123

    Zhao, L. D. et al. All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance. Energy Environ. Sci. 6, 3346–3355 (2013).

    CAS  Google Scholar 

  124. 124

    Cordier, G., Schäfer, H. & Stelter, M. Ca3AlSb3 und Ca5Al2Bi6, zwei neue Zintlphasen mit kettenförmigen Anionen. Z. Naturforsch. 39b, 727–732 (1984).

    CAS  Google Scholar 

  125. 125

    Cordier, G. & Schäfer, H. Ca3AlAs3-ein intermetallisches analogon zu den kettensilicaten. Angew. Chem. 93, 474 (1981).

    CAS  Google Scholar 

  126. 126

    Brown, S. R., Kauzlarich, S. M., Gascoin, F. & Snyder, G. J. Yb14MnSb11: new high efficiency thermoelectric material for power generation. Chem. Mater. 18, 1873–1877 (2006).

    CAS  Google Scholar 

  127. 127

    Toberer, E. S. et al. Traversing the metal–insulator transition in a Zintl phase: rational enhancement of thermoelectric efficiency in Yb14Mn1−xAlxSb11 . Adv. Funct. Mater. 18, 2795–2800 (2008).

    CAS  Google Scholar 

  128. 128

    Toberer, E. S., Brown, S. R., Ikeda, T., Kauzlarich, S. M. & Snyder, G. J. High thermoelectric efficiency in lanthanum doped Yb14MnSb11 . Appl. Phys. Lett. 93, 062110 (2008).

    Google Scholar 

  129. 129

    Gascoin, F., Ottensmann, S., Stark, D., Haile, S. M. & Snyder, G. J. Zintl phases as thermoelectric materials: tuned transport properties of the compounds Cax Yb1−xZn2Sb2 . Adv. Funct. Mater. 15, 1860–1864 (2005).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Zunger and Y. Yu for helpful discussions. W.G.Z. and G.J.S. acknowledge the EFRC Solid-State Solar-Thermal Energy Conversion Center (S3TEC) award number DE-SC0001299 and funding from the Bosch-BERN program. J.S. and C.F. acknowledge the German BMBF joint project TEG 2020. The band structure and partial density of states calculations for this project were performed under the Materials Project work, supported by the Department of Energy Basic Energy Sciences program under Grant No. EDCBEE, DOE Contract DE-AC02-05CH11231.

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Jeffrey Snyder.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zeier, W., Schmitt, J., Hautier, G. et al. Engineering half-Heusler thermoelectric materials using Zintl chemistry. Nat Rev Mater 1, 16032 (2016). https://doi.org/10.1038/natrevmats.2016.32

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing