Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Semiconductor nanowire lasers


The discovery and continued development of the laser has revolutionized both science and industry. The advent of miniaturized, semiconductor lasers has made this technology an integral part of everyday life. Exciting research continues with a new focus on nanowire lasers because of their great potential in the field of optoelectronics. In this Review, we explore the latest advancements in the development of nanowire lasers and offer our perspective on future improvements and trends. We discuss fundamental material considerations and the latest, most effective materials for nanowire lasers. A discussion of novel cavity designs and amplification methods is followed by some of the latest work on surface plasmon polariton nanowire lasers. Finally, exciting new reports of electrically pumped nanowire lasers with the potential for integrated optoelectronic applications are described.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: A brief timeline of laser discovery and development.
Figure 2: ZnO nanowire arrays formed the first nanowire laser cavities.
Figure 3: Calculated power plot of a hypothetical GaN laser with different values of β.
Figure 4: Nanowire lasers offer broad wavelength selection.
Figure 5: Creating a cleaved-coupled cavity nanowire laser.
Figure 6: Surface plasmon polaritons lead to further laser miniaturization.
Figure 7: Fabrication and characterization of electrically pumped nanowires lasers.


  1. 1

    Einstein, A. Strahlungs-Emission und Absorption nach der Quantentheorie. Dtsch. Phys. Ges. 18, 318–323 (1916).

    CAS  Google Scholar 

  2. 2

    Schawlow, A. L. & Townes, C. H. Infrared and optical masers. Phys. Rev. 112, 1940–1949 (1958).

    CAS  Google Scholar 

  3. 3

    Maiman, T. H. Stimulated optical radiation in ruby. Nature 187, 493–494 (1960).

    Google Scholar 

  4. 4

    Council, N. R. in Optics and Photonics: Essential Technologies for our Nation 20–63 (The National Academies Press, 2013).

    Google Scholar 

  5. 5

    Agrawal, G. P. & Dutta, N. K. in Semiconductor Lasers 547–582 (Springer, 1993).

    Google Scholar 

  6. 6

    Choquette, K. D. & Hou, H. Q. Vertical-cavity surface emitting lasers: moving from research to manufacturing. Proc. IEEE 85, 1730–1739 (1997).

    CAS  Google Scholar 

  7. 7

    Mahler, L. et al. Vertically emitting microdisk lasers. Nat. Photonics 3, 46–49 (2009).

    CAS  Google Scholar 

  8. 8

    Altug, H. & Vucˇkovic´, J. Photonic crystal nanocavity array laser. Opt. Express 13, 8819–8828 (2005).

    Google Scholar 

  9. 9

    Ning, C. Z. in Advances in Semiconductor Lasers (eds Coleman, J. J., Bryce, A. C. & Jagadish, C. ) 455–486 (Academic Press, 2012).

    Google Scholar 

  10. 10

    Ma, R.-M., Ota, S., Li, Y., Yang, S. & Zhang, X. Explosives detection in a lasing plasmon nanocavity. Nat. Nanotechnol. 9, 600–604 (2014).

    CAS  Google Scholar 

  11. 11

    Ma, Y., Guo, X., Wu, X., Dai, L. & Tong, L. Semiconductor nanowire lasers. Adv. Opt. Photonics 5, 216–273 (2013).

    CAS  Google Scholar 

  12. 12

    Yan, R., Gargas, D. & Yang, P. Nanowire photonics. Nat. Photonics 3, 569–576 (2009).

    CAS  Google Scholar 

  13. 13

    Wagner, R. S. & Ellis, W. C. Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964).

    CAS  Google Scholar 

  14. 14

    Huang, M. H. et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001).

    CAS  Google Scholar 

  15. 15

    Huang, M. H. et al. Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 13, 113–116 (2001).

    CAS  Google Scholar 

  16. 16

    Johnson, J. C. et al. Single gallium nitride nanowire lasers. Nat. Mater. 1, 106–110 (2002).

    CAS  Google Scholar 

  17. 17

    Johnson, J. C. et al. Single nanowire lasers. J. Phys. Chem. B 105, 11387–11390 (2001).

    CAS  Google Scholar 

  18. 18

    Zimmler, M. A., Capasso, F., Müller, S. & Ronning, C. Optically pumped nanowire lasers: invited review. Semicond. Sci. Technol. 25, 024001 (2010).

    Google Scholar 

  19. 19

    Maslov, A. V. & Ning, C. Z. Far-field emission of a semiconductor nanowire laser. Opt. Lett. 29, 572–574 (2004).

    CAS  Google Scholar 

  20. 20

    Coldren, L. A. & Corzine, S. W. in DiodeLasers and Photonic Integrated Circuits 247–334 (Wiley, 1995).

    Google Scholar 

  21. 21

    Siegman, A. E. in Lasers 457–557 (Univ. Science Books, 1986).

    Google Scholar 

  22. 22

    Maslov, A. V. & Ning, C. Z. Reflection of guided modes in a semiconductor nanowire laser. Appl. Phys. Lett. 83, 1237–1239 (2003).

    CAS  Google Scholar 

  23. 23

    Maslov, A. V. & Ning, C. Z. Modal gain in a semiconductor nanowire laser with anisotropic bandstructure. IEEE J. Quant. Electron. 40, 1389–1397 (2004).

    CAS  Google Scholar 

  24. 24

    Ning, C. Z. et al. in Photonics Society Summer Topical Meeting Series, IEEE 23–24 (Montréal, 2014).

    Google Scholar 

  25. 25

    Ning, C. Z. What is laser threshold. IEEE J. Sel. Top. Quantum Electron. 19, 1503604 (2013).

    Google Scholar 

  26. 26

    Gao, H., Fu, A., Andrews, S. C. & Yang, P. Cleaved-coupled nanowire lasers. Proc. Natl Acad. Sci. USA 110, 865–869 (2013).

    CAS  Google Scholar 

  27. 27

    Chow, W. W., Jahnke, F. & Gies, C. Emission properties of nanolasers during the transition to lasing. Light Sci. Appl. 3, e201 (2014).

    CAS  Google Scholar 

  28. 28

    Björk, G., Karlsson, A. & Yamamoto, Y. Definition of a laser threshold. Phys. Rev. A 50, 1675–1680 (1994).

    Google Scholar 

  29. 29

    Zimmler, M. A., Bao, J., Capasso, F., Müller, S. & Ronning, C. Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation. Appl. Phys. Lett. 93, 051101 (2008).

    Google Scholar 

  30. 30

    Johnson, J. C., Yan, H., Yang, P. & Saykally, R. J. Optical cavity effects in ZnO nanowire lasers and waveguides. J. Phys. Chem. B 107, 8816–8828 (2003).

    CAS  Google Scholar 

  31. 31

    Choi, H.-J. et al. Self-organized GaN quantum wire UV lasers. J. Phys. Chem. B 107, 8721–8725 (2003).

    CAS  Google Scholar 

  32. 32

    Seo, M.-K. et al. Modal characteristics in a single-nanowire cavity with a triangular cross section. Nano Lett. 8, 4534–4538 (2008).

    CAS  Google Scholar 

  33. 33

    Gradecˇak, S., Qian, F., Li, Y., Park, H.-G. & Lieber, C. M. GaN nanowire lasers with low lasing thresholds. Appl. Phys. Lett. 87, 173111 (2005).

    Google Scholar 

  34. 34

    Qian, F. et al. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat. Mater. 7, 701–706 (2008).

    CAS  Google Scholar 

  35. 35

    Agarwal, R., Barrelet, C. J. & Lieber, C. M. Lasing in single cadmium sulfide nanowire optical cavities. Nano Lett. 5, 917–920 (2005).

    CAS  Google Scholar 

  36. 36

    Pan, A. et al. Fabrication and red-color lasing of individual highly uniform single-crystal CdSe nanobelts. J. Phys. Chem. C 111, 14253–14256 (2007).

    CAS  Google Scholar 

  37. 37

    Pan, A. et al. Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip. Nano Lett. 9, 784–788 (2009).

    CAS  Google Scholar 

  38. 38

    Saxena, D. et al. Optically pumped room-temperature GaAs nanowire lasers. Nat. Photonics 7, 963–968 (2013).

    CAS  Google Scholar 

  39. 39

    Chen, R. et al. Nanolasers grown on silicon. Nat. Photonics 5, 170–175 (2011).

    CAS  Google Scholar 

  40. 40

    Mayer, B. et al. Lasing from individual GaAs–AlGaAs core–shell nanowires up to room temperature. Nat. Commun. 4, 2931 (2013).

    Google Scholar 

  41. 41

    Zapien, J. A. et al. Room-temperature single nanoribbon lasers. Appl. Phys. Lett. 84, 1189–1191 (2004).

    CAS  Google Scholar 

  42. 42

    Chin, A. H. et al. Near-infrared semiconductor subwavelength-wire lasers. Appl. Phys. Lett. 88, 163115 (2006).

    Google Scholar 

  43. 43

    Gao, Q. et al. Selective-area epitaxy of pure wurtzite InP nanowires: high quantum efficiency and room-temperature lasing. Nano Lett. 14, 5206–5211 (2014).

    CAS  Google Scholar 

  44. 44

    Zhang, L. et al. Wide InP nanowires with wurtzite/zincblende superlattice segments are type II whereas narrower nanowires become type I: an atomistic pseudopotential calculation. Nano Lett. 10, 4055–4060 (2010).

    CAS  Google Scholar 

  45. 45

    Kotani, A. et al. Endov/DNA ligase mutation scanning assay using microchip capillary electrophoresis and dual-color laser-induced fluorescence detection. Anal. Methods 4, 58–64 (2012).

    CAS  Google Scholar 

  46. 46

    Neumann, A. et al. Four-color laser white illuminant demonstrating high color-rendering quality. Opt. Express 19, A982–A990 (2011).

    Google Scholar 

  47. 47

    Fan, F., Turkdogan, S., Liu, Z., Shelhammer, D. & Ning, C. Z. A monolithic white laser. Nat. Nanotechnol. 10, 796–803 (2015).

    CAS  Google Scholar 

  48. 48

    Li, J. et al. Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process. Adv. Mater. 25, 833–837 (2013).

    CAS  Google Scholar 

  49. 49

    Liu, X., Zhang, Q., Yip, J. N., Xiong, Q. & Sum, T. C. Wavelength tunable single nanowire lasers based on surface plasmon polariton enhanced Burstein–Moss effect. Nano Lett. 13, 5336–5343 (2013).

    CAS  Google Scholar 

  50. 50

    Pauzauskie, P. J., Sirbuly, D. J. & Yang, P. Semiconductor nanowire ring resonator laser. Phys. Rev. Lett. 96, 143903 (2006).

    Google Scholar 

  51. 51

    Xiao, Y., Meng, C., Wu, X. & Tong, L. Single mode lasing in coupled nanowires. Appl. Phys. Lett. 99, 023109 (2011).

    Google Scholar 

  52. 52

    Zhuang, X., Ning, C. Z. & Pan, A. Composition and bandgap-graded semiconductor alloy nanowires. Adv. Mater. 24, 13–33 (2012).

    CAS  Google Scholar 

  53. 53

    Zapien, J. A. et al. Continuous near-infrared-to-ultraviolet lasing from II-VI nanoribbons. Appl. Phys. Lett. 90, 213114 (2007).

    Google Scholar 

  54. 54

    Kuykendall, T., Ulrich, P., Aloni, S. & Yang, P. Complete composition tunability of InGaN nanowires using a combinatorial approach. Nat. Mater. 6, 951–956 (2007).

    CAS  Google Scholar 

  55. 55

    Pan, A., Liu, R., Sun, M. & Ning, C.-Z. Quaternary alloy semiconductor nanobelts with bandgap spanning the entire visible spectrum. J. Am. Chem. Soc. 131, 9502–9503 (2009).

    CAS  Google Scholar 

  56. 56

    Pan, A., Liu, R., Sun, M. & Ning, C.-Z. Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate. ACS Nano 4, 671–680 (2010).

    CAS  Google Scholar 

  57. 57

    Gu, F. et al. Spatial bandgap engineering along single alloy nanowires. J. Am. Chem. Soc. 133, 2037–2039 (2011).

    CAS  Google Scholar 

  58. 58

    Xu, J. et al. Asymmetric light propagation in composition-graded semiconductor nanowires. Sci. Rep. 2, 820 (2012).

    Google Scholar 

  59. 59

    Liu, Z. et al. Dynamical color-controllable lasing with extremely wide tuning range from red to green in a single alloy nanowire using nanoscale manipulation. Nano Lett. 13, 4945–4950 (2013).

    CAS  Google Scholar 

  60. 60

    Yang, Z. et al. Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires. Nano Lett. 14, 3153–3159 (2014).

    CAS  Google Scholar 

  61. 61

    Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014).

    CAS  Google Scholar 

  62. 62

    Snaith, H. J. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623–3630 (2013).

    CAS  Google Scholar 

  63. 63

    Xing, G. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476–480 (2014).

    CAS  Google Scholar 

  64. 64

    Deschler, F. et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421–1426 (2014).

    CAS  Google Scholar 

  65. 65

    Stranks, S. D. et al. Enhanced amplified spontaneous emission in perovskites using a flexible cholesteric liquid crystal reflector. Nano Lett. 15, 4935–4941 (2015).

    CAS  Google Scholar 

  66. 66

    Zhu, H. et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636–642 (2015).

    CAS  Google Scholar 

  67. 67

    Xing, J. et al. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers. Nano Lett. 15, 4571–4577 (2015).

    CAS  Google Scholar 

  68. 68

    Niu, G., Guo, X. & Wang, L. Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3, 8970–8980 (2015).

    CAS  Google Scholar 

  69. 69

    Conings, B. et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 5, 1500477 (2015).

    Google Scholar 

  70. 70

    Fu, Y. et al. Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability. Nano Lett. 16, 1000–1008 (2016).

    CAS  Google Scholar 

  71. 71

    Lee, J.-W. et al. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv. Energy Mater. 5, 1501310 (2015).

    Google Scholar 

  72. 72

    Nedelcu, G. et al. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 15, 5635–5640 (2015).

    CAS  Google Scholar 

  73. 73

    Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    CAS  Google Scholar 

  74. 74

    Wang, Y. et al. All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics. Adv. Mater. 27, 7101–7108 (2015).

    CAS  Google Scholar 

  75. 75

    Yakunin, S. et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 6, 8056 (2015).

    CAS  Google Scholar 

  76. 76

    Zhang, D., Eaton, S. W., Yu, Y., Dou, L. & Yang, P. Solution-phase synthesis of cesium lead halide perovskite nanowires. J. Am. Chem. Soc. 137, 9230–9233 (2015).

    CAS  Google Scholar 

  77. 77

    Eaton, S. W. et al. Lasing in robust cesium lead halide perovskite nanowires. Proc. Natl Acad. Sci. USA 113, 1993–1998 (2016).

    CAS  Google Scholar 

  78. 78

    Sirbuly, D. J. et al. Optical routing and sensing with nanowire assemblies. Proc. Natl Acad. Sci. USA 102, 7800–7805 (2005).

    CAS  Google Scholar 

  79. 79

    Greytak, A. B., Barrelet, C. J., Li, Y. & Lieber, C. M. Semiconductor nanowire laser and nanowire waveguide electro-optic modulators. Appl. Phys. Lett. 87, 151103 (2005).

    Google Scholar 

  80. 80

    Shambat, G. et al. Single-cell photonic nanocavity probes. Nano Lett. 13, 4999–5005 (2013).

    CAS  Google Scholar 

  81. 81

    Yang, P. et al. Controlled growth of ZnO nanowires and their optical properties. Adv. Funct. Mater. 12, 323–331 (2002).

    CAS  Google Scholar 

  82. 82

    Yan, H. et al. Dendritic nanowire ultraviolet laser array. J. Am. Chem. Soc. 125, 4728–4729 (2003).

    CAS  Google Scholar 

  83. 83

    Hu, Z., Guo, X. & Tong, L. Freestanding nanowire ring laser. Appl. Phys. Lett. 103, 183104 (2013).

    Google Scholar 

  84. 84

    Li, Q. et al. Single-mode GaN nanowire lasers. Opt. Express 20, 17873–17879 (2012).

    CAS  Google Scholar 

  85. 85

    Xiao, Y. et al. Single-nanowire single-mode laser. Nano Lett. 11, 1122–1126 (2011).

    CAS  Google Scholar 

  86. 86

    Barrelet, C. J. et al. Hybrid single-nanowire photonic crystal and microresonator structures. Nano Lett. 6, 11–15 (2006).

    CAS  Google Scholar 

  87. 87

    Scofield, A. C. et al. Bottom-up photonic crystal lasers. Nano Lett. 11, 5387–5390 (2011).

    CAS  Google Scholar 

  88. 88

    Das, A. et al. Room temperature ultralow threshold GaN nanowire polariton laser. Phys. Rev. Lett. 107, 066405 (2011).

    Google Scholar 

  89. 89

    Hisashi, M. et al. Quantum-confined stark effect on photoluminescence and electroluminescence characteristics of InGaN-based light-emitting diodes. J. Phys. D: Appl. Phys. 41, 165105 (2008).

    Google Scholar 

  90. 90

    Zhang, T. & Shan, F. Development and application of surface plasmon polaritons on optical amplification. J. Nanomater. 2014, 495381 (2014).

    Google Scholar 

  91. 91

    Berini, P. & De Leon, I. Surface plasmon–polariton amplifiers and lasers. Nat. Photonics 6, 16–24 (2012).

    CAS  Google Scholar 

  92. 92

    Khurgin, J. B. How to deal with the loss in plasmonics and metamaterials. Nat. Nanotechnol. 10, 2–6 (2015).

    CAS  Google Scholar 

  93. 93

    Maslov, A. V. & Ning, C. Z. Size reduction of a semiconductor nanowire laser by using metal coating. Proc. SPIE 6468, 64680I (2007).

    Google Scholar 

  94. 94

    Oulton, R. F. Surface plasmon lasers: sources of nanoscopic light. Mater. Today 15, 26–34 (2012).

    Google Scholar 

  95. 95

    Oulton, R. F., Sorger, V. J., Genov, D. A., Pile, D. F. P. & Zhang, X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics 2, 496–500 (2008).

    CAS  Google Scholar 

  96. 96

    Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    CAS  Google Scholar 

  97. 97

    Lu, Y.-J. et al. Plasmonic nanolaser using epitaxially grown silver film. Science 337, 450–453 (2012).

    CAS  Google Scholar 

  98. 98

    Sidiropoulos, T. P. H. et al. Ultrafast plasmonic nanowire lasers near the surface plasmon frequency. Nat. Phys. 10, 870–876 (2014).

    CAS  Google Scholar 

  99. 99

    Wu, X. et al. Hybrid photon–plasmon nanowire lasers. Nano Lett. 13, 5654–5659 (2013).

    CAS  Google Scholar 

  100. 100

    Duan, X., Huang, Y., Agarwal, R. & Lieber, C. M. Single-nanowire electrically driven lasers. Nature 421, 241–245 (2003).

    CAS  Google Scholar 

  101. 101

    Hill, M. T. et al. Lasing in metallic-coated nanocavities. Nat. Photonics 1, 589–594 (2007).

    CAS  Google Scholar 

  102. 102

    Ding, K. & Ning, C. Z. Fabrication challenges of electrical injection metallic cavity semiconductor nanolasers. Semicond. Sci. Technol. 28, 124002 (2013).

    Google Scholar 

  103. 103

    Ding, K. et al. Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection. Phys. Rev. B: Condens. Matter 85, 041301 (2012).

    Google Scholar 

  104. 104

    Ding, K. et al. Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature. Opt. Express 21, 4728–4733 (2013).

    CAS  Google Scholar 

  105. 105

    Ding, K. et al. An electrical injection metallic cavity nanolaser with azimuthal polarization. Appl. Phys. Lett. 102, 041110 (2013).

    Google Scholar 

  106. 106

    Li, K. H., Liu, X., Wang, Q., Zhao, S. & Mi, Z. Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature. Nat. Nanotechnol. 10, 140–144 (2015).

    CAS  Google Scholar 

  107. 107

    Zhao, S. et al. An electrically injected AlGaN nanowire laser operating in the ultraviolet-C band. Appl. Phys. Lett. 107, 043101 (2015).

    Google Scholar 

Download references


Work performed at the University of California, Berkeley was supported by the U.S. Department of Energy under contract no. DE-AC02-05CH11231 (PChem KC3103). Work performed at Arizona State University was supported by DARPA (W911NF-07-1-0314), AFOSR (Grant No FA9550-10-1-0444 under Gernot Pomrenke), and ARO (award no. W911NF-08-1-0471 and W911NF-13-1-0278, under M. Gerhold) and at Tsinghua University by the National 985 University Project. S.W.E. thanks the Camille and Henry Dreyfus Foundation for funding (Award EP-14-151).

Author information



Corresponding author

Correspondence to Peidong Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eaton, S., Fu, A., Wong, A. et al. Semiconductor nanowire lasers. Nat Rev Mater 1, 16028 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing