Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mesoporous materials for energy conversion and storage devices

Abstract

To meet the growing energy demands in a low-carbon economy, the development of new materials that improve the efficiency of energy conversion and storage systems is essential. Mesoporous materials offer opportunities in energy conversion and storage applications owing to their extraordinarily high surface areas and large pore volumes. These properties may improve the performance of materials in terms of energy and power density, lifetime and stability. In this Review, we summarize the primary methods for preparing mesoporous materials and discuss their applications as electrodes and/or catalysts in solar cells, solar fuel production, rechargeable batteries, supercapacitors and fuel cells. Finally, we outline the research and development challenges of mesoporous materials that need to be overcome to increase their contribution in renewable energy applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The principal methods for synthesizing mesoporous materials.
Figure 2: Mesoporous materials for solar cells.
Figure 3: Mesoporous materials for solar fuel production.
Figure 4: Mesoporous materials for rechargeable batteries.
Figure 5: Mesoporous carbon materials for lithium–sulfur batteries.
Figure 6: Mesoporous materials for lithium–air batteries.
Figure 7: Mesoporous materials for supercapacitors.
Figure 8: Mesoporous materials for fuel cells.

References

  1. 1

    Davis, M. E. Ordered porous materials for emerging applications. Nature 417, 813–821 (2002).

    CAS  Google Scholar 

  2. 2

    Slater, A. G. & Cooper, A. I. Function-led design of new porous materials. Science 348, http://dx.doi.org/10.1126/science.aaa8075 (2015).

  3. 3

    Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992).

    CAS  Google Scholar 

  4. 4

    Zhao, D. Y. et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998).

    CAS  Google Scholar 

  5. 5

    Wagner, T., Haffer, S., Weinberger, C., Klaus, D. & Tiemann, M. Mesoporous materials as gas sensors. Chem. Soc. Rev. 42, 4036–4053 (2013).

    CAS  Google Scholar 

  6. 6

    Wu, Z. X. & Zhao, D. Y. Ordered mesoporous materials as adsorbents. Chem. Commun. 47, 3332–3338 (2011).

    CAS  Google Scholar 

  7. 7

    Walcarius, A. Mesoporous materials and electrochemistry. Chem. Soc. Rev. 42, 4098–4140 (2013).

    CAS  Google Scholar 

  8. 8

    Linares, N., Silvestre-Albero, A. M., Serrano, E., Silvestre-Albero, J. & Garcia-Martinez, J. Mesoporous materials for clean energy technologies. Chem. Soc. Rev. 43, 7681–7717 (2014).

    CAS  Google Scholar 

  9. 9

    Ye, Y., Jo, C., Jeong, I. & Lee, J. Functional mesoporous materials for energy applications: solar cells, fuel cells, and batteries. Nanoscale 5, 4584–4605 (2013).

    CAS  Google Scholar 

  10. 10

    Perego, C. & Millini, R. Porous materials in catalysis: challenges for mesoporous materials. Chem. Soc. Rev. 42, 3956–3976 (2013).

    CAS  Google Scholar 

  11. 11

    Li, W. & Zhao, D. An overview of the synthesis of ordered mesoporous materials. Chem. Commun. 49, 943–946 (2013).

    CAS  Google Scholar 

  12. 12

    Wan, Y. & Zhao, D. Y. On the controllable soft-templating approach to mesoporous silicates. Chem. Rev. 107, 2821–2860 (2007).

    CAS  Google Scholar 

  13. 13

    Wu, D. et al. Design and preparation of porous polymers. Chem. Rev. 112, 3959–4015 (2012).

    CAS  Google Scholar 

  14. 14

    Gu, D. & Schüth, F. Synthesis of non-siliceous mesoporous oxides. Chem. Soc. Rev. 43, 313–344 (2014).

    CAS  Google Scholar 

  15. 15

    Shi, Y., Wan, Y. & Zhao, D. Ordered mesoporous non-oxide materials. Chem. Soc. Rev. 40, 3854–3878 (2011).

    CAS  Google Scholar 

  16. 16

    Petkovich, N. D. & Stein, A. Controlling macro- and mesostructures with hierarchical porosity through combined hard and soft templating. Chem. Soc. Rev. 42, 3721–3739 (2013).

    CAS  Google Scholar 

  17. 17

    Xuan, W., Zhu, C., Liu, Y. & Cui, Y. Mesoporous metal–organic framework materials. Chem. Soc. Rev. 41, 1677–1695 (2012).

    CAS  Google Scholar 

  18. 18

    Li, W., Wu, Z., Wang, J., Elzatahry, A. A. & Zhao, D. A perspective on mesoporous TiO2 materials. Chem. Mater. 26, 287–298 (2014).

    CAS  Google Scholar 

  19. 19

    Li, W., Yue, Q., Deng, Y. H. & Zhao, D. Y. Ordered mesoporous materials based on interfacial assembly and engineering. Adv. Mater. 25, 5129–5152 (2013).

    CAS  Google Scholar 

  20. 20

    Feng, X., Ding, X. & Jiang, D. Covalent organic frameworks. Chem. Soc. Rev. 41, 6010–6022 (2012).

    CAS  Google Scholar 

  21. 21

    Wei, J. et al. Solvent evaporation induced aggregating assembly approach to three-dimensional ordered mesoporous silica with ultralarge accessible mesopores. J. Am. Chem. Soc. 133, 20369–20377 (2011).

    CAS  Google Scholar 

  22. 22

    Deng, Y., Wei, J., Sun, Z. & Zhao, D. Large-pore ordered mesoporous materials templated from non-Pluronic amphiphilic block copolymers. Chem. Soc. Rev. 42, 4054–4070 (2013).

    CAS  Google Scholar 

  23. 23

    Liu, Y. et al. Radially oriented mesoporous TiO2 microspheres with single-crystal-like anatase walls for high-efficiency optoelectronic devices. Sci. Adv. 1, e1500166 (2015).

    Google Scholar 

  24. 24

    Liu, Y. et al. Mesoporous TiO2 mesocrystals: remarkable defects-induced crystallite-interface reactivity and their in situ conversion to single crystals. ACS Cent.Sci. 1, 400–408 (2015).

    CAS  Google Scholar 

  25. 25

    Li, W. et al. Template-free synthesis of uniform magnetic mesoporous TiO2 nanospindles for highly selective enrichment of phosphopeptides. Mater. Horiz. 1, 439–445 (2014).

    CAS  Google Scholar 

  26. 26

    Peng, L. et al. Highly mesoporous metal–organic framework assembled in a switchable solvent. Nat. Commun. 5, 4465 (2014).

    CAS  Google Scholar 

  27. 27

    Sai, H. et al. Hierarchical porous polymer scaffolds from block copolymers. Science 341, 530–534 (2013).

    CAS  Google Scholar 

  28. 28

    Hwang, J. et al. Direct access to hierarchically porous inorganic oxide materials with three-dimensionally interconnected networks. J. Am. Chem. Soc. 136, 16066–16072 (2014).

    CAS  Google Scholar 

  29. 29

    Nakanishi, K. & Tanaka, N. Sol–gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations. Acc. Chem. Res. 40, 863–873 (2007).

    CAS  Google Scholar 

  30. 30

    Li, W. et al. Hydrothermal etching assisted crystallization: a facile route to functional yolk–shell titanate microspheres with ultrathin nanosheets-assembled double shells. J. Am. Chem. Soc. 133, 15830–15833 (2011).

    CAS  Google Scholar 

  31. 31

    Fei, X. et al. Protein biomineralized nanoporous inorganic mesocrystals with tunable hierarchical nanostructures. J. Am. Chem. Soc. 136, 15781–15786 (2014).

    CAS  Google Scholar 

  32. 32

    Deng, H. et al. Large-pore apertures in a series of metal–organic frameworks. Science 336, 1018–1023 (2012).

    CAS  Google Scholar 

  33. 33

    Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L. & Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 110, 6595–6663 (2010).

    CAS  Google Scholar 

  34. 34

    Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014).

    CAS  Google Scholar 

  35. 35

    Tiwana, P., Docampo, P., Johnston, M. B., Snaith, H. J. & Herz, L. M. Electron mobility and injection dynamics in mesoporous ZnO, SnO2, and TiO2 films used in dye-sensitized solar cells. ACS Nano 5, 5158–5166 (2011).

    CAS  Google Scholar 

  36. 36

    Guldin, S. et al. Improved conductivity in dye-sensitised solar cells through block-copolymer confined TiO2 crystallisation. Energy Environ. Sci. 4, 225–233 (2011).

    CAS  Google Scholar 

  37. 37

    Chen, D., Huang, F., Cheng, Y.-B. & Caruso, R. A. Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: a superior candidate for high-performance dye-sensitized solar cells. Adv. Mater. 21, 2206–2210 (2009).

    CAS  Google Scholar 

  38. 38

    Yella, A. et al. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334, 629–634 (2011).

    CAS  Google Scholar 

  39. 39

    Yun, S. N., Hagfeldt, A. & Ma, T. L. Pt-free counter electrode for dye-sensitized solar cells with high efficiency. Adv. Mater. 26, 6210–6237 (2014).

    CAS  Google Scholar 

  40. 40

    Wang, M. et al. An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nat. Chem. 2, 385–389 (2010).

    CAS  Google Scholar 

  41. 41

    Ramasamy, E. & Lee, J. Large-pore sized mesoporous carbon electrocatalyst for efficient dye-sensitized solar cells. Chem. Commun. 46, 2136–2138 (2010).

    CAS  Google Scholar 

  42. 42

    Murakami, T. N. et al. Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. J. Electrochem. Soc. 153, A2255–A2261 (2006).

    CAS  Google Scholar 

  43. 43

    Jeong, I. et al. Ordered mesoporous tungsten suboxide counter electrode for highly efficient iodine-free electrolyte-based dye-sensitized solar cells. ChemSusChem 6, 299–307 (2013).

    CAS  Google Scholar 

  44. 44

    Burschka, J. et al. Influence of the counter electrode on the photovoltaic performance of dye-sensitized solar cells using a disulfide/thiolate redox electrolyte. Energy Environ. Sci. 5, 6089–6097 (2012).

    CAS  Google Scholar 

  45. 45

    Wu, M. X. et al. Economical Pt-free catalysts for counter electrodes of dye-sensitized solar cells. J. Am. Chem. Soc. 134, 3419–3428 (2012).

    CAS  Google Scholar 

  46. 46

    Wu, M. X., Lin, X. A., Hagfeldt, A. & Ma, T. L. Low-cost molybdenum carbide and tungsten carbide counter electrodes for dye-sensitized solar cells. Angew. Chem. Int. Ed. Engl. 50, 3520–3524 (2011).

    CAS  Google Scholar 

  47. 47

    Wu, M. et al. In situ synthesized economical tungsten dioxide imbedded in mesoporous carbon for dye-sensitized solar cells as counter electrode catalyst. J. Phys. Chem. C 115, 22598–22602 (2011).

    CAS  Google Scholar 

  48. 48

    Mathew, S. et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 6, 242–247 (2014). This paper reports the current record efficiency (13%) of dye-sensitized solar cells based on a mesoporous TiO2 electrode.

    CAS  Google Scholar 

  49. 49

    Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    CAS  Google Scholar 

  50. 50

    Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

    CAS  Google Scholar 

  51. 51

    Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015).

    CAS  Google Scholar 

  52. 52

    Leijtens, T., Lauber, B., Eperon, G. E., Stranks, S. D. & Snaith, H. J. The importance of perovskite pore filling in organometal mixed halide sensitized TiO2-based solar cells. J. Phys. Chem. Lett. 5, 1096–1102 (2014).

    CAS  Google Scholar 

  53. 53

    Jeon, N. J. et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014).

    CAS  Google Scholar 

  54. 54

    Snaith, H. J. et al. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014).

    CAS  Google Scholar 

  55. 55

    Tress, W. et al. Understanding the rate-dependent JV hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy Environ. Sci. 8, 995–1004 (2015).

    CAS  Google Scholar 

  56. 56

    Meloni, S. et al. Ionic polarization-induced current–voltage hysteresis in CH3NH3PbX3 perovskite solar cells. Nat. Commun. 7, 10334 (2016).

    CAS  Google Scholar 

  57. 57

    Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015). This paper reports the highest power conversion efficiency (20.1%) of perovskite solar cells based on a mesoporous TiO2 electrode.

    CAS  Google Scholar 

  58. 58

    Heo, J. H. et al. Hysteresis-less mesoscopic CH3NH3PbI3 perovskite hybrid solar cells by introduction of Li-treated TiO2 electrode. Nano Energy 15, 530–539 (2015).

    CAS  Google Scholar 

  59. 59

    Kim, D. H. et al. Niobium doping effects on TiO2 mesoscopic electron transport layer-based perovskite solar cells. ChemSusChem 8, 2392–2398 (2015).

    CAS  Google Scholar 

  60. 60

    Giordano, F. et al. Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nat. Commun. 7, 10379 (2016).

    CAS  Google Scholar 

  61. 61

    Yu, Y. et al. Development of lead iodide perovskite solar cells using three-dimensional titanium dioxide nanowire architectures. ACS Nano 9, 564–572 (2015).

    CAS  Google Scholar 

  62. 62

    Meng, L., You, J., Guo, T.-F. & Yang, Y. Recent advances in the inverted planar structure of perovskite solar cells. Acc. Chem. Res. 49, 155–165 (2016).

    CAS  Google Scholar 

  63. 63

    Leijtens, T. et al. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 4, 2885 (2013).

    Google Scholar 

  64. 64

    Ito, S., Tanaka, S., Manabe, K. & Nishino, H. Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells. J. Phys. Chem. C 118, 16995–17000 (2014).

    CAS  Google Scholar 

  65. 65

    Marin-Beloqui, J. M., Lanzetta, L. & Palomares, E. Decreasing charge losses in perovskite solar cells through mp-TiO2/MAPI interface engineering. Chem. Mater. 28, 207–213 (2016).

    CAS  Google Scholar 

  66. 66

    Pathak, S. K. et al. Performance and stability enhancement of dye-sensitized and perovskite solar cells by Al doping of TiO2 . Adv. Funct. Mater. 24, 6046–6055 (2014).

    CAS  Google Scholar 

  67. 67

    O'Mahony, F. T. F. et al. Improved environmental stability of organic lead trihalide perovskite-based photoactive-layers in the presence of mesoporous TiO2 . J. Mater. Chem. A 3, 7219–7223 (2015).

    CAS  Google Scholar 

  68. 68

    Niu, G., Guo, X. & Wang, L. Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3, 8970–8980 (2015).

    CAS  Google Scholar 

  69. 69

    Li, X. et al. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nat. Chem. 7, 703–711 (2015).

    CAS  Google Scholar 

  70. 70

    Zhao, Y. et al. A polymer scaffold for self-healing perovskite solar cells. Nat. Commun. 7, 10228 (2016).

    CAS  Google Scholar 

  71. 71

    Habisreutinger, S. N. et al. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett. 14, 5561–5568 (2014).

    CAS  Google Scholar 

  72. 72

    Guarnera, S. et al. Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer layer. J. Phys. Chem. Lett. 6, 432–437 (2015).

    CAS  Google Scholar 

  73. 73

    Liu, J. et al. A dopant-free hole-transporting material for efficient and stable perovskite solar cells. Energy Environ. Sci. 7, 2963–2967 (2014).

    CAS  Google Scholar 

  74. 74

    Kim, J. H. et al. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer. Adv. Mater. 27, 695–701 (2015).

    CAS  Google Scholar 

  75. 75

    Mei, A. et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295–298 (2014).

    CAS  Google Scholar 

  76. 76

    Tachibana, Y., Vayssieres, L. & Durrant, J. R. Artificial photosynthesis for solar water-splitting. Nat. Photonics 6, 511–518 (2012).

    CAS  Google Scholar 

  77. 77

    Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    CAS  Google Scholar 

  78. 78

    Dai, F. et al. Bottom-up synthesis of high surface area mesoporous crystalline silicon and evaluation of its hydrogen evolution performance. Nat. Commun. 5, 3605 (2014).

    Google Scholar 

  79. 79

    Zhang, R. et al. Ordered macro-/mesoporous anatase films with high thermal stability and crystallinity for photoelectrocatalytic water-splitting. Adv. Energy Mater. 4, 1301725 (2014).

    Google Scholar 

  80. 80

    Hisatomi, T. et al. Preparation of crystallized mesoporous Ta3N5 assisted by chemical vapor deposition of tetramethyl orthosilicate. Chem. Mater. 22, 3854–3861 (2010).

    CAS  Google Scholar 

  81. 81

    Sivula, K. et al. Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. J. Am. Chem. Soc. 132, 7436–7444 (2010).

    CAS  Google Scholar 

  82. 82

    Kim, J. K., Shin, K., Cho, S. M., Lee, T.-W. & Park, J. H. Synthesis of transparent mesoporous tungsten trioxide films with enhanced photoelectrochemical response: application to unassisted solar water splitting. Energy Environ. Sci. 4, 1465–1470 (2011).

    CAS  Google Scholar 

  83. 83

    Kim, T. W. & Choi, K.-S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990–994 (2014).

    CAS  Google Scholar 

  84. 84

    Wang, X. et al. Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible Light. J. Am. Chem. Soc. 131, 1680–1681 (2009).

    CAS  Google Scholar 

  85. 85

    Ghosh, S. et al. Conducting polymer nanostructures for photocatalysis under visible light. Nat. Mater. 14, 505–511 (2015).

    CAS  Google Scholar 

  86. 86

    Warren, S. C. et al. Identifying champion nanostructures for solar water-splitting. Nat. Mater. 12, 842–849 (2013).

    CAS  Google Scholar 

  87. 87

    Hartmann, P., Lee, D.-K., Smarsly, B. M. & Janek, J. Mesoporous TiO2: comparison of classical sol–gel and nanoparticle based photoelectrodes for the water splitting reaction. ACS Nano 4, 3147–3154 (2010).

    CAS  Google Scholar 

  88. 88

    Goncalves, R. H., Lima, B. H. R. & Leite, E. R. Magnetite colloidal nanocrystals: a facile pathway to prepare mesoporous hematite thin films for photoelectrochemical water splitting. J. Am. Chem. Soc. 133, 6012–6019 (2011).

    CAS  Google Scholar 

  89. 89

    Chen, X., Liu, L., Yu, P. Y. & Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011).

    CAS  Google Scholar 

  90. 90

    Warren, S. C. & Thimsen, E. Plasmonic solar water splitting. Energy Environ. Sci. 5, 5133–5146 (2012).

    CAS  Google Scholar 

  91. 91

    Brillet, J. et al. Highly efficient water splitting by a dual-absorber tandem cell. Nat. Photonics 6, 824–828 (2012).

    CAS  Google Scholar 

  92. 92

    May, M. M., Lewerenz, H.-J., Lackner, D., Dimroth, F. & Hannappel, T. Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure. Nat. Commun. 6, 8286 (2015). This paper reports the current record STH conversion efficiency (14%) of a photoelectrochemical cell.

    CAS  Google Scholar 

  93. 93

    Zhou, W. et al. Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J. Am. Chem. Soc. 136, 9280–9283 (2014).

    CAS  Google Scholar 

  94. 94

    Liao, L. et al. Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nat. Nanotech. 9, 69–73 (2014). This paper reports the highest STH conversion efficiency (5%) of a particulate photocatalyst.

    CAS  Google Scholar 

  95. 95

    Yu, Z., Li, F. & Sun, L. Recent advances in dye-sensitized photoelectrochemical cells for solar hydrogen production based on molecular components. Energy Environ. Sci. 8, 760–775 (2015).

    CAS  Google Scholar 

  96. 96

    Swierk, J. R. & Mallouk, T. E. Design and development of photoanodes for water-splitting dye-sensitized photoelectrochemical cells. Chem. Soc. Rev. 42, 2357–2387 (2013).

    CAS  Google Scholar 

  97. 97

    Feng, D. et al. Multi-layered mesoporous TiO2 thin films with large pores and highly crystalline frameworks for efficient photoelectrochemical conversion. J. Mater. Chem. A 1, 1591–1599 (2013).

    CAS  Google Scholar 

  98. 98

    Yu, B. Y. & Kwak, S.-Y. Carbon quantum dots embedded with mesoporous hematite nanospheres as efficient visible light-active photocatalysts. J. Mater. Chem. 22, 8345–8353 (2012).

    CAS  Google Scholar 

  99. 99

    Liu, J. et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347, 970–974 (2015).

    CAS  Google Scholar 

  100. 100

    Tu, W., Zhou, Y. & Zou, Z. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 26, 4607–4626 (2014).

    CAS  Google Scholar 

  101. 101

    Grewe, T., Deng, X., Weidenthaler, C., Schüth, F. & Tüysüz, H. Design of ordered mesoporous composite materials and their electrocatalytic activities for water oxidation. Chem. Mater. 25, 4926–4935 (2013).

    CAS  Google Scholar 

  102. 102

    Wu, R., Zhang, J., Shi, Y., Liu, D. & Zhang, B. Metallic WO2–carbon mesoporous nanowires as highly efficient electrocatalysts for hydrogen evolution reaction. J. Am. Chem. Soc. 137, 6983–6986 (2015).

    CAS  Google Scholar 

  103. 103

    Lin, S. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015).

    CAS  Google Scholar 

  104. 104

    Kibsgaard, J., Chen, Z., Reinecke, B. N. & Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11, 963–969 (2012).

    CAS  Google Scholar 

  105. 105

    Liu, J. et al. Materials science and materials chemistry for large scale electrochemical energy storage: from transportation to electrical grid. Adv. Funct. Mater. 23, 929–946 (2013).

    CAS  Google Scholar 

  106. 106

    Yang, Z. et al. Electrochemical energy storage for green grid. Chem. Rev. 111, 3577–3613 (2011).

    CAS  Google Scholar 

  107. 107

    Wang, G. et al. Mesoporous LiFePO4/C nanocomposite cathode materials for high power lithium ion batteries with superior performance. Adv. Mater. 22, 4944–4948 (2010).

    CAS  Google Scholar 

  108. 108

    Jiao, F., Bao, J., Hill, A. H. & Bruce, P. G. Synthesis of ordered mesoporous Li–Mn–O spinel as a positive electrode for rechargeable lithium batteries. Angew. Chem. Int. Ed. Engl. 47, 9711–9716 (2008).

    CAS  Google Scholar 

  109. 109

    Jiao, F., Shaju, K. M. & Bruce, P. G. Synthesis of nanowire and mesoporous low-temperature LiCoO2 by a post-templating reaction. Angew. Chem. Int. Ed. Engl. 44, 6550–6553 (2005).

    CAS  Google Scholar 

  110. 110

    Ren, Y. et al. A solid with a hierarchical tetramodal micro–meso–macro pore size distribution. Nat. Commun. 4, 2015 (2013).

    Google Scholar 

  111. 111

    Jiao, Y. et al. Highly ordered mesoporous few-layer graphene frameworks enabled by Fe3O4 nanocrystal superlattices. Angew. Chem. Int. Ed. Engl. 54, 5727–5731 (2015).

    CAS  Google Scholar 

  112. 112

    Ren, Y., Hardwick, L. J. & Bruce, P. G. Lithium intercalation into mesoporous anatase with an ordered 3D pore structure. Angew. Chem. Int. Ed. Engl. 49, 2570–2574 (2010).

    CAS  Google Scholar 

  113. 113

    Jo, C. et al. Block copolymer directed ordered mesostructured TiNb2O7 multimetallic oxide constructed of nanocrystals as high power Li-ion battery anodes. Chem. Mater. 26, 3508–3514 (2014).

    CAS  Google Scholar 

  114. 114

    Liu, H. et al. Mesoporous TiO2–B microspheres with superior rate performance for lithium ion batteries. Adv. Mater. 23, 3450–3454 (2011).

    CAS  Google Scholar 

  115. 115

    Liu, H. et al. Highly ordered mesoporous MoS2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage. Adv. Energy Mater. 2, 970–975 (2012).

    CAS  Google Scholar 

  116. 116

    Sun, H. et al. High-rate lithiation-induced reactivation of mesoporous hollow spheres for long-lived lithium-ion batteries. Nat. Commun. 5, 4526 (2014).

    CAS  Google Scholar 

  117. 117

    McDowell, M. T., Lee, S. W., Nix, W. D. & Cui, Y. 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 25, 4966–4985 (2013).

    CAS  Google Scholar 

  118. 118

    Li, X. et al. Stable silicon anodes for lithium-ion batteries using mesoporous metallurgical silicon. Adv. Energy Mater. 5, 1401556 (2015).

    Google Scholar 

  119. 119

    Liu, N. et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotech. 9, 187–192 (2014). This paper reports a pomegranate-like mesostructure, which exhibits a high Coulombic efficiency (99.87%) and volumetric capacity (1,270 mAh cm−3), and, more strikingly, a highly reversible areal capacity of 3.67 mAh cm−2, which is comparable to commercial LIBs.

    CAS  Google Scholar 

  120. 120

    Li, X. L. et al. Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat. Commun. 5, 4105 (2014).

    CAS  Google Scholar 

  121. 121

    Kang, E. et al. Fe3O4 nanoparticles confined in mesocellular carbon foam for high performance anode materials for lithium-ion batteries. Adv. Funct. Mater. 21, 2430–2438 (2011).

    CAS  Google Scholar 

  122. 122

    Hwang, J. et al. Mesoporous Ge/GeO2/carbon lithium-ion battery anodes with high capacity and high reversibility. ACS Nano 9, 5299–5309 (2015).

    CAS  Google Scholar 

  123. 123

    Zhang, R. Y. et al. Highly reversible and large lithium storage in mesoporous Si/C nanocomposite anodes with silicon nanoparticles embedded in a carbon framework. Adv. Mater. 26, 6749–6755 (2014).

    CAS  Google Scholar 

  124. 124

    Gu, D. et al. Controllable synthesis of mesoporous peapod-like Co3O4@carbon nanotube arrays for high-performance lithium-ion batteries. Angew. Chem. Int. Ed. Engl. 54, 7060–7064 (2015).

    CAS  Google Scholar 

  125. 125

    Li, W. et al. General strategy to synthesize uniform mesoporous TiO2/graphene/mesoporous TiO2 sandwich-like nanosheets for highly reversible lithium storage. Nano Lett. 15, 2186–2193 (2015).

    CAS  Google Scholar 

  126. 126

    Wang, D. H. et al. Ternary self-assembly of ordered metal oxide–graphene nanocomposites for electrochemical energy storage. ACS Nano 4, 1587–1595 (2010).

    CAS  Google Scholar 

  127. 127

    Li, X. L. et al. Functionalized graphene sheets as molecular templates for controlled nucleation and self-assembly of metal oxide–graphene nanocomposites. Adv. Mater. 24, 5136–5141 (2012).

    CAS  Google Scholar 

  128. 128

    Liu, H., Li, W., Shen, D., Zhao, D. & Wang, G. Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes. J. Am. Chem. Soc. 137, 13161–13166 (2015).

    CAS  Google Scholar 

  129. 129

    Liang, Z. et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc. Natl Acad. Sci. USA 113, 2862–2867 (2016).

    CAS  Google Scholar 

  130. 130

    Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J. M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).

    CAS  Google Scholar 

  131. 131

    Evers, S. & Nazar, L. F. New approaches for high energy density lithium–sulfur battery cathodes. Acc. Chem. Res. 46, 1135–1143 (2013).

    CAS  Google Scholar 

  132. 132

    Ji, X. L., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500–506 (2009).

    CAS  Google Scholar 

  133. 133

    Yang, Y. et al. Improving the performance of lithium–sulfur batteries by conductive polymer coating. ACS Nano 5, 9187–9193 (2011).

    CAS  Google Scholar 

  134. 134

    Li, Z. et al. A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core–shell structured cathode for Li–S batteries. ACS Nano 8, 9295–9303 (2014).

    CAS  Google Scholar 

  135. 135

    Li, Z., Huang, Y. M., Yuan, L. X., Hao, Z. X. & Huang, Y. H. Status and prospects in sulfur–carbon composites as cathode materials for rechargeable lithium–sulfur batteries. Carbon 92, 41–63 (2015).

    CAS  Google Scholar 

  136. 136

    He, G., Ji, X. L. & Nazar, L. High “C” rate Li–S cathodes: sulfur imbibed bimodal porous carbons. Energy Environ. Sci. 4, 2878–2883 (2011).

    CAS  Google Scholar 

  137. 137

    Liu, J. et al. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nat. Commun. 4, 2798 (2013).

    Google Scholar 

  138. 138

    Schuster, J. et al. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries. Angew. Chem. Int. Ed. Engl. 51, 3591–3595 (2012).

    CAS  Google Scholar 

  139. 139

    Zhang, C. F., Wu, H. B., Yuan, C. Z., Guo, Z. P. & Lou, X. W. Confining sulfur in double-shelled hollow carbon spheres for lithium–sulfur batteries. Angew. Chem. Int. Ed. Engl. 51, 9592–9595 (2012).

    CAS  Google Scholar 

  140. 140

    Song, J. X. et al. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium–sulfur batteries. Adv. Funct. Mater. 24, 1243–1250 (2014).

    CAS  Google Scholar 

  141. 141

    Ji, X. L., Evers, S., Black, R. & Nazar, L. F. Stabilizing lithium–sulphur cathodes using polysulphide reservoirs. Nat. Commun. 2, 325 (2011).

    Google Scholar 

  142. 142

    Li, X. L. et al. Optimization of mesoporous carbon structures for lithium–sulfur battery applications. J. Mater. Chem. 21, 16603–16610 (2011).

    CAS  Google Scholar 

  143. 143

    Li, G. et al. Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium–sulfur batteries. Nat. Commun. 7, 10601 (2016). This paper describes the designs of a micro-, meso- and macroporous graphitic carbon containing S nanoparticles (up to 90 wt%), which exhibit a high specific capacity (1,382 mAh g−1) and long cycling life (small capacity decay of 0.039% per cycle over 1,000 cycles).

    CAS  Google Scholar 

  144. 144

    Lu, Y.-C. et al. Lithium–oxygen batteries: bridging mechanistic understanding and battery performance. Energy Environ. Sci. 6, 750–768 (2013).

    CAS  Google Scholar 

  145. 145

    Guo, Z. Y. et al. Ordered hierarchical mesoporous/macroporous carbon: a high-performance catalyst for rechargeable Li–O2 batteries. Adv. Mater. 25, 5668–5672 (2013).

    CAS  Google Scholar 

  146. 146

    Xiao, J. et al. Hierarchically porous graphene as a lithium–air battery electrode. Nano Lett. 11, 5071–5078 (2011).

    CAS  Google Scholar 

  147. 147

    Xie, J. et al. Three dimensionally ordered mesoporous carbon as a stable, high-performance Li–O2 battery cathode. Angew. Chem. Int. Ed. Engl. 54, 4299–4303 (2015).

    CAS  Google Scholar 

  148. 148

    Li, L., Chai, S.-H., Dai, S. & Manthiram, A. Advanced hybrid Li–air batteries with high-performance mesoporous nanocatalysts. Energy Environ. Sci. 7, 2630–2636 (2014).

    CAS  Google Scholar 

  149. 149

    Zhang, J., Zhao, Z., Xia, Z. & Dai, L. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotech. 10, 444–452 (2015).

    CAS  Google Scholar 

  150. 150

    Zhao, Y. L. et al. Hierarchical mesoporous perovskite La0.5Sr0.5CoO2.91 nanowires with ultrahigh capacity for Li–air batteries. Proc. Natl Acad. Sci. USA 109, 19569–19574 (2012).

    CAS  Google Scholar 

  151. 151

    Oh, S. H., Black, R., Pomerantseva, E., Lee, J.-H. & Nazar, L. F. Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium–O2 batteries. Nat. Chem. 4, 1004–1010 (2012).

    CAS  Google Scholar 

  152. 152

    Peng, Z., Freunberger, S. A., Chen, Y. & Bruce, P. G. A reversible and higher-rate Li–O2 battery. Science 337, 563–566 (2012). This paper presents the first achievement on rechargable Li–O2 batteries with a high reversibility based on a mesoporous gold cathode.

    CAS  Google Scholar 

  153. 153

    Zhai, Y. P. et al. Carbon materials for chemical capacitive energy storage. Adv. Mater. 23, 4828–4850 (2011).

    CAS  Google Scholar 

  154. 154

    Zhang, L. L. & Zhao, X. S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531 (2009).

    CAS  Google Scholar 

  155. 155

    Li, W. et al. A self-template strategy for the synthesis of mesoporous carbon nanofibers as advanced supercapacitor electrodes. Adv. Energy Mater. 1, 382–386 (2011).

    CAS  Google Scholar 

  156. 156

    Lee, J. S., Kim, S. I., Yoon, J. C. & Jang, J. H. Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor. ACS Nano 7, 6047–6055 (2013).

    CAS  Google Scholar 

  157. 157

    Vu, A. et al. Three-dimensionally ordered mesoporous (3DOm) carbon materials as electrodes for electrochemical double-layer capacitors with ionic liquid electrolytes. Chem. Mater. 25, 4137–4148 (2013).

    CAS  Google Scholar 

  158. 158

    Cui, C. J. et al. Highly electroconductive mesoporous graphene nanofibers and their capacitance performance at 4 V. J. Am. Chem. Soc. 136, 2256–2259 (2014).

    CAS  Google Scholar 

  159. 159

    Wu, Z., Li, W., Xia, Y., Webley, P. & Zhao, D. Ordered mesoporous graphitized pyrolytic carbon materials: synthesis, graphitization, and electrochemical properties. J. Mater. Chem. 22, 8835–8845 (2012).

    CAS  Google Scholar 

  160. 160

    Zhu, Y. et al. Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011).

    CAS  Google Scholar 

  161. 161

    To, J. W. F. et al. Ultrahigh surface area three-dimensional porous graphitic carbon from conjugated polymeric molecular framework. ACS Cent. Sci. 1, 68–76 (2015).

    CAS  Google Scholar 

  162. 162

    Borchardt, L., Oschatz, M. & Kaskel, S. Tailoring porosity in carbon materials for supercapacitor applications. Mater. Horiz. 1, 157–168 (2014).

    CAS  Google Scholar 

  163. 163

    Simon, P. & Gogotsi, Y. Capacitive energy storage in nanostructured carbon–electrolyte systems. Acc. Chem. Res. 46, 1094–1103 (2013).

    CAS  Google Scholar 

  164. 164

    Largeot, C. et al. Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 130, 2730–2731 (2008).

    CAS  Google Scholar 

  165. 165

    Feng, G. & Cummings, P. T. Supercapacitor capacitance exhibits oscillatory behavior as a function of nanopore size. J. Phys. Chem. Lett. 2, 2859–2864 (2011).

    CAS  Google Scholar 

  166. 166

    Korenblit, Y. et al. High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon. ACS Nano 4, 1337–1344 (2010).

    CAS  Google Scholar 

  167. 167

    Liu, H.-J., Wang, J., Wang, C.-X. & Xia, Y.-Y. Ordered hierarchical mesoporous/microporous carbon derived from mesoporous titanium-carbide/carbon composites and its electrochemical performance in supercapacitor. Adv. Energy Mater. 1, 1101–1108 (2011).

    CAS  Google Scholar 

  168. 168

    Oschatz, M. et al. Hierarchical carbide-derived carbon foams with advanced mesostructure as a versatile electrochemical energy-storage material. Adv. Energy Mater. 4, 1300645 (2014).

    Google Scholar 

  169. 169

    Lu, Q., Chen, J. G. & Xiao, J. Q. Nanostructured electrodes for high-performance pseudocapacitors. Angew. Chem. Int. Ed. Engl. 52, 1882–1889 (2013).

    CAS  Google Scholar 

  170. 170

    Pendashteh, A. et al. Highly ordered mesoporous CuCo2O4 nanowires, a promising solution for high-performance supercapacitors. Chem. Mater. 27, 3919–3926 (2015).

    CAS  Google Scholar 

  171. 171

    Wu, Z.-S. et al. Three-dimensional graphene-based macro- and mesoporous frameworks for high-performance electrochemical capacitive energy storage. J. Am. Chem. Soc. 134, 19532–19535 (2012).

    CAS  Google Scholar 

  172. 172

    Jiang, H., Ma, J. & Li, C. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes. Adv. Mater. 24, 4197–4202 (2012).

    CAS  Google Scholar 

  173. 173

    Rakhi, R. B., Chen, W., Cha, D. Y. & Alshareef, H. N. Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Lett. 12, 2559–2567 (2012).

    CAS  Google Scholar 

  174. 174

    Jo, C. et al. Block-copolymer-assisted one-pot synthesis of ordered mesoporous WO3−x/carbon nanocomposites as high-rate-performance electrodes for pseudocapacitors. Adv. Funct. Mater. 23, 3747–3754 (2013).

    CAS  Google Scholar 

  175. 175

    Brezesinski, T., Wang, J., Polleux, J., Dunn, B. & Tolbert, S. H. Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors. J. Am. Chem. Soc. 131, 1802–1809 (2009).

    CAS  Google Scholar 

  176. 176

    Brezesinski, K. et al. Pseudocapacitive contributions to charge storage in highly ordered mesoporous group V transition metal oxides with iso-oriented layered nanocrystalline domains. J. Am. Chem. Soc. 132, 6982–6990 (2010).

    CAS  Google Scholar 

  177. 177

    Augustyn, V. et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013).

    CAS  Google Scholar 

  178. 178

    Brezesinski, T. et al. On the correlation between mechanical flexibility, nanoscale structure, and charge storage in periodic mesoporous CeO2 thin films. ACS Nano 4, 967–977 (2010).

    CAS  Google Scholar 

  179. 179

    Brezesinski, T., Wang, J., Tolbert, S. H. & Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9, 146–151 (2010).

    CAS  Google Scholar 

  180. 180

    Lukatskaya, M. R. et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013).

    CAS  Google Scholar 

  181. 181

    Ghidiu, M., Lukatskaya, M. R., Zhao, M. Q., Gogotsi, Y. & Barsoum, M. W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014).

    CAS  Google Scholar 

  182. 182

    Acerce, M., Voiry, D. & Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotech. 10, 313–318 (2015).

    CAS  Google Scholar 

  183. 183

    Qie, L. et al. Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ. Sci. 6, 2497–2504 (2013).

    Google Scholar 

  184. 184

    Zhao, J. et al. Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance. Adv. Mater. 27, 3541–3545 (2015).

    CAS  Google Scholar 

  185. 185

    Wei, J. et al. A controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors. Adv. Funct. Mater. 23, 2322–2328 (2013).

    CAS  Google Scholar 

  186. 186

    Li, Z. et al. Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy Environ. Sci. 6, 871–878 (2013).

    CAS  Google Scholar 

  187. 187

    Wang, Y., Chen, K. S., Mishler, J., Cho, S. C. & Adroher, X. C. A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl. Energy 88, 981–1007 (2011).

    CAS  Google Scholar 

  188. 188

    Wang, Y.-J. et al. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity. Chem. Rev. 115, 3433–3467 (2015).

    CAS  Google Scholar 

  189. 189

    Wu, Z., Lv, Y., Xia, Y., Webley, P. A. & Zhao, D. Ordered mesoporous platinum@graphitic carbon embedded nanophase as a highly active, stable, and methanol-tolerant oxygen reduction electrocatalyst. J. Am. Chem. Soc. 134, 2236–2245 (2012).

    CAS  Google Scholar 

  190. 190

    Galeano, C. et al. Toward highly stable electrocatalysts via nanoparticle pore confinement. J. Am. Chem. Soc. 134, 20457–20465 (2012).

    CAS  Google Scholar 

  191. 191

    Huang, S.-Y., Ganesan, P., Park, S. & Popov, B. N. Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications. J. Am. Chem. Soc. 131, 13898–13899 (2009).

    CAS  Google Scholar 

  192. 192

    Cui, Z., Yang, M., Chen, H., Zhao, M. & DiSalvo, F. J. Mesoporous TiN as a noncarbon support of Ag-rich PtAg nanoalloy catalysts for oxygen reduction reaction in alkaline media. ChemSusChem 7, 3356–3361 (2014).

    CAS  Google Scholar 

  193. 193

    Chen, C. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014). This paper reports the synthesis of mesoporous Pt3Ni nanoframes with Pt-skin surfaces, which show a high mass activity for the ORR (5.7 A mg−1 Pt) an order of magnitude greater than the 2017 target (0.44 A mg−1 Pt) from the US Department of Energy.

    CAS  Google Scholar 

  194. 194

    Zhang, L. et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 349, 412–416 (2015).

    CAS  Google Scholar 

  195. 195

    Huang, X. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 348, 1230–1234 (2015).

    CAS  Google Scholar 

  196. 196

    Wu, G. & Zelenay, P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc. Chem. Res. 46, 1878–1889 (2013).

    CAS  Google Scholar 

  197. 197

    Nie, Y., Li, L. & Wei, Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 44, 2168–2201 (2015).

    CAS  Google Scholar 

  198. 198

    Liang, H.-W., Wei, W., Wu, Z.-S., Feng, X. & Müllen, K. Mesoporous metal–nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J. Am. Chem. Soc. 135, 16002–16005 (2013).

    CAS  Google Scholar 

  199. 199

    Li, Z. et al. Ionic liquids as precursors for efficient mesoporous iron–nitrogen-doped oxygen reduction electrocatalysts. Angew. Chem. Int. Ed. Engl. 54, 1494–1498 (2015).

    CAS  Google Scholar 

  200. 200

    Niu, W. et al. Mesoporous N-doped carbons prepared with thermally removable nanoparticle templates: an efficient electrocatalyst for oxygen reduction reaction. J. Am. Chem. Soc. 137, 5555–5562 (2015).

    CAS  Google Scholar 

  201. 201

    Liu, R., Wu, D., Feng, X. & Müllen, K. Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew. Chem. Int. Ed. Engl. 49, 2565–2569 (2010).

    CAS  Google Scholar 

  202. 202

    Liang, H.-W., Zhuang, X., Brüller, S., Feng, X. & Müllen, K. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat. Commun. 5, 4973 (2014).

    CAS  Google Scholar 

  203. 203

    Meng, Y. et al. N-, O-, and S-tridoped nanoporous carbons as selective catalysts for oxygen reduction and alcohol oxidation reactions. J. Am. Chem. Soc. 136, 13554–13557 (2014).

    CAS  Google Scholar 

  204. 204

    Liang, J., Jiao, Y., Jaroniec, M. & Qiao, S. Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem. Int. Ed. Engl. 51, 11496–11500 (2012).

    CAS  Google Scholar 

  205. 205

    Silva, R., Voiry, D., Chhowalla, M. & Asefa, T. Efficient metal-free electrocatalysts for oxygen reduction: polyaniline-derived N- and O-doped mesoporous carbons. J. Am. Chem. Soc. 135, 7823–7826 (2013).

    CAS  Google Scholar 

  206. 206

    Zheng, Y. et al. Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction. J. Am. Chem. Soc. 133, 20116–20119 (2011).

    CAS  Google Scholar 

  207. 207

    Lee, S. et al. Designing a highly active metal-free oxygen reduction catalyst in membrane electrode assemblies for alkaline fuel cells: effects of pore size and doping-site position. Angew. Chem. Int. Ed. Engl. 54, 9230–9234 (2015).

    CAS  Google Scholar 

  208. 208

    Orilall, M. C. et al. One-pot synthesis of platinum-based nanoparticles incorporated into mesoporous niobium oxide–carbon composites for fuel cell electrodes. J. Am. Chem. Soc. 131, 9389–9395 (2009).

    CAS  Google Scholar 

  209. 209

    Shim, J. et al. One-pot synthesis of intermetallic electrocatalysts in ordered, large-pore mesoporous carbon/silica toward formic acid oxidation. ACS Nano 6, 6870–6881 (2012).

    CAS  Google Scholar 

  210. 210

    Ji, X. et al. Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes. Nat. Chem. 2, 286–293 (2010).

    CAS  Google Scholar 

  211. 211

    Nasef, M. M. Radiation-grafted membranes for polymer electrolyte fuel cells: current trends and future directions. Chem. Rev. 114, 12278–12329 (2014).

    CAS  Google Scholar 

  212. 212

    Scofield, M. E., Liu, H. & Wong, S. S. A concise guide to sustainable PEMFCs: recent advances in improving both oxygen reduction catalysts and proton exchange membranes. Chem. Soc. Rev. 44, 5836–5860 (2015).

    CAS  Google Scholar 

  213. 213

    Schulze, M. W., McIntosh, L. D., Hillmyer, M. A. & Lodge, T. P. High-modulus, high-conductivity nanostructured polymer electrolyte membranes via polymerization-induced phase separation. Nano Lett. 14, 122–126 (2014).

    CAS  Google Scholar 

  214. 214

    Jiang, S. P. Functionalized mesoporous structured inorganic materials as high temperature proton exchange membranes for fuel cells. J. Mater. Chem. A 2, 7637–7655 (2014).

    CAS  Google Scholar 

  215. 215

    Zhou, Y. et al. Insight into proton transfer in phosphotungstic acid functionalized mesoporous silica-based proton exchange membrane fuel cells. J. Am. Chem. Soc. 136, 4954–4964 (2014).

    CAS  Google Scholar 

  216. 216

    Kong, B. et al. Incorporation of well-dispersed sub-5-nm graphitic pencil nanodots into ordered mesoporous frameworks. Nat. Chem. 8, 171–178 (2016).

    CAS  Google Scholar 

  217. 217

    Crossland, E. J. W. et al. Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature 495, 215–219 (2013).

    CAS  Google Scholar 

  218. 218

    Lin, T. et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350, 1508–1513 (2015). This paper reports the synthesis of nitrogen-doped mesoporous carbon, which shows a specific capacitance of 790 F g−1, which is much higher than that of a commercial activated carbon (165 F g−1; YP-50, Kuraray Chemical).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the State Key Basic Research Programme of the PRC (2013CB934104 and 2012CB224805), Shanghai Science and Technology Commission (14JC1400700), National Science Foundation (NSF) of China (21210004 and U1463206), and the authors thank the Deanship of Scientific Research at King Saud University for funding this work through Research Group No. RG-1435-002. J.L. acknowledges the support from the US Department of Energy (DoE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award KC020105-FWP12152 for his contribution to energy storage and fuel cells.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jun Liu or Dongyuan Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, W., Liu, J. & Zhao, D. Mesoporous materials for energy conversion and storage devices. Nat Rev Mater 1, 16023 (2016). https://doi.org/10.1038/natrevmats.2016.23

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing