Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chemical principles of single-molecule electronics

Abstract

The field of single-molecule electronics harnesses expertise from engineering, physics and chemistry to realize circuit elements at the limit of miniaturization; it is a subfield of nanoelectronics in which the electronic components are single molecules. In this Review, we survey the field from a chemical perspective and discuss the structure–property relationships of the three components that form a single-molecule junction: the anchor, the electrode and the molecular bridge. The spatial orientation and electronic coupling between each component profoundly affect the conductance properties and functions of the single-molecule device. We describe the design principles of the anchor group, the influence of the electronic configuration of the electrode and the effect of manipulating the structure of the molecular backbone and of its substituent groups. We discuss single-molecule conductance switches as well as the phenomenon of quantum interference and then trace their fundamental roots back to chemical principles.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: A schematic of a single-molecule junction with electrode, anchor and bridge components.
Figure 2: Anchor group archetypes and the nature of charge carriers for common dative anchors.
Figure 3: Tuning the structure of the anchor, electrode and bridge to modulate charge-transport properties in single-molecule junctions.
Figure 4: Single-molecule conductance switches and quantum interference features.
Figure 5: Pen-and-paper methods to predict quantum interference.

References

  1. 1

    Aviram, A. & Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974).

    CAS  Google Scholar 

  2. 2

    Choi, H. & Mody, C. C. M. The long history of molecular electronics: microelectronics origins of nanotechnology. Soc. Stud. Sci. 39, 11–50 (2009).

    Google Scholar 

  3. 3

    Tao, N. J. Electron transport in molecular junctions. Nat. Nanotechnol. 1, 173–181 (2006).

    CAS  Google Scholar 

  4. 4

    Moth-Poulsen, K. & Bjørnholm, T. Molecular electronics with single molecules in solid-state devices. Nat. Nanotechnol. 4, 551–556 (2009).

    CAS  Google Scholar 

  5. 5

    Aradhya, S. V. & Venkataraman, L. Single-molecule junctions beyond electronic transport. Nat. Nanotechnol. 8, 399–410 (2013).

    CAS  Google Scholar 

  6. 6

    Ward, D. R., Scott, G. D., Keane, Z. K., Halas, N. J. & Natelson, D. Electronic and optical properties of electromigrated molecular junctions. J. Phys. Condens. Matter 20, 374118 (2008).

    CAS  Google Scholar 

  7. 7

    Bumm, L. A. et al. Are single molecular wires conducting? Science 271, 1705–1707 (1996).

    CAS  Google Scholar 

  8. 8

    Moreland, J. & Ekin, J. W. Electron tunneling experiments using Nb–Sn ‘break’ junctions. J. Appl. Phys. 58, 3888–3895 (1985).

    CAS  Google Scholar 

  9. 9

    Muller, C. J., van Ruitenbeek, J. M. & de Jongh, L. J. Experimental observation of the transition from weak link to tunnel junction. Phys. C Supercond. 191, 485–504 (1992).

    Google Scholar 

  10. 10

    Smit, R. H. M. et al. Measurement of the conductance of a hydrogen molecule. Nature 419, 906–909 (2002).

    CAS  Google Scholar 

  11. 11

    Reed, M. A. Conductance of a molecular junction. Science 278, 252–254 (1997).

    CAS  Google Scholar 

  12. 12

    Xu, B. & Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003).

    CAS  Google Scholar 

  13. 13

    Venkataraman, L., Klare, J. E., Nuckolls, C., Hybertsen, M. S. & Steigerwald, M. L. Dependence of single-molecule junction conductance on molecular conformation. Nature 442, 904–907 (2006).

    CAS  Google Scholar 

  14. 14

    Wold, D. J. & Frisbie, C. D. Formation of metal–molecule–metal tunnel junctions: microcontacts to alkanethiol monolayers with a conducting AFM tip. J. Am. Chem. Soc. 122, 2970–2971 (2000).

    CAS  Google Scholar 

  15. 15

    Park, H., Lim, A. K. L., Alivisatos, A. P., Park, J. & McEuen, P. L. Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 75, 301–303 (1999).

    CAS  Google Scholar 

  16. 16

    Andres, R. P. et al. Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters. Science 273, 1690–1693 (1996).

    CAS  Google Scholar 

  17. 17

    Cui, X. D. et al. Reproducible measurement of single-molecule conductivity. Science 294, 571–574 (2001).

    CAS  Google Scholar 

  18. 18

    Guo, X. et al. Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules. Science 311, 356–359 (2006).

    CAS  Google Scholar 

  19. 19

    Prins, F. et al. Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes. Nano Lett. 11, 4607–4611 (2011).

    CAS  Google Scholar 

  20. 20

    Morpurgo, A. F., Marcus, C. M. & Robinson, D. B. Controlled fabrication of metallic electrodes with atomic separation. Appl. Phys. Lett. 74, 2084–2086 (1999).

    CAS  Google Scholar 

  21. 21

    Chen, X. et al. Chemical fabrication of heterometallic nanogaps for molecular transport junctions. Nano Lett. 9, 3974–3979 (2009).

    CAS  Google Scholar 

  22. 22

    Quek, S. Y. et al. Mechanically controlled binary conductance switching of a single-molecule junction. Nat. Nanotechnol. 4, 230–234 (2009).

    CAS  Google Scholar 

  23. 23

    Su, T. A. et al. Silicon ring strain creates high-conductance pathways in single-molecule circuits. J. Am. Chem. Soc. 135, 18331–18334 (2013).

    CAS  Google Scholar 

  24. 24

    Kiguchi, M. et al. Single molecular resistive switch obtained via sliding multiple anchoring points and varying effective wire length. J. Am. Chem. Soc. 136, 7327–7332 (2014).

    CAS  Google Scholar 

  25. 25

    Moreno-García, P. et al. Charge transport in C60-based dumbbell-type molecules: mechanically induced switching between two distinct conductance states. J. Am. Chem. Soc. 137, 2318–2327 (2015).

    Google Scholar 

  26. 26

    Lafferentz, L. et al. Conductance of a single conjugated polymer as a continuous function of its length. Science 323, 1193–1197 (2009).

    CAS  Google Scholar 

  27. 27

    Meisner, J. S. et al. A single-molecule potentiometer. Nano Lett. 11, 1575–1579 (2011).

    CAS  Google Scholar 

  28. 28

    Leary, E. et al. Unambiguous one-molecule conductance measurements under ambient conditions. Nano Lett. 11, 2236–2241 (2011).

    CAS  Google Scholar 

  29. 29

    Martin, C. A. et al. Fullerene-based anchoring groups for molecular electronics. J. Am. Chem. Soc. 130, 13198–13199 (2008).

    CAS  Google Scholar 

  30. 30

    Aradhya, S. V., Frei, M., Hybertsen, M. S. & Venkataraman, L. Van der Waals interactions at metal/organic interfaces at the single-molecule level. Nat. Mater. 11, 872–876 (2012).

    CAS  Google Scholar 

  31. 31

    Heimel, G. et al. Charged and metallic molecular monolayers through surface-induced aromatic stabilization. Nat. Chem. 5, 187–194 (2013).

    CAS  Google Scholar 

  32. 32

    Schläfer, H. L. & Gliemann, G. Basic Principles of Ligand Field Theory (Wiley-Interscience, 1969).

    Google Scholar 

  33. 33

    Venkataraman, L. et al. Single-molecule circuits with well-defined molecular conductance. Nano Lett. 6, 458–462 (2006).

    CAS  Google Scholar 

  34. 34

    Reddy, P., Jang, S.-Y., Segalman, R. A. & Majumdar, A. Thermoelectricity in molecular junctions. Science 315, 1568–1571 (2007).

    CAS  Article  Google Scholar 

  35. 35

    Widawsky, J. R., Darancet, P., Neaton, J. B. & Venkataraman, L. Simultaneous determination of conductance and thermopower of single molecule junctions. Nano Lett. 12, 354–358 (2012).

    CAS  Google Scholar 

  36. 36

    Derosa, P. A. & Seminario, J. M. Electron transport through single molecules: scattering treatment using density functional and green function theories. J. Phys. Chem. B 105, 471–481 (2001).

    CAS  Google Scholar 

  37. 37

    Kamenetska, M. et al. Conductance and geometry of pyridine-linked single-molecule junctions. J. Am. Chem. Soc. 132, 6817–6821 (2010).

    CAS  Google Scholar 

  38. 38

    Lee, W. et al. Heat dissipation in atomic-scale junctions. Nature 498, 209–212 (2013).

    CAS  Google Scholar 

  39. 39

    Koga, J., Tsuji, Y. & Yoshizawa, K. Orbital control of single-molecule conductance perturbed by π-accepting anchor groups: cyanide and isocyanide. J. Phys. Chem. C 116, 20607–20616 (2012).

    CAS  Google Scholar 

  40. 40

    Mayor, M. et al. Electric current through a molecular rod — relevance of the position of the anchor groups. Angew. Chem. Int. Ed. Engl. 42, 5834–5838 (2003).

    CAS  Google Scholar 

  41. 41

    Dell, E. J., Capozzi, B., Xia, J., Venkataraman, L. & Campos, L. M. Molecular length dictates the nature of charge carriers in single-molecule junctions of oxidized oligothiophenes. Nat. Chem. 7, 209–214 (2015).

    CAS  Google Scholar 

  42. 42

    Li, Z., Smeu, M., Ratner, M. A. & Borguet, E. Effect of anchoring groups on single molecule charge transport through porphyrins. J. Phys. Chem. C 117, 14890–14898 (2013).

    CAS  Google Scholar 

  43. 43

    Park, Y. S. et al. Frustrated rotations in single-molecule junctions. J. Am. Chem. Soc. 131, 10820–10821 (2009).

    CAS  Google Scholar 

  44. 44

    Moreno-García, P. et al. Single-molecule conductance of functionalized oligoynes: length dependence and junction evolution. J. Am. Chem. Soc. 135, 12228–12240 (2013).

    Google Scholar 

  45. 45

    Batra, A. et al. Tuning rectification in single-molecular diodes. Nano Lett. 13, 6233–6237 (2013).

    CAS  Google Scholar 

  46. 46

    Xia, J. et al. Breakdown of interference rules in azulene, a nonalternant hydrocarbon. Nano Lett. 14, 2941–2945 (2014).

    CAS  Google Scholar 

  47. 47

    Danilov, A. et al. Electronic transport in single molecule junctions: control of the molecule–electrode coupling through intramolecular tunneling barriers. Nano Lett. 8, 1–5 (2008).

    CAS  Google Scholar 

  48. 48

    Su, T. A., Li, H., Steigerwald, M. L., Venkataraman, L. & Nuckolls, C. Stereoelectronic switching in single-molecule junctions. Nat. Chem. 7, 215–220 (2015).

    CAS  Google Scholar 

  49. 49

    Su, T. A. et al. Single-molecule conductance in atomically precise germanium wires. J. Am. Chem. Soc. 137, 12400–12405 (2015).

    CAS  Google Scholar 

  50. 50

    Arroyo, C. R. et al. Influence of binding groups on molecular junction formation. J. Am. Chem. Soc. 133, 14313–14319 (2011).

    CAS  Google Scholar 

  51. 51

    Li, H. et al. Electric field breakdown in single molecule junctions. J. Am. Chem. Soc. 137, 5028–5033 (2015).

    CAS  Google Scholar 

  52. 52

    Tour, J. M. et al. Self-assembled monolayers and multilayers of conjugated thiols, α,ω-dithiols, and thioacetyl-containing adsorbates. Understanding attachments between potential molecular wires and gold surfaces. J. Am. Chem. Soc. 117, 9529–9534 (1995).

    CAS  Google Scholar 

  53. 53

    Häkkinen, H. The gold–sulfur interface at the nanoscale. Nat. Chem. 4, 443–455 (2012).

    Google Scholar 

  54. 54

    González, M. T. et al. Break-junction experiments on acetyl-protected conjugated dithiols under different environmental conditions. J. Phys. Chem. C 115, 17973–17978 (2011).

    Google Scholar 

  55. 55

    Haiss, W. et al. Precision control of single-molecule electrical junctions. Nat. Mater. 5, 995–1002 (2006).

    CAS  Google Scholar 

  56. 56

    Haiss, W. et al. Impact of junction formation method and surface roughness on single molecule conductance. J. Phys. Chem. C 113, 5823–5833 (2009).

    CAS  Google Scholar 

  57. 57

    Li, X. et al. Conductance of single alkanedithiols: conduction mechanism and effect of molecule–electrode contacts. J. Am. Chem. Soc. 128, 2135–2141 (2006).

    CAS  Google Scholar 

  58. 58

    Chen, F., Li, X., Hihath, J., Huang, Z. & Tao, N. Effect of anchoring groups on single-molecule conductance: comparative study of thiol-, amine-, and carboxylic-acid-terminated molecules. J. Am. Chem. Soc. 128, 15874–15881 (2006).

    CAS  Google Scholar 

  59. 59

    Li, C. et al. Charge transport in single Au/alkanedithiol/Au junctions: coordination geometries and conformational degrees of freedom. J. Am. Chem. Soc. 130, 318–326 (2008).

    CAS  Google Scholar 

  60. 60

    Inkpen, M. S. et al. New insights into single-molecule junctions using a robust, unsupervised approach to data collection and analysis. J. Am. Chem. Soc. 137, 9971–9981 (2015).

    CAS  Google Scholar 

  61. 61

    Rascón-Ramos, H., Artés, J. M., Li, Y. & Hihath, J. Binding configurations and intramolecular strain in single-molecule devices. Nat. Mater. 14, 517–522 (2015).

    Google Scholar 

  62. 62

    Li, Z. et al. Hapticity-dependent charge transport through carbodithioate-terminated [5,15-bis(phenylethynyl)porphinato]zinc(II) complexes in metal–molecule–metal junctions. Nano Lett. 14, 5493–5499 (2014).

    CAS  Google Scholar 

  63. 63

    Batra, A. et al. Trimethyltin-mediated covalent gold–carbon bond formation. J. Am. Chem. Soc. 136, 12556–12559 (2014).

    CAS  Google Scholar 

  64. 64

    Kim, Y., Pietsch, T., Erbe, A., Belzig, W. & Scheer, E. Benzenedithiol: a broad-range single-channel molecular conductor. Nano Lett. 11, 3734–3738 (2011).

    CAS  Google Scholar 

  65. 65

    Ulrich, J. et al. Variability of conductance in molecular junctions. J. Phys. Chem. B 110, 2462–2466 (2006).

    CAS  Google Scholar 

  66. 66

    Xiao, X., Xu, B. & Tao, J. Measurement of single molecule conductance: benzenedithiol and benzenedimethanedithiol. Nano Lett. 4, 267–271 (2004).

    CAS  Google Scholar 

  67. 67

    Cheng, Z.-L. et al. In situ formation of highly conducting covalent Au–C contacts for single-molecule junctions. Nat. Nanotechnol. 6, 353–357 (2011).

    CAS  Google Scholar 

  68. 68

    Kaletová, E. et al. The scope of direct alkylation of gold surface with solutions of C1–C4 n-alkylstannanes. J. Am. Chem. Soc. 137, 12086–12099 (2015).

    Google Scholar 

  69. 69

    Khobragade, D. et al. Preparation of covalent long-chain trialkylstannyl and trialkylsilyl salts and an examination of their adsorption on gold. Langmuir 26, 8483–8490 (2010).

    CAS  Google Scholar 

  70. 70

    Chen, W. et al. Highly conducting π-conjugated molecular junctions covalently bonded to gold electrodes. J. Am. Chem. Soc. 133, 17160–17163 (2011).

    CAS  Google Scholar 

  71. 71

    Schwarz, F. et al. High-conductive organometallic molecular wires with delocalized electron systems strongly coupled to metal electrodes. Nano Lett. 14, 5932–5940 (2014).

    CAS  Google Scholar 

  72. 72

    Hong, W. et al. Trimethylsilyl-terminated oligo(phenylene ethynylene)s: an approach to single-molecule junctions with covalent Au–C σ-bonds. J. Am. Chem. Soc. 134, 19425–19431 (2012).

    CAS  Google Scholar 

  73. 73

    Wuts, P. G. M. & Greene, T. W. Greene's Protective Groups in Organic Synthesis 4th edn (Wiley, 2006).

    Google Scholar 

  74. 74

    Nagahara, L. A., Thundat, T. & Lindsay, S. M. Preparation and characterization of STM tips for electrochemical studies. Rev. Sci. Instrum. 60, 3128–3130 (1989).

    CAS  Google Scholar 

  75. 75

    Saby, C., Ortiz, B., Champagne, G. Y. & Be, D. Electrochemical modification of glassy carbon electrode using aromatic diazonium salts. 1. Blocking effect of 4-nitrophenyl and 4-carboxyphenyl groups. Langmuir 7463, 6805–6813 (1997).

    Google Scholar 

  76. 76

    Hines, T. et al. Controlling formation of single-molecule junctions by electrochemical reduction of diazonium terminal groups. J. Am. Chem. Soc. 135, 3319–3322 (2013).

    CAS  Google Scholar 

  77. 77

    Patai, S. Diazonium Diazo Groups Vol. 1 (Wiley, 1978).

    Google Scholar 

  78. 78

    Pearson, R. G. Hard and soft acids and bases. J. Am. Chem. Soc. 85, 3533–3539 (1963).

    CAS  Google Scholar 

  79. 79

    Ullmann, F. & Bielecki, J. Ueber synthesen in der biphenylreihe. Ber. Dtsch. Chem. Ges. 34, 2174–2185 (1901).

    CAS  Google Scholar 

  80. 80

    Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).

    CAS  Google Scholar 

  81. 81

    Koch, M., Ample, F., Joachim, C. & Grill, L. Voltage-dependent conductance of a single graphene nanoribbon. Nat. Nanotechnol. 7, 713–718 (2012).

    CAS  Google Scholar 

  82. 82

    Nguyen, S. & Grubbs, R. H. Syntheses and activities of new single-component, ruthenium-based olefin metathesis catalysts. J. Am. Chem. Soc. 115, 9858–9859 (1993).

    CAS  Google Scholar 

  83. 83

    Tulevski, G. S., Myers, M. B., Hybertsen, M. S., Steigerwald, M. L. & Nuckolls, C. Formation of catalytic metal–molecule contacts. Science 309, 591–594 (2005).

    CAS  Google Scholar 

  84. 84

    Kim, T., Vázquez, H., Hybertsen, M. S. & Venkataraman, L. Conductance of molecular junctions formed with silver electrodes. Nano Lett. 13, 3358–3364 (2013).

    CAS  Google Scholar 

  85. 85

    Kaneko, S., Nakazumi, T. & Kiguchi, M. Fabrication of a well-defined single benzene molecule junction using Ag electrodes. J. Phys. Chem. Lett. 1, 3520–3523 (2010).

    CAS  Google Scholar 

  86. 86

    Haick, H., Ghabboun, J. & Cahen, D. Pd versus Au as evaporated metal contacts to molecules. Appl. Phys. Lett. 86, 2004–2006 (2005).

    Google Scholar 

  87. 87

    Kiguchi, M. et al. Highly conductive molecular junctions based on direct binding of benzene to platinum electrodes. Phys. Rev. Lett. 101, 046801 (2008).

    CAS  Google Scholar 

  88. 88

    Kim, Y. et al. Conductance and vibrational states of single-molecule junctions controlled by mechanical stretching and material variation. Phys. Rev. Lett. 106, 196804 (2011).

    Google Scholar 

  89. 89

    Yelin, T. et al. Atomically wired molecular junctions: connecting a single organic molecule by chains of metal atoms. Nano Lett. 13, 1956–1961 (2013).

    CAS  Google Scholar 

  90. 90

    Ko, C. H., Huang, M. J., Fu, M. D. & Chen, C. H. Superior contact for single-molecule conductance: electronic coupling of thiolate and isothiocyanate on Pt, Pd, and Au. J. Am. Chem. Soc. 132, 756–764 (2010).

    CAS  Google Scholar 

  91. 91

    Seminario, J. M., De La Cruz, C. E. & Derosa, P. A. A. Theoretical analysis of metal–molecule contacts. J. Am. Chem. Soc. 123, 5616–5617 (2001).

    CAS  Google Scholar 

  92. 92

    Adak, O., Korytá r, R., Joe, A. Y., Evers, F. & Venkataraman, L. Impact of electrode density of states on transport through pyridine-linked single molecule junctions. Nano Lett. 15, 3716–3722 (2015).

    CAS  Google Scholar 

  93. 93

    Schmaus, S. et al. Giant magnetoresistance through a single molecule. Nat. Nanotechnol. 6, 185–189 (2011).

    CAS  Google Scholar 

  94. 94

    Wende, H. et al. Substrate-induced magnetic ordering and switching of iron porphyrin molecules. Nat. Mater. 6, 516–520 (2007).

    CAS  Google Scholar 

  95. 95

    Iacovita, C. et al. Visualizing the spin of individual cobalt–phthalocyanine molecules. Phys. Rev. Lett. 101, 40–43 (2008).

    Google Scholar 

  96. 96

    Metzger, R. M. Unimolecular Electronics. Chem. Rev. 115, 5056–5115 (2015).

    CAS  Google Scholar 

  97. 97

    Luo, L., Choi, S. H. & Frisbie, C. D. Probing hopping conduction in conjugated molecular wires connected to metal electrodes. Chem. Mater. 23, 631–645 (2011).

    CAS  Google Scholar 

  98. 98

    Miller, R. D. & Michl, J. Polysilane high polymers. Chem. Rev. 89, 1359–1410 (1989).

    CAS  Google Scholar 

  99. 99

    Chen, W. et al. Aromaticity decreases single-molecule junction conductance. J. Am. Chem. Soc. 136, 918–920 (2014).

    CAS  Google Scholar 

  100. 100

    Wudl, F., Kobayashi, M. & Heeger, A. J. Poly(isothianaphthene). J. Org. Chem. 49, 3382–3384 (1984).

    CAS  Google Scholar 

  101. 101

    Douglas, J. D. et al. Functionalized isothianaphthene monomers that promote quinoidal character in donor–acceptor copolymers for organic photovoltaics. Macromolecules 45, 4069–4074 (2012).

    CAS  Google Scholar 

  102. 102

    Breslow, R. & Foss Jr, F. W. Charge transport in nanoscale aromatic and antiaromatic systems. J. Phys. Condens. Matter 20, 374104 (2008).

    Google Scholar 

  103. 103

    Venkataraman, L. et al. Electronics and chemistry: varying single-molecule junction conductance using chemical substituents. Nano Lett. 7, 502–506 (2007).

    CAS  Google Scholar 

  104. 104

    Hammett, L. P. Effect of structure upon the reactions of organic compounds. Benzene derivatives. J. Am. Chem. Soc. 59, 96–103 (1937).

    CAS  Google Scholar 

  105. 105

    Malen, J. A. et al. The nature of transport variations in molecular heterojunction electronics. Nano Lett. 9, 3406–3412 (2009).

    CAS  Google Scholar 

  106. 106

    Vonlanthen, D. et al. Chemically controlled conductivity: torsion-angle dependence in a single-molecule biphenyldithiol junction. Angew. Chem. Int. Ed. Engl. 48, 8886–8890 (2009).

    CAS  Google Scholar 

  107. 107

    Mishchenko, A. et al. Single-molecule junctions based on nitrile-terminated biphenyls: a promising new anchoring group. J. Am. Chem. Soc. 133, 184–187 (2011).

    CAS  Google Scholar 

  108. 108

    Jan van der Molen, S. & Liljeroth, P. Charge transport through molecular switches. J. Phys. Condens. Matter 22, 133001 (2010).

    Google Scholar 

  109. 109

    Sun, L. et al. Single-molecule electronics: from chemical design to functional devices. Chem. Soc. Rev. 43, 7378–7411 (2014).

    CAS  Google Scholar 

  110. 110

    Lara-Avila, S. et al. Bianthrone in a single-molecule junction: conductance switching with a bistable molecule facilitated by image charge effects. J. Phys. Chem. C 114, 20686–20695 (2010).

    CAS  Google Scholar 

  111. 111

    Dulić, D. et al. One-way optoelectronic switching of photochromic molecules on gold. Phys. Rev. Lett. 91, 207402 (2003).

    Google Scholar 

  112. 112

    van der Molen, S. J. et al. Light-controlled conductance switching of ordered metal–molecule–metal devices. Nano Lett. 9, 76–80 (2009).

    CAS  Google Scholar 

  113. 113

    Darwish, N., Aragonè s, A. C., Darwish, T., Ciampi, S. & Díez-Pérez, I. Multi-responsive photo- and chemo-electrical single-molecule switches. Nano Lett. 14, 7064–7070 (2014).

    CAS  Google Scholar 

  114. 114

    Li, Z. et al. Single-molecule sensing of environmental pH — an STM break junction and NEGF-DFT approach. Angew. Chem. Int. Ed. Engl. 53, 1098–1102 (2014).

    CAS  Google Scholar 

  115. 115

    Roldan, D. et al. Charge transport in photoswitchable dimethyldihydropyrene-type single-molecule junctions. J. Am. Chem. Soc. 135, 5974–5977 (2013).

    CAS  Google Scholar 

  116. 116

    Liljeroth, P., Repp, J. & Meyer, G. Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317, 1203–1206 (2007).

    CAS  Google Scholar 

  117. 117

    Auwärter, W. et al. A surface-anchored molecular four-level conductance switch based on single proton transfer. Nat. Nanotechnol. 7, 41–46 (2012).

    Google Scholar 

  118. 118

    Lörtscher, E., Ciszek, J. W., Tour, J. & Riel, H. Reversible and controllable switching of a single-molecule junction. Small 2, 973–977 (2006).

    Google Scholar 

  119. 119

    Baer, R. & Neuhauser, D. Phase coherent electronics: a molecular switch based on quantum interference. J. Am. Chem. Soc. 124, 4200–4201 (2002).

    CAS  Google Scholar 

  120. 120

    Cardamone, D. M., Stafford, C. A. & Mazumdar, S. Controlling quantum transport through a single molecule. Nano Lett. 6, 2422–2426 (2006).

    CAS  Google Scholar 

  121. 121

    Hod, O., Baer, R. & Rabani, E. A. Parallel electromagnetic molecular logic gate. J. Am. Chem. Soc. 127, 1648–1649 (2005).

    CAS  Google Scholar 

  122. 122

    Vazquez, H. et al. Probing the conductance superposition law in single-molecule circuits with parallel paths. Nat. Nanotechnol. 7, 663–667 (2012).

    CAS  Google Scholar 

  123. 123

    Guédon, C. M. et al. Observation of quantum interference in molecular charge transport. Nat. Nanotechnol. 7, 305–309 (2012).

    Google Scholar 

  124. 124

    Rabache, V. et al. Direct observation of large quantum interference effect in anthraquinone solid-state junctions. J. Am. Chem. Soc. 135, 10218–10221 (2013).

    CAS  Google Scholar 

  125. 125

    Darwish, N. et al. Observation of electrochemically controlled quantum interference in a single anthraquinone-based norbornylogous bridge molecule. Angew. Chem. Int. Ed. Engl. 51, 3203–3206 (2012).

    CAS  Google Scholar 

  126. 126

    Baghernejad, M. et al. Electrochemical control of single-molecule conductance by fermi-level tuning and conjugation switching. J. Am. Chem. Soc. 136, 17922–17925 (2014).

    CAS  Google Scholar 

  127. 127

    Solomon, G. C., Herrmann, C., Hansen, T., Mujica, V. & Ratner, M. A. Exploring local currents in molecular junctions. Nat. Chem. 2, 223–228 (2010).

    CAS  Google Scholar 

  128. 128

    Solomon, G. C. et al. Quantum interference in acyclic systems: conductance of cross-conjugated molecules. J. Am. Chem. Soc. 130, 17301–17308 (2008).

    CAS  Google Scholar 

  129. 129

    Phelan, N. F. & Orchin, M. Cross conjugation. J. Chem. Educ. 45, 633–637 (1968).

    CAS  Google Scholar 

  130. 130

    Klausen, R. S. et al. Evaluating atomic components in fluorene wires. Chem. Sci. 5, 1561–1564 (2014).

    CAS  Google Scholar 

  131. 131

    Yoshizawa, K. An orbital rule for electron transport in molecules. Acc. Chem. Res. 45, 1612–1621 (2012).

    CAS  Google Scholar 

  132. 132

    Tsuji, Y. & Hoffmann, R. Frontier orbital control of molecular conductance and its switching. Angew. Chem. Int. Ed. Engl. 53, 4093–4097 (2014).

    CAS  Google Scholar 

  133. 133

    Coulson, C. A. & Rushbrooke, G. S. Note on the method of molecular orbitals. Math. Proc. Cambridge Philos. Soc. 36, 193–200 (1940).

    CAS  Google Scholar 

  134. 134

    Markussen, T., Stadler, R. & Thygesen, K. S. The relation between structure and quantum interference in single molecule junctions. Nano Lett. 10, 4260–4265 (2010).

    CAS  Google Scholar 

  135. 135

    Li, E. Y. & Marzari, N. Conductance switching and many-valued logic in porphyrin assemblies. J. Phys. Chem. Lett. 4, 3039–3044 (2013).

    CAS  Google Scholar 

  136. 136

    Qian, G., Saha, S. & Lewis, K. M. Two-state conductance in single Zn porphyrin molecular junctions. Appl. Phys. Lett. 96, 243107 (2010).

    Google Scholar 

  137. 137

    Li, X., Staykov, A. & Yoshizawa, K. Orbital views of the electron transport through polycyclic aromatic hydrocarbons with different molecular sizes and edge type structures. J. Phys. Chem. C 114, 9997–10003 (2010).

    CAS  Google Scholar 

  138. 138

    Yamada, R., Kumazawa, H., Noutoshi, T., Tanaka, S. & Tada, H. Electrical conductance of oligothiophene molecular wires. Nano Lett. 8, 1237–1240 (2008).

    CAS  Google Scholar 

  139. 139

    Reuter, M. G. & Hansen, T. Finding destructive interference features in molecular transport junctions. J. Chem. Phys. 141, 181103 (2014).

    Google Scholar 

  140. 140

    Bartels, L. Tailoring molecular layers at metal surfaces. Nat. Chem. 2, 87–95 (2010).

    CAS  Google Scholar 

  141. 141

    Maggio, E., Solomon, G. C. & Troisi, A. Exploiting quantum interference in dye sensitized solar cells. ACS Nano 8, 409–418 (2014).

    CAS  Google Scholar 

  142. 142

    Bergfield, J. P., Heitzer, H. M., Van Dyck, C., Marks, T. J. & Ratner, M. A. Harnessing quantum interference in molecular dielectric materials. ACS Nano 9, 6412–6418 (2015).

    CAS  Google Scholar 

  143. 143

    Landauer, R. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 1, 223–231 (1957).

    Google Scholar 

  144. 144

    Büttiker, M., Imry, Y., Landauer, R. & Pinhas, S. Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 31, 6207–6215 (1985).

    Google Scholar 

  145. 145

    He, J. et al. Electronic decay constant of carotenoid polyenes from single-molecule measurements. J. Am. Chem. Soc. 127, 1384–1385 (2005).

    CAS  Google Scholar 

  146. 146

    Lu, Q. et al. From tunneling to hopping: a comprehensive investigation of charge transport mechanism in molecular junctions based on oligo(p-phenylene ethynylene)s. ACS Nano 3, 3861–3868 (2009).

    CAS  Google Scholar 

  147. 147

    Kaliginedi, V. et al. Correlations between molecular structure and single-junction conductance: a case study with oligo(phenylene-ethynylene)-type wires. J. Am. Chem. Soc. 134, 5262–5275 (2012).

    CAS  Google Scholar 

  148. 148

    Capozzi, B. et al. Length-dependent conductance of oligothiophenes. J. Am. Chem. Soc. 136, 10486–10492 (2014).

    CAS  Google Scholar 

  149. 149

    Hines, T. et al. Transition from tunneling to hopping in single molecular junctions by measuring length and temperature dependence. J. Am. Chem. Soc. 132, 11658–11664 (2010).

    CAS  Google Scholar 

Download references

Acknowledgements

T.A.S. is supported by an NSF Graduate Research Fellowship under grant no. 11-44155. The authors thank the NSF for support under grant no. CHE-1404922.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Michael L. Steigerwald or Latha Venkataraman or Colin Nuckolls.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Su, T., Neupane, M., Steigerwald, M. et al. Chemical principles of single-molecule electronics. Nat Rev Mater 1, 16002 (2016). https://doi.org/10.1038/natrevmats.2016.2

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing