Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

From precision polymers to complex materials and systems

Abstract

Complex chemical systems, such as living biological matter, are highly organized structures based on discrete molecules in constant dynamic interactions. These natural materials can evolve and adapt to their environment. By contrast, man-made materials exhibit simpler properties. In this Review, we highlight that most of the necessary elements for the development of more complex synthetic matter are available today. Using modern strategies, such as controlled radical polymerizations, supramolecular polymerizations or stepwise synthesis, polymers with precisely controlled molecular structures can be synthesized. Moreover, such tailored polymers can be folded or self-assembled into defined nanoscale morphologies. These self-organized macromolecular objects can be at thermal equilibrium or can be driven out of equilibrium. Recently, in the latter case, interesting dynamic materials have been developed. However, this is just a start, and more complex adaptive materials are anticipated.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Towards complex soft matter and materials.
Figure 2: Classification of the main approaches for polymer synthesis.
Figure 3: Synthesis, sequencing and degradation of dynamic polymers with coded primary structures.
Figure 4: Synthesis of complex polymer architectures stabilized by covalent and non-covalent interactions.
Figure 5: Examples of complex morphologies obtained by solution self-assembly of block copolymers.
Figure 6: Examples of materials involving supramolecular interactions or dynamic covalent bonds.

References

  1. 1

    Lehn, J.-M. Perspectives in chemistry — steps towards complex matter. Angew. Chem. Int. Ed. Engl. 52, 2836–2850 (2013).

    CAS  Google Scholar 

  2. 2

    Lehn, J.-M. Perspectives in chemistry — aspects of adaptive chemistry and materials. Angew. Chem. Int. Ed. Engl. 54, 3276–3289 (2015).

    CAS  Google Scholar 

  3. 3

    Lehn, J.-M. Toward complex matter: supramolecular chemistry and self-organization. Proc. Natl Acad. Sci. USA 99, 4763–4768 (2002).

    CAS  Google Scholar 

  4. 4

    de Gennes, P.-G. Soft matter (Nobel lecture). Angew. Chem. Int. Ed. Engl. 31, 842–845 (1992).

    Google Scholar 

  5. 5

    Karplus, M. Development of multiscale models for complex chemical systems: from H+H2 to biomolecules (Nobel lecture). Angew. Chem. Int. Ed. Engl. 53, 9992–10005 (2014).

    CAS  Google Scholar 

  6. 6

    Matyjaszewski, K. Architecturally complex polymers with controlled heterogeneity. Science 333, 1104–1105 (2011).

    CAS  Google Scholar 

  7. 7

    Ouchi, M., Terashima, T. & Sawamoto, M. Transition metal-catalyzed living radical polymerization: toward perfection in catalysis and precision polymer synthesis. Chem. Rev. 109, 4963–5050 (2009).

    CAS  Google Scholar 

  8. 8

    Lutz, J.-F., Ouchi, M., Liu, D. R. & Sawamoto, M. Sequence-controlled polymers. Science 341, 1238149 (2013).

    Google Scholar 

  9. 9

    Szwarc, M. ‘Living’ polymers. Nature 178, 1168–1169 (1956).

    CAS  Google Scholar 

  10. 10

    Matyjaszewski, K. & Xia, J. Atom transfer radical polymerization. Chem. Rev. 101, 2921–2990 (2001).

    CAS  Google Scholar 

  11. 11

    Hawker, C. J., Bosman, A. W. & Harth, E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chem. Rev. 101, 3661–3688 (2001).

    CAS  Google Scholar 

  12. 12

    Kamigaito, M., Ando, T. & Sawamoto, M. Metal-catalyzed living radical polymerization. Chem. Rev. 101, 3689–3746 (2001).

    CAS  Google Scholar 

  13. 13

    Moad, G., Rizzardo, E. & Thang, S. H. Radical addition–fragmentation chemistry in polymer synthesis. Polymer 49, 1079–1131 (2008).

    CAS  Google Scholar 

  14. 14

    Bosman, A. W., Janssen, H. M. & Meijer, E. W. About dendrimers: structure, physical properties, and applications. Chem. Rev. 99, 1665–1688 (1999).

    CAS  Google Scholar 

  15. 15

    Tomalia, D. A. & Fréchet, J. M. J. Discovery of dendrimers and dendritic polymers: a brief historical perspective. J. Polym. Sci., Part A: Polym. Chem. 40, 2719–2728 (2002).

    CAS  Google Scholar 

  16. 16

    Merrifield, R. B. Solid phase synthesis (Nobel lecture). Angew. Chem. Int. Ed. Engl. 24, 799–810 (1985).

    Google Scholar 

  17. 17

    De Greef, T. F. A. et al. Supramolecular polymerization. Chem. Rev. 109, 5687–5754 (2009).

    CAS  Google Scholar 

  18. 18

    Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012).

    CAS  Google Scholar 

  19. 19

    Pyun, J. & Matyjaszewski, K. Synthesis of nanocomposite organic/inorganic hybrid materials using controlled/“living” radical polymerization. Chem. Mater. 13, 3436–3448 (2001).

    CAS  Google Scholar 

  20. 20

    Hui, C. M. et al. Surface-initiated polymerization as an enabling tool for multifunctional (nano-)engineered hybrid materials. Chem. Mater. 26, 745–762 (2014).

    CAS  Google Scholar 

  21. 21

    Lutz, J.-F. & Börner, H. G. Modern trends in polymer bioconjugates design. Prog. Polym. Sci. 33, 1–39 (2008).

    CAS  Google Scholar 

  22. 22

    Averick, S., Mehl, R. A., Das, S. R. & Matyjaszewski, K. Well-defined biohybrids using reversible-deactivation radical polymerization procedures. J. Control. Release 205, 45–57 (2015).

    CAS  Google Scholar 

  23. 23

    Klok, H.-A. Biological–synthetic hybrid block copolymers: combining the best from two worlds. J. Polym. Sci., Part A: Polym. Chem. 43, 1–17 (2005).

    CAS  Google Scholar 

  24. 24

    Börner, H. G. Strategies exploiting functions and self-assembly properties of bioconjugates for polymer and materials sciences. Prog. Polym. Sci. 34, 811–851 (2009).

    Google Scholar 

  25. 25

    Hill, D. J., Mio, M. J., Prince, R. B., Hughes, T. S. & Moore, J. S. A. Field guide to foldamers. Chem. Rev. 101, 3893–4012 (2001).

    CAS  Google Scholar 

  26. 26

    Yashima, E., Maeda, K., Iida, H., Furusho, Y. & Nagai, K. Helical polymers: synthesis, structures, and functions. Chem. Rev. 109, 6102–6211 (2009).

    CAS  Google Scholar 

  27. 27

    Ouchi, M., Badi, N., Lutz, J.-F. & Sawamoto, M. Single-chain technology using discrete synthetic macromolecules. Nat. Chem. 3, 917–924 (2011).

    CAS  Google Scholar 

  28. 28

    Li, Z., Kesselman, E., Talmon, Y., Hillmyer, M. A. & Lodge, T. P. Multicompartment micelles from ABC miktoarm stars in water. Science 306, 98–101 (2004).

    CAS  Google Scholar 

  29. 29

    Groschel, A. H. et al. Guided hierarchical co-assembly of soft patchy nanoparticles. Nature 503, 247–251 (2013).

    Google Scholar 

  30. 30

    Qiu, H., Hudson, Z. M., Winnik, M. A. & Manners, I. Multidimensional hierarchical self-assembly of amphiphilic cylindrical block comicelles. Science 347, 1329–1332 (2015).

    CAS  Google Scholar 

  31. 31

    Lehn, J.-M. Dynamers: dynamic molecular and supramolecular polymers. Prog. Polym. Sci. 30, 814–831 (2005).

    CAS  Google Scholar 

  32. 32

    Wojtecki, R. J., Meador, M. A. & Rowan, S. J. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat. Mater. 10, 14–27 (2011).

    CAS  Google Scholar 

  33. 33

    Friend, R. H. et al. Electroluminescence in conjugated polymers. Nature 397, 121–128 (1999).

    CAS  Google Scholar 

  34. 34

    Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    CAS  Google Scholar 

  35. 35

    Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

    CAS  Google Scholar 

  36. 36

    Langer, R. & Tirrell, D. A. Designing materials for biology and medicine. Nature 428, 487–492 (2004).

    CAS  Google Scholar 

  37. 37

    Carothers, W. H. Polymerization. Chem. Rev. 8, 353–426 (1931).

    CAS  Google Scholar 

  38. 38

    Hadjichristidis, N., Pitsikalis, M., Pispas, S. & Iatrou, H. Polymers with complex architecture by living anionic polymerization. Chem. Rev. 101, 3747–3792 (2001).

    CAS  Google Scholar 

  39. 39

    Matyjaszewski, K. & Tsarevsky, N. V. Macromolecular engineering by atom transfer radical polymerization. J. Am. Chem. Soc. 136, 6513–6533 (2014).

    CAS  Google Scholar 

  40. 40

    Lutz, J.-F. Sequence-controlled polymerizations: the next Holy Grail in polymer science? Polym. Chem. 1, 55–62 (2010).

    CAS  Google Scholar 

  41. 41

    Averick, S. et al. ATRP under biologically relevant conditions: grafting from a protein. ACS Macro Lett. 1, 6–10 (2012).

    CAS  Google Scholar 

  42. 42

    Jakubowski, W. & Matyjaszewski, K. Activators regenerated by electron transfer for atom-transfer radical polymerization of (meth)acrylates and related block copolymers. Angew. Chem. Int. Ed. Engl. 45, 4482–4486 (2006).

    CAS  Google Scholar 

  43. 43

    Matyjaszewski, K. et al. Diminishing catalyst concentration in atom transfer radical polymerization with reducing agents. Proc. Natl Acad. Sci. USA 103, 15309–15314 (2006).

    CAS  Google Scholar 

  44. 44

    Konkolewicz, D. et al. Reversible-deactivation radical polymerization in the presence of metallic copper. A critical assessment of the SARA ATRP and SET-LRP mechanisms. Macromolecules 46, 8749–8772 (2013).

    CAS  Google Scholar 

  45. 45

    Konkolewicz, D., Schroder, K., Buback, J., Bernhard, S. & Matyjaszewski, K. Visible light and sunlight photoinduced ATRP with ppm of Cu catalyst. ACS Macro Lett. 1, 1219–1223 (2012).

    CAS  Google Scholar 

  46. 46

    Magenau, A. J. D., Strandwitz, N. C., Gennaro, A. & Matyjaszewski, K. Electrochemically mediated atom transfer radical polymerization. Science 332, 81–84 (2011).

    CAS  Google Scholar 

  47. 47

    Treat, N. J. et al. Metal-free atom transfer radical polymerization. J. Am. Chem. Soc. 136, 16096–16101 (2014).

    CAS  Google Scholar 

  48. 48

    Sawamoto, M. Modern cationic vinyl polymerization. Prog. Polym. Sci. 16, 111–172 (1991).

    CAS  Google Scholar 

  49. 49

    Matyjaszewski, K. Cationic Polymerizations: Mechanisms, Synthesis, and Applications 768 (Marcel Dekker, 1996).

    Google Scholar 

  50. 50

    Webster, O. W. Living polymerization methods. Science 251, 887–893 (1991).

    CAS  Google Scholar 

  51. 51

    Bielawski, C. W. & Grubbs, R. H. Living ring-opening metathesis polymerization. Prog. Polym. Sci. 32, 1–29 (2007).

    CAS  Google Scholar 

  52. 52

    Penczek, S. Models of Biopolymers by Ring-Opening Polymerization 400 (CRC Press, 1989).

    Google Scholar 

  53. 53

    Deming, T. J. Facile synthesis of block copolypeptides of defined architecture. Nature 390, 386–389 (1997).

    CAS  Google Scholar 

  54. 54

    Schulz, M. D. & Wagener, K. B. Precision Polymers through ADMET Polymerization. Macromol. Chem. Phys. 215, 1936–1945 (2014).

    CAS  Google Scholar 

  55. 55

    Tsarevsky, N. V., Sumerlin, B. S. & Matyjaszewski, K. Step-growth “click” coupling of telechelic polymers prepared by atom transfer radical polymerization. Macromolecules 38, 3558–3561 (2005).

    CAS  Google Scholar 

  56. 56

    Berthet, M.-A., Zarafshani, Z., Pfeifer, S. & Lutz, J.-F. Facile synthesis of functional periodic copolymers: a step toward polymer-based molecular arrays. Macromolecules 43, 44–50 (2010).

    CAS  Google Scholar 

  57. 57

    Satoh, K., Ozawa, S., Mizutani, M., Nagai, K. & Kamigaito, M. Sequence-regulated vinyl copolymers by metal-catalysed step-growth radical polymerization. Nat. Commun. 1, 6 (2010).

    Google Scholar 

  58. 58

    Deng, X.-X. et al. Sequence regulated poly(ester-amide)s based on passerini reaction. ACS Macro Lett. 1, 1300–1303 (2012).

    CAS  Google Scholar 

  59. 59

    Yokozawa, T. & Yokoyama, A. Chain-growth polycondensation: the living polymerization process in polycondensation. Prog. Polym. Sci. 32, 147–172 (2007).

    CAS  Google Scholar 

  60. 60

    Yokoyama, A., Miyakoshi, R. & Yokozawa, T. Chain-growth polymerization for poly(3-hexylthiophene) with a defined molecular weight and a low polydispersity. Macromolecules 37, 1169–1171 (2004).

    CAS  Google Scholar 

  61. 61

    Grayson, S. M. & Fréchet, J. M. J. Convergent dendrons and dendrimers: from synthesis to applications. Chem. Rev. 101, 3819–3868 (2001).

    CAS  Google Scholar 

  62. 62

    Nguyen, T.-T.-T. et al. Extending the limits of precision polymer synthesis: giant polyphenylene dendrimers in the megadalton mass range approaching structural perfection. J. Am. Chem. Soc. 135, 4183–4186 (2013).

    CAS  Google Scholar 

  63. 63

    Gravert, D. J. & Janda, K. D. Organic synthesis on soluble polymer supports: liquid-phase methodologies. Chem. Rev. 97, 489–510 (1997).

    CAS  Google Scholar 

  64. 64

    Badi, N. & Lutz, J.-F. Sequence control in polymer synthesis. Chem. Soc. Rev. 38, 3383–3390 (2009).

    CAS  Google Scholar 

  65. 65

    Averick, S. E., Dey, S. K., Grahacharya, D., Matyjaszewski, K. & Das, S. R. Solid-phase incorporation of an ATRP initiator for polymer–DNA biohybrids. Angew. Chem. Int. Ed. Engl. 53, 2739–2744 (2014).

    CAS  Google Scholar 

  66. 66

    Pfeifer, S., Zarafshani, Z., Badi, N. & Lutz, J.-F. Liquid-phase synthesis of block copolymers containing sequence-ordered segments. J. Am. Chem. Soc. 131, 9195–9196 (2009).

    CAS  Google Scholar 

  67. 67

    Espeel, P. et al. Multifunctionalized sequence-defined oligomers from a single building block. Angew. Chem. Int. Ed. Engl. 52, 13261–13264 (2013).

    CAS  Google Scholar 

  68. 68

    Solleder, S. C. & Meier, M. A. R. Sequence control in polymer chemistry through the passerini three-component reaction. Angew. Chem. Int. Ed. Engl. 53, 711–714 (2014).

    CAS  Google Scholar 

  69. 69

    Porel, M. & Alabi, C. A. Sequence-defined polymers via orthogonal allyl acrylamide building blocks. J. Am. Chem. Soc. 136, 13162–13165 (2014).

    CAS  Google Scholar 

  70. 70

    Proulx, C., Yoo, S., Connolly, M. D. & Zuckermann, R. N. Accelerated submonomer solid-phase synthesis of peptoids incorporating multiple substituted N-aryl glycine monomers. J. Org. Chem. 80, 10490–10497 (2015).

    CAS  Google Scholar 

  71. 71

    Roy, R. K. et al. Design and synthesis of digitally encoded polymers that can be decoded and erased. Nat. Commun. 6, 7237 (2015).

    Google Scholar 

  72. 72

    Trinh, T. T., Laure, C. & Lutz, J.-F. Synthesis of monodisperse sequence-defined polymers using protecting-group-free iterative strategies. Macromol. Chem. Phys. 216, 1498–1506 (2015).

    CAS  Google Scholar 

  73. 73

    Anfinsen, C. B. Principles that govern the folding of protein chains. Science 181, 223–230 (1973).

    CAS  Google Scholar 

  74. 74

    Badi, N., Chan-Seng, D. & Lutz, J.-F. Microstructure control: an underestimated parameter in recent polymer design. Macromol. Chem. Phys. 214, 135–142 (2013).

    CAS  Google Scholar 

  75. 75

    Thomas, C. M. Stereocontrolled ring-opening polymerization of cyclic esters: synthesis of new polyester microstructures. Chem. Soc. Rev. 39, 165–173 (2010).

    CAS  Google Scholar 

  76. 76

    Lutz, J.-F., Neugebauer, D. & Matyjaszewski, K. Stereoblock copolymers and tacticity control in controlled/living radical polymerization. J. Am. Chem. Soc. 125, 6986–6993 (2003).

    CAS  Google Scholar 

  77. 77

    Satoh, K. & Kamigaito, M. Stereospecific living radical polymerization: dual control of chain length and tacticity for precision polymer synthesis. Chem. Rev. 109, 5120–5156 (2009).

    CAS  Google Scholar 

  78. 78

    Lutz, J.-F. Polymer chemistry: a controlled sequence of events. Nat. Chem. 2, 84–85 (2010).

    CAS  Google Scholar 

  79. 79

    Janssen, H. M., Peeters, E., van Zundert, M. F., van Genderen, M. H. P. & Meijer, E. W. Unconventional amphiphilic polymers based on chiral polyethylene oxides. Angew. Chem. Int. Ed. Engl. 36, 122–125 (1997).

    CAS  Google Scholar 

  80. 80

    Pfeifer, S. & Lutz, J.-F. A facile procedure for controlling monomer sequence distribution in radical chain polymerizations. J. Am. Chem. Soc. 129, 9542–9543 (2007).

    CAS  Google Scholar 

  81. 81

    Chan-Seng, D., Zamfir, M. & Lutz, J.-F. Polymer-chain encoding: synthesis of highly complex monomer sequence patterns by using automated protocols. Angew. Chem. Int. Ed. Engl. 51, 12254–12257 (2012).

    CAS  Google Scholar 

  82. 82

    Zamfir, M. & Lutz, J.-F. Ultra-precise insertion of functional monomers in chain-growth polymerizations. Nat. Commun. 3, 1138 (2012).

    Google Scholar 

  83. 83

    Moatsou, D., Hansell, C. F. & O’Reilly, R. K. Precision polymers: a kinetic approach for functional poly(norbornenes). Chem. Sci. 5, 2246–2250 (2014).

    CAS  Google Scholar 

  84. 84

    Gutekunst, W. R. & Hawker, C. J. A. General approach to sequence-controlled polymers using macrocyclic ring opening metathesis polymerization. J. Am. Chem. Soc. 137, 8038–8041 (2015).

    CAS  Google Scholar 

  85. 85

    Weiss, R. M., Short, A. L. & Meyer, T. Y. Sequence-controlled copolymers prepared via entropy-driven ring-opening metathesis polymerization. ACS Macro Lett. 4, 1039–1043 (2015).

    CAS  Google Scholar 

  86. 86

    Schmidt, B. V. K. J., Fechler, N., Falkenhagen, J. & Lutz, J.-F. Controlled folding of synthetic polymer chains through the formation of positionable covalent bridges. Nat. Chem. 3, 234–238 (2011).

    CAS  Google Scholar 

  87. 87

    Terashima, T. et al. Single-chain folding of polymers for catalytic systems in water. J. Am. Chem. Soc. 133, 4742–4745 (2011).

    CAS  Google Scholar 

  88. 88

    Roy, R. K. & Lutz, J.-F. Compartmentalization of single polymer chains by stepwise intramolecular cross-linking of sequence-controlled macromolecules. J. Am. Chem. Soc. 136, 12888–12891 (2014).

    CAS  Google Scholar 

  89. 89

    Lutz, J.-F. Writing on polymer chains. Acc. Chem. Res. 46, 2696–2705 (2013).

    CAS  Google Scholar 

  90. 90

    McKee, M. L. et al. Multistep DNA-templated reactions for the synthesis of functional sequence controlled oligomers. Angew. Chem. Int. Ed. Engl. 49, 7948–7951 (2010).

    CAS  Google Scholar 

  91. 91

    Niu, J., Hili, R. & Liu, D. R. Enzyme-free translation of DNA into sequence-defined synthetic polymers structurally unrelated to nucleic acids. Nat. Chem. 5, 282–292 (2013).

    CAS  Google Scholar 

  92. 92

    Lewandowski, B. et al. Sequence-specific peptide synthesis by an artificial small-molecule machine. Science 339, 189–193 (2013).

    CAS  Google Scholar 

  93. 93

    Tong, X. M., Guo, B. H. & Huang, Y. B. Toward the synthesis of sequence-controlled vinyl copolymers. Chem. Commun. 47, 1455–1457 (2011).

    CAS  Google Scholar 

  94. 94

    Houshyar, S. et al. The scope for synthesis of macro-RAFT agents by sequential insertion of single monomer units. Polym. Chem. 3, 1879–1889 (2012).

    CAS  Google Scholar 

  95. 95

    Vandenbergh, J., Reekmans, G., Adriaensens, P. & Junkers, T. Synthesis of sequence controlled acrylate oligomers via consecutive RAFT monomer additions. Chem. Commun. 49, 10358–10360 (2013).

    CAS  Google Scholar 

  96. 96

    Zydziak, N., Feist, F., Huber, B., Mueller, J. O. & Barner-Kowollik, C. Photo-induced sequence defined macromolecules via hetero bifunctional synthons. Chem. Commun. 51, 1799–1802 (2015).

    CAS  Google Scholar 

  97. 97

    Barnes, J. C. et al. Iterative exponential growth of stereo- and sequence-controlled polymers. Nat. Chem. 7, 810–815 (2015).

    CAS  Google Scholar 

  98. 98

    Solleder, S. C., Zengel, D., Wetzel, K. S. & Meier, M. A. R. A. Scalable and high-yield strategy for the synthesis of sequence-defined macromolecules. Angew. Chem. Int. Ed. Engl. 55, 1204–1207 (2016).

    CAS  Google Scholar 

  99. 99

    Al Ouahabi, A., Charles, L. & Lutz, J.-F. Synthesis of non-natural sequence-encoded polymers using phosphoramidite chemistry. J. Am. Chem. Soc. 137, 5629–5635 (2015).

    CAS  Google Scholar 

  100. 100

    Al Ouahabi, A., Kotera, M., Charles, L. & Lutz, J.-F. Synthesis of monodisperse sequence-coded polymers with chain lengths above DP100. ACS Macro Lett. 4, 1077–1080 (2015).

    CAS  Google Scholar 

  101. 101

    Lutz, J.-F. Coding macromolecules: inputting information in polymers using monomer-based alphabets. Macromolecules 48, 4759–4767 (2015).

    CAS  Google Scholar 

  102. 102

    Mutlu, H. & Lutz, J.-F. Reading polymers: sequencing of natural and synthetic macromolecules. Angew. Chem. Int. Ed. Engl. 53, 13010–13019 (2014).

    CAS  Google Scholar 

  103. 103

    Hadjichristidis, N. Synthesis of miktoarm star (μ-star) polymers. J. Polym. Sci., Part A: Polym. Chem. 37, 857–871 (1999).

    CAS  Google Scholar 

  104. 104

    Schappacher, M. & Deffieux, A. Synthesis of macrocyclic copolymer brushes and their self-assembly into supramolecular tubes. Science 319, 1512–1515 (2008).

    CAS  Google Scholar 

  105. 105

    Yamamoto, T. & Tezuka, Y. Topological polymer chemistry: a cyclic approach toward novel polymer properties and functions. Polym. Chem. 2, 1930–1941 (2011).

    CAS  Google Scholar 

  106. 106

    Matyjaszewski, K. & Tsarevsky, N. V. Nanostructured functional materials prepared by atom transfer radical polymerization. Nat. Chem. 1, 276–288 (2009).

    CAS  Google Scholar 

  107. 107

    Davis, K. A. & Matyjaszewski, K. Statistical, gradient, block, and graft copolymers by controlled/living radical polymerizations. Adv. Polym. Sci. 159, 1–166 (2002).

    Google Scholar 

  108. 108

    Gody, G., Maschmeyer, T., Zetterlund, P. B. & Perrier, S. Rapid and quantitative one-pot synthesis of sequence-controlled polymers by radical polymerization. Nat. Commun. 4, 2505 (2013).

    Google Scholar 

  109. 109

    Lutz, J.-F. Solution self-assembly of tailor-made macromolecular building blocks prepared by controlled radical polymerization techniques. Polym. Int. 55, 979–993 (2006).

    CAS  Google Scholar 

  110. 110

    Bates, F. S. et al. Multiblock polymers: panacea or pandora’s box? Science 336, 434–440 (2012).

    CAS  Google Scholar 

  111. 111

    Gao, H. & Matyjaszewski, K. Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers: from stars to gels. Prog. Polym. Sci. 34, 317–350 (2009).

    CAS  Google Scholar 

  112. 112

    Lutz, J.-F., Jahed, N. & Matyjaszewski, K. Preparation and characterization of graft terpolymers with controlled molecular structure. J. Polym. Sci., Part A: Polym. Chem. 42, 1939–1952 (2004).

    CAS  Google Scholar 

  113. 113

    Laurent, B. A. & Grayson, S. M. Synthetic approaches for the preparation of cyclic polymers. Chem. Soc. Rev. 38, 2202–2213 (2009).

    CAS  Google Scholar 

  114. 114

    Yan, D., Müller, A. H. E. & Matyjaszewski, K. Molecular parameters of hyperbranched polymers made by self-condensing vinyl polymerization. 2. Degree branch. Macromolecules 30, 7024–7033 (1997).

    CAS  Google Scholar 

  115. 115

    Sheiko, S. S., Sumerlin, B. S. & Matyjaszewski, K. Cylindrical molecular brushes: synthesis, characterization, and properties. Prog. Polym. Sci. 33, 759–785 (2008).

    CAS  Google Scholar 

  116. 116

    Sheiko, S. S. et al. Adsorption-induced scission of carbon–carbon bonds. Nature 440, 191–194 (2006).

    CAS  Google Scholar 

  117. 117

    Stals, P. J. M. et al. How far can we push polymer architectures? J. Am. Chem. Soc. 135, 11421–11424 (2013).

    CAS  Google Scholar 

  118. 118

    Sanchez, C., Julian, B., Belleville, P. & Popall, M. Applications of hybrid organic–inorganic nanocomposites. J. Mater. Chem. 15, 3559–3592 (2005).

    CAS  Google Scholar 

  119. 119

    Nerantzaki, M. et al. Novel poly(butylene succinate) nanocomposites containing strontium hydroxyapatite nanorods with enhanced osteoconductivity for tissue engineering applications. Express Polym. Lett. 9, 773–789 (2015).

    CAS  Google Scholar 

  120. 120

    Pitet, L. M. et al. Well-organized dense arrays of nanodomains in thin films of poly(dimethylsiloxane)-b-poly(lactide) diblock copolymers. Macromolecules 46, 8289–8295 (2013).

    CAS  Google Scholar 

  121. 121

    Whittell, G. R., Hager, M. D., Schubert, U. S. & Manners, I. Functional soft materials from metallopolymers and metallosupramolecular polymers. Nat. Mater. 10, 176–188 (2011).

    CAS  Google Scholar 

  122. 122

    Massey, J. A. et al. Self-assembly of organometallic block copolymers: the role of crystallinity of the core-forming polyferrocene block in the micellar morphologies formed by poly(ferrocenylsilane-b-dimethylsiloxane) in n-Alkane solvents. J. Am. Chem. Soc. 122, 11577–11584 (2000).

    CAS  Google Scholar 

  123. 123

    Kickelbick, G. Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog. Polym. Sci. 28, 83–114 (2003).

    CAS  Google Scholar 

  124. 124

    Matyjaszewski, K., Dong, H., Jakubowski, W., Pietrasik, J. & Kusumo, A. Grafting from surfaces for “everyone”: ARGET ATRP in the presence of air. Langmuir 23, 4528–4531 (2007).

    CAS  Google Scholar 

  125. 125

    Korth, B. D. et al. Polymer-coated ferromagnetic colloids from well-defined macromolecular surfactants and assembly into nanoparticle chains. J. Am. Chem. Soc. 128, 6562–6563 (2006).

    CAS  Google Scholar 

  126. 126

    Shen, Y. et al. Gold nanoparticles coated with a thermosensitive hyperbranched polyelectrolyte: towards smart temperature and pH nanosensors. Angew. Chem. Int. Ed. Engl. 47, 2227–2230 (2008).

    CAS  Google Scholar 

  127. 127

    Chanana, M. et al. Fabrication of colloidal stable, thermosensitive, and biocompatible magnetite nanoparticles and study of their reversible agglomeration in aqueous milieu. Chem. Mater. 21, 1906–1914 (2009).

    CAS  Google Scholar 

  128. 128

    Tchoul, M. N. et al. Assemblies of titanium dioxide-polystyrene hybrid nanoparticles for dielectric applications. Chem. Mater. 22, 1749–1759 (2010).

    CAS  Google Scholar 

  129. 129

    Müllner, M. et al. Water-soluble organo–silica hybrid nanotubes templated by cylindrical polymer brushes. J. Am. Chem. Soc. 132, 16587–16592 (2010).

    Google Scholar 

  130. 130

    Pang, X., Zhao, L., Han, W., Xin, X. & Lin, Z. A general and robust strategy for the synthesis of nearly monodisperse colloidal nanocrystals. Nat. Nanotechnol. 8, 426–431 (2013).

    CAS  Google Scholar 

  131. 131

    Decher, G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277, 1232–1237 (1997).

    CAS  Google Scholar 

  132. 132

    Khabibullin, A., Mastan, E., Matyjaszewski, K. & Zhu, S. Surface-initiated atom transfer radical polymerization. Adv. Polym. Sci. 270, 29–76 (2016).

    CAS  Google Scholar 

  133. 133

    Coessens, V., Pintauer, T. & Matyjaszewski, K. Functional polymers by atom transfer radical polymerization. Prog. Polym. Sci. 26, 337–377 (2001).

    CAS  Google Scholar 

  134. 134

    Cobo, I., Li, M., Sumerlin, B. S. & Perrier, S. Smart hybrid materials by conjugation of responsive polymers to biomacromolecules. Nat. Mater. 14, 143–159 (2015).

    CAS  Google Scholar 

  135. 135

    Pelegri-O’Day, E. M., Lin, E.-W. & Maynard, H. D. Therapeutic protein–polymer conjugates: advancing beyond PEGylation. J. Am. Chem. Soc. 136, 14323–14332 (2014).

    Google Scholar 

  136. 136

    Peeler, J. C. et al. Genetically encoded initiator for polymer growth from proteins. J. Am. Chem. Soc. 132, 13575–13577 (2010).

    CAS  Google Scholar 

  137. 137

    Sumerlin, B. S. Proteins as initiators of controlled radical polymerization: grafting-from via ATRP and RAFT. ACS Macro Lett. 1, 141–145 (2012).

    CAS  Google Scholar 

  138. 138

    Alemdaroglu, F. E. & Herrmann, A. DNA meets synthetic polymers — highly versatile hybrid materials. Org. Biomol. Chem. 5, 1311–1320 (2007).

    CAS  Google Scholar 

  139. 139

    Baldwin, A. D. & Kiick, K. L. Polysaccharide-modified synthetic polymeric biomaterials. Pept. Sci. 94, 128–140 (2010).

    CAS  Google Scholar 

  140. 140

    Serpell, C. J., Edwardson, T. G. W., Chidchob, P., Carneiro, K. M. M. & Sleiman, H. F. Precision polymers and 3D DNA nanostructures: emergent assemblies from new parameter space. J. Am. Chem. Soc. 136, 15767–15774 (2014).

    CAS  Google Scholar 

  141. 141

    Pokorski, J. K., Breitenkamp, K., Liepold, L. O., Qazi, S. & Finn, M. G. Functional virus-based polymer–protein nanoparticles by atom transfer radical polymerization. J. Am. Chem. Soc. 133, 9242–9245 (2011).

    CAS  Google Scholar 

  142. 142

    Bates, F. S. Polymer–polymer phase behavior. Science 251, 898–905 (1991).

    CAS  Google Scholar 

  143. 143

    Halperin, A., Tirrell, M. & Lodge, T. P. in Macromolecules: Synthesis, Order and Advanced Properties Vol. 100/1 Ch. 3, 31–71 (Springer, 1992).

    Google Scholar 

  144. 144

    Ikkala, O. & ten Brinke, G. Functional materials based on self-assembly of polymeric supramolecules. Science 295, 2407–2409 (2002).

    CAS  Google Scholar 

  145. 145

    Lynd, N. A., Meuler, A. J. & Hillmyer, M. A. Polydispersity and block copolymer self-assembly. Prog. Polym. Sci. 33, 875–893 (2008).

    CAS  Google Scholar 

  146. 146

    Leibler, L. Theory of microphase separation in block copolymers. Macromolecules 13, 1602–1617 (1980).

    CAS  Google Scholar 

  147. 147

    Stadler, R. et al. Morphology and thermodynamics of symmetric poly(A-block-B-block-C) triblock copolymers. Macromolecules 28, 3080–3097 (1995).

    CAS  Google Scholar 

  148. 148

    Wu, L., Cochran, E. W., Lodge, T. P. & Bates, F. S. Consequences of block number on the order–disorder transition and viscoelastic properties of linear (AB)n multiblock copolymers. Macromolecules 37, 3360–3368 (2004).

    CAS  Google Scholar 

  149. 149

    Takahashi, K. et al. Four-phase triple coaxial cylindrical microdomain morphology in a linear tetrablock quaterpolymer of styrene, isoprene, dimethylsiloxane, and 2-Vinylpyridine. Macromolecules 35, 4859–4861 (2002).

    CAS  Google Scholar 

  150. 150

    Hayashida, K., Dotera, T., Takano, A. & Matsushita, Y. Polymeric quasicrystal: mesoscopic quasicrystalline tiling in ABC star polymers. Phys. Rev. Lett. 98, 195502 (2007).

    Google Scholar 

  151. 151

    Balsamo, V., Müller, A. J., von Gyldenfeldt, F. & Stadler, R. Ternary ABC block copolymers based on one glassy and two crystallizable blocks: polystyrene-block-polyethylene-block-poly(ε-caprolactone). Macromol. Chem. Phys. 199, 1063–1070 (1998).

    CAS  Google Scholar 

  152. 152

    de Lucca Freitas, L., Jacobi, M. M., Gonçalves, G. & Stadler, R. Microphase separation induced by hydrogen bonding in a poly(1,4-butadiene)-block-poly(1,4-isoprene) diblock copolymer — an example of supramolecular organization via tandem interactions. Macromolecules 31, 3379–3382 (1998).

    Google Scholar 

  153. 153

    Cushen, J. D. et al. Oligosaccharide/silicon-containing block copolymers with 5 nm features for lithographic applications. ACS Nano 6, 3424–3433 (2012).

    CAS  Google Scholar 

  154. 154

    Sinturel, C., Bates, F. S. & Hillmyer, M. A. High χ–low N block polymers: how far can we go?. ACS Macro Lett. 4, 1044–1050 (2015).

    CAS  Google Scholar 

  155. 155

    De Ten Hove, C. L. F., Penelle, J., Ivanov, D. A. & Jonas, A. M. Encoding crystal microstructure and chain folding in the chemical structure of synthetic polymers. Nat. Mater. 3, 33–37 (2004).

    Google Scholar 

  156. 156

    Altintas, O. & Barner-Kowollik, C. Single-chain folding of synthetic polymers: a critical update. Macromol. Rapid Commun. 37, 29–46 (2016).

    CAS  Google Scholar 

  157. 157

    Hanlon, A. M., Lyon, C. K. & Berda, E. B. What is next in single-chain nanoparticles? Macromolecules 49, 2–14 (2016).

    CAS  Google Scholar 

  158. 158

    Harth, E. et al. A facile approach to architecturally defined nanoparticles via intramolecular chain collapse. J. Am. Chem. Soc. 124, 8653–8660 (2002).

    CAS  Google Scholar 

  159. 159

    Foster, E. J., Berda, E. B. & Meijer, E. W. Metastable supramolecular polymer nanoparticles via intramolecular collapse of single polymer chains. J. Am. Chem. Soc. 131, 6964–6966 (2009).

    CAS  Google Scholar 

  160. 160

    Altintas, O., Krolla-Sidenstein, P., Gliemann, H. & Barner-Kowollik, C. Single-chain folding of diblock copolymers driven by orthogonal H-donor and acceptor units. Macromolecules 47, 5877–5888 (2014).

    CAS  Google Scholar 

  161. 161

    Lu, J., ten Brummelhuis, N. & Weck, M. Intramolecular folding of triblock copolymers via quadrupole interactions between poly(styrene) and poly(pentafluorostyrene) blocks. Chem. Commun. 50, 6225–6227 (2014).

    CAS  Google Scholar 

  162. 162

    Willenbacher, J. et al. Reversible single-chain selective point folding via cyclodextrin driven host–guest chemistry in water. Chem. Commun. 50, 7056–7059 (2014).

    CAS  Google Scholar 

  163. 163

    Mes, T., van der Weegen, R., Palmans, A. R. A. & Meijer, E. W. Single-chain polymeric nanoparticles by stepwise folding. Angew. Chem. Int. Ed. Engl. 50, 5085–5089 (2011).

    CAS  Google Scholar 

  164. 164

    Hosono, N. et al. Orthogonal self-assembly in folding block copolymers. J. Am. Chem. Soc. 135, 501–510 (2013).

    CAS  Google Scholar 

  165. 165

    Harada, A. & Kataoka, K. Chain length recognition: core-shell supramolecular assembly from oppositely charged block copolymers. Science 283, 65–67 (1999).

    CAS  Google Scholar 

  166. 166

    Discher, D. E. & Eisenberg, A. Polymer vesicles. Science 297, 967–973 (2002).

    CAS  Google Scholar 

  167. 167

    Won, Y.-Y., Davis, H. T. & Bates, F. S. Giant wormlike rubber micelles. Science 283, 960–963 (1999).

    CAS  Google Scholar 

  168. 168

    Warren, N. J. & Armes, S. P. Polymerization-induced self-assembly of block copolymer nano-objects via RAFT aqueous dispersion polymerization. J. Am. Chem. Soc. 136, 10174–10185 (2014).

    CAS  Google Scholar 

  169. 169

    van Hest, J. C. M., Delnoye, D. A. P., Baars, M. W. P. L., van Genderen, M. H. P. & Meijer, E. W. Polystyrene-dendrimer amphiphilic block copolymers with a generation-dependent aggregation. Science 268, 1592–1595 (1995).

    CAS  Google Scholar 

  170. 170

    Zhang, L. & Eisenberg, A. Multiple morphologies of “crew-cut” aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science 268, 1728–1731 (1995).

    CAS  Google Scholar 

  171. 171

    Hayward, R. C. & Pochan, D. J. Tailored assemblies of block copolymers in solution: it is all about the process. Macromolecules 43, 3577–3584 (2010).

    CAS  Google Scholar 

  172. 172

    Kubowicz, S. et al. Multicompartment micelles formed by self-assembly of linear ABC triblock copolymers in aqueous medium. Angew. Chem. Int. Ed. Engl. 44, 5262–5265 (2005).

    CAS  Google Scholar 

  173. 173

    Pochan, D. J. et al. Toroidal triblock copolymer assemblies. Science 306, 94–97 (2004).

    CAS  Google Scholar 

  174. 174

    Walther, A. & Müller, A. H. E. Janus particles: synthesis, self-assembly, physical properties, and applications. Chem. Rev. 113, 5194–5261 (2013).

    CAS  Google Scholar 

  175. 175

    Choi, J. et al. Effect of polymer-graft modification on the order formation in particle assembly structures. Langmuir 29, 6452–6459 (2013).

    CAS  Google Scholar 

  176. 176

    Averick, S. et al. Cooperative, reversible self-assembly of covalently pre-linked proteins into giant fibrous structures. Angew. Chem. Int. Ed. Engl. 53, 8050–8055 (2014).

    CAS  Google Scholar 

  177. 177

    Li, X., Gao, Y., Boott, C. E., Winnik, M. A. & Manners, I. Non-covalent synthesis of supermicelles with complex architectures using spatially confined hydrogen-bonding interactions. Nat. Commun. 6, 8127 (2015).

    Google Scholar 

  178. 178

    Brunsveld, L., Folmer, B. J. B., Meijer, E. W. & Sijbesma, R. P. Supramolecular polymers. Chem. Rev. 101, 4071–4098 (2001).

    CAS  Google Scholar 

  179. 179

    Skene, W. G. & Lehn, J.-M. P. Dynamers: Polyacylhydrazone reversible covalent polymers, component exchange, and constitutional diversity. Proc. Natl Acad. Sci. USA 101, 8270–8275 (2004).

    CAS  Google Scholar 

  180. 180

    Maeda, T., Otsuka, H. & Takahara, A. Dynamic covalent polymers: reorganizable polymers with dynamic covalent bonds. Prog. Polym. Sci. 34, 581–604 (2009).

    CAS  Google Scholar 

  181. 181

    Reutenauer, P., Buhler, E., Boul, P. J., Candau, S. J. & Lehn, J. M. Room temperature dynamic polymers based on Diels–Alder chemistry. Chem. Eur. J. 15, 1893–1900 (2009).

    CAS  Google Scholar 

  182. 182

    Fukuda, K., Shimoda, M., Sukegawa, M., Nobori, T. & Lehn, J.-M. Doubly degradable dynamers: dynamic covalent polymers based on reversible imine connections and biodegradable polyester units. Green Chem. 14, 2907–2911 (2012).

    CAS  Google Scholar 

  183. 183

    Schaeffer, G., Buhler, E., Candau, S. J. & Lehn, J.-M. Double dynamic supramolecular polymers of covalent oligo-dynamers. Macromolecules 46, 5664–5671 (2013).

    CAS  Google Scholar 

  184. 184

    Mahon, C. S., Jackson, A. W., Murray, B. S. & Fulton, D. A. Investigating templating within polymer-scaffolded dynamic combinatorial libraries. Polym. Chem. 4, 368–377 (2013).

    CAS  Google Scholar 

  185. 185

    Folmer-Andersen, J. F. & Lehn, J.-M. Constitutional adaptation of dynamic polymers: hydrophobically driven sequence selection in dynamic covalent polyacylhydrazones. Angew. Chem. Int. Ed. Engl. 48, 7664–7667 (2009).

    CAS  Google Scholar 

  186. 186

    Whitaker, D. E., Mahon, C. S. & Fulton, D. A. Thermoresponsive dynamic covalent single-chain polymer nanoparticles reversibly transform into a hydrogel. Angew. Chem. Int. Ed. Engl. 52, 956–959 (2013).

    CAS  Google Scholar 

  187. 187

    Roy, N., Bruchmann, B. & Lehn, J.-M. Dynamers: dynamic polymers as self-healing materials. Chem. Soc. Rev. 44, 3786–3807 (2015).

    CAS  Google Scholar 

  188. 188

    Nicolai, T., Colombani, O. & Chassenieux, C. Dynamic polymeric micelles versus frozen nanoparticles formed by block copolymers. Soft Matter 6, 3111–3118 (2010).

    CAS  Google Scholar 

  189. 189

    Stuparu, M. C., Khan, A. & Hawker, C. J. Phase separation of supramolecular and dynamic block copolymers. Polym. Chem. 3, 3033–3044 (2012).

    CAS  Google Scholar 

  190. 190

    Lohmeijer, B. G. G. & Schubert, U. S. Supramolecular engineering with macromolecules: an alternative concept for block copolymers. Angew. Chem. Int. Ed. Engl. 41, 3825–3829 (2002).

    CAS  Google Scholar 

  191. 191

    Rauwald, U. & Scherman, O. A. Supramolecular block copolymers with cucurbit[8]uril in water. Angew. Chem. Int. Ed. Engl. 47, 3950–3953 (2008).

    CAS  Google Scholar 

  192. 192

    Lohmeijer, B. G. G., Wouters, D., Yin, Z. & Schubert, U. S. Block copolymer libraries: modular versatility of the macromolecular Lego® system. Chem. Commun. 2004, 2886–2887 (2004).

    Google Scholar 

  193. 193

    Kloxin, C. J. & Bowman, C. N. Covalent adaptable networks: smart, reconfigurable and responsive network systems. Chem. Soc. Rev. 42, 7161–7173 (2013).

    CAS  Google Scholar 

  194. 194

    Yang, Y., Ding, X. & Urban, M. W. Chemical and physical aspects of self-healing materials. Prog. Polym. Sci. 4950, 34–59 (2015).

    Google Scholar 

  195. 195

    Cordier, P., Tournilhac, F., Soulie-Ziakovic, C. & Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977–980 (2008).

    CAS  Google Scholar 

  196. 196

    Harada, A., Kobayashi, R., Takashima, Y., Hashidzume, A. & Yamaguchi, H. Macroscopic self-assembly through molecular recognition. Nat. Chem. 3, 34–37 (2011).

    CAS  Google Scholar 

  197. 197

    Nicolaÿ, R., Kamada, J., Van Wassen, A. & Matyjaszewski, K. Responsive gels based on a dynamic covalent trithiocarbonate cross-linker. Macromolecules 43, 4355–4361 (2010).

    Google Scholar 

  198. 198

    Amamoto, Y., Kamada, J., Otsuka, H., Takahara, A. & Matyjaszewski, K. Repeatable photoinduced self-healing of covalently cross-linked polymers through reshuffling of trithiocarbonate units. Angew. Chem. Int. Ed. Engl. 50, 1660–1663 (2011).

    CAS  Google Scholar 

  199. 199

    Cash, J. J., Kubo, T., Bapat, A. P. & Sumerlin, B. S. Room-temperature self-healing polymers based on dynamic-covalent boronic esters. Macromolecules 48, 2098–2106 (2015).

    CAS  Google Scholar 

  200. 200

    Montarnal, D., Capelot, M., Tournilhac, F. & Leibler, L. Silica-like malleable materials from permanent organic networks. Science 334, 965–968 (2011).

    CAS  Google Scholar 

  201. 201

    Denissen, W. et al. Vinylogous urethane vitrimers. Adv. Funct. Mater. 25, 2451–2457 (2015).

    CAS  Google Scholar 

  202. 202

    Capadona, J. R., Shanmuganathan, K., Tyler, D. J., Rowan, S. J. & Weder, C. Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science 319, 1370–1374 (2008).

    CAS  Google Scholar 

  203. 203

    Hsu, L., Weder, C. & Rowan, S. J. Stimuli-responsive, mechanically-adaptive polymer nanocomposites. J. Mater. Chem. 21, 2812–2822 (2011).

    CAS  Google Scholar 

  204. 204

    Yu, Z. et al. Simultaneous covalent and noncovalent hybrid polymerizations. Science 351, 497–502 (2016).

    CAS  Google Scholar 

  205. 205

    Lehn, J.-M. Supramolecular chemistry — molecular information and the design of supramolecular materials. Makromol. Chem. Macromol. Symp. 69, 1–17 (1993).

    CAS  Google Scholar 

  206. 206

    Fouquey, C., Lehn, J.-M. & Levelut, A.-M. Molecular recognition directed self-assembly of supramolecular liquid crystalline polymers from complementary chiral components. Adv. Mater. 2, 254–257 (1990).

    CAS  Google Scholar 

  207. 207

    Sijbesma, R. P. et al. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 278, 1601–1604 (1997).

    CAS  Google Scholar 

  208. 208

    Beijer, F. H., Sijbesma, R. P., Kooijman, H., Spek, A. L. & Meijer, E. W. Strong dimerization of ureidopyrimidones via quadruple hydrogen bonding. J. Am. Chem. Soc. 120, 6761–6769 (1998).

    CAS  Google Scholar 

  209. 209

    Schubert, U. S. & Eschbaumer, C. Macromolecules containing bipyridine and terpyridine metal complexes: towards metallosupramolecular polymers. Angew. Chem. Int. Ed. Engl. 41, 2892–2926 (2002).

    CAS  Google Scholar 

  210. 210

    Guan, Y., Yu, S.-H., Antonietti, M., Böttcher, C. & Faul, C. F. J. Synthesis of supramolecular polymers by ionic self-assembly of oppositely charged dyes. Chem. Eur. J. 11, 1305–1311 (2005).

    CAS  Google Scholar 

  211. 211

    Ogi, S., Sugiyasu, K., Manna, S., Samitsu, S. & Takeuchi, M. Living supramolecular polymerization realized through a biomimetic approach. Nat. Chem. 6, 188–195 (2014).

    CAS  Google Scholar 

  212. 212

    Kang, J. et al. A rational strategy for the realization of chain-growth supramolecular polymerization. Science 347, 646–651 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

J.F.L. and J.M.L. thank the Cluster of Excellence Chemistry of Complex Systems (LabEx CSC). J.M.L. thanks the ERC Advanced Research Grant SUPRADAPT 290585 for financial support. J.F.L. and E.W.M. acknowledge the H2020 programme of the European Union (project Euro-Sequences, H2020-MSCA-ITN-2014, grant agreement no. 642083). K.M. thanks the National Science Foundation for financial support (NSF DMR 1501324) and the National Science Centre (2014/14/A/ST5/00204).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jean-François Lutz or Jean-Marie Lehn or E. W. Meijer or Krzysztof Matyjaszewski.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lutz, JF., Lehn, JM., Meijer, E. et al. From precision polymers to complex materials and systems. Nat Rev Mater 1, 16024 (2016). https://doi.org/10.1038/natrevmats.2016.24

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing