Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stabilizing nanostructures in metals using grain and twin boundary architectures

Abstract

Forming alloys with impurity elements is a routine method for modifying the properties of metals. An alternative approach involves the incorporation of interfaces into the crystalline lattice to enhance the metal's properties without changing its chemical composition. The introduction of high-density interfaces in nanostructured materials results in greatly improved strength and hardness; however, interfaces at the nanoscale show low stability. In this Review, I discuss recent developments in the stabilization of nanostructured metals by modifying the architectures of their interfaces. The amount, structure and distribution of several types of interfaces, such as high- and low-angle grain boundaries and twin boundaries, are discussed. I survey several examples of materials with nanotwinned and nanolaminated structures, as well as with gradient nanostructures, describing the techniques used to produce such samples and tracing their exceptional performances back to the nanoscale architectures of their interfaces.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Grain-size effects on strength, ductility and thermal stability.
Figure 2: Nanoscale twins and twin-boundary strengthening.
Figure 3: Nanotwins in diamond.
Figure 4: Nanolaminated structures in nickel and boundary energy effect on minimum structural size.
Figure 5: Bimetal nanolaminates made of copper–niobium.
Figure 6: Strength–ductility synergy and strain softening and hardening of gradient nanograined structures.

References

  1. 1

    Pickering, F. P. in Materials Science Technology (eds Cahn, R. W., Haasen, P. & Kramer, E. J. ) (Wiley, 2005).

    Google Scholar 

  2. 2

    Allwood, J. M. & Cullen, J. M. Sustainable Materials: With Both Eyes Open (UIT Cambridge, 2012).

    Google Scholar 

  3. 3

    Gleiter, H. Nanostructured materials: basic concepts and microstructure. Acta Mater. 48, 1–29 (2000).

    CAS  Google Scholar 

  4. 4

    Gleiter, H. Nanocrystalline materials. Prog. Mater. Sci. 33, 223–315 (1989).

    CAS  Google Scholar 

  5. 5

    Meyers, M. A., Mishra, A. & Benson, D. J. Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427–556 (2006). A comprehensive review article on mechanical properties of nanocrystalline materials.

    CAS  Google Scholar 

  6. 6

    Liddicoat, P. V. et al. Nanostructural hierarchy increases the strength of aluminium alloys. Nat. Commun. 1, 63–79 (2010).

    Google Scholar 

  7. 7

    Koch, C. C., Morris, D. G., Lu, K. & Inoue, A. Ductility of nanostructured materials. MRS Bull. 24, 54–58 (1999).

    CAS  Google Scholar 

  8. 8

    Koch, C. C. Structural nanocrystalline materials: an overview. J. Mater. Sci. 42, 1403–1414 (2007).

    CAS  Google Scholar 

  9. 9

    Koch, C., Scattergood, R., Darling, K. & Semones, J. Stabilization of nanocrystalline grain sizes by solute additions. J. Mater. Sci. 43, 7264–7272 (2008). A comprehensive review article on thermal stability of nanocrystalline materials.

    CAS  Google Scholar 

  10. 10

    Lu, K., Lu, L. & Suresh, S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324, 349–352 (2009). A concise review article on strengthening strategies using coherent internal boundaries at the nanoscale.

    CAS  Google Scholar 

  11. 11

    Lu, L., Shen, Y. F., Chen, X. H., Qian, L. H. & Lu, K. Ultrahigh strength and high electrical conductivity in copper. Science 304, 422–426 (2004). The first report on the nanotwinned materials and the nanotwin effect on strength and electrical conductivity.

    CAS  Google Scholar 

  12. 12

    Liu, X. C., Zhang, H. W. & Lu, K. Formation of nanolaminated structure in an interstitial-free steel. Scr. Mater. 95, 54–57 (2015).

    CAS  Google Scholar 

  13. 13

    Liu, X. C., Zhang, H. W. & Lu, K. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel. Science 342, 337–340 (2013). The first report on discovery of the nanolaminated structures in pure metals.

    CAS  Google Scholar 

  14. 14

    Hall, E. O. The deformation and ageing of mild steel: III. Discussion of results. Proc. Phys. Soc. B 64, 747–753 (1951).

    Google Scholar 

  15. 15

    Petch, N. J. The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25–28 (1953).

    CAS  Google Scholar 

  16. 16

    Erb, U. Electrodeposited nanocrystals: synthesis, properties and industrial applications. Nanostruct. Mater. 6, 533–538 (1995).

    Google Scholar 

  17. 17

    Schuh, C. A., Nieh, T. G. & Yamasaki, T. Hall–Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel. Scr. Mater. 46, 735–740 (2002).

    CAS  Google Scholar 

  18. 18

    Schuh, C. A., Nieh, T. G. & Iwasaki, H. The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni. Acta Mater. 51, 431–443 (2003).

    CAS  Google Scholar 

  19. 19

    Detor, A. J. & Schuh, C. A. Tailoring and patterning the grain size of nanocrystalline alloys. Acta Mater. 55, 371–379 (2007).

    CAS  Google Scholar 

  20. 20

    Trelewicz, J. R. & Schuh, C. A. The Hall–Petch breakdown in nanocrystalline metals: a crossover to glass-like deformation. Acta Mater. 55, 5948–5958 (2007).

    CAS  Google Scholar 

  21. 21

    Kumar, K. S., Van Swygenhoven, H. & Suresh, S. Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743–5774 (2003).

    CAS  Google Scholar 

  22. 22

    Misra, A., Hirth, J. P. & Hoagland, R. G. Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53, 4817–4824 (2005).

    CAS  Google Scholar 

  23. 23

    Misra, A. & Thilly, L. Structural metals at extremes. MRS Bull. 35, 965–976 (2010).

    Google Scholar 

  24. 24

    Hughes, D. A. & Hansen, N. Exploring the limit of dislocation based plasticity in nanostructured metals. Phys. Rev. Lett. 112, 135504 (2014).

    CAS  Google Scholar 

  25. 25

    Wang, N., Wang, Z., Aust, K. T. & Erb, U. Room temperature creep behavior of nanocrystalline nickel produced by an electrodeposition technique. Mater. Sci. Eng. A 237, 150–158 (1997).

    Google Scholar 

  26. 26

    Schiotz, J., Di Tolla, F. D. & Jacobsen, K. W. Softening of nanocrystalline metals at very small grain sizes. Nature 391, 561–563 (1998).

    Google Scholar 

  27. 27

    Chokshi, A. H., Rosen, A., Karch, J. & Gleiter, H. On the validity of the Hall–Petch Relationship in nanocrystalline materials. Scr. Metall. 23, 1679–1684 (1989).

    CAS  Google Scholar 

  28. 28

    Rupert, T. J., Gianola, D. S., Gan, Y. & Hemker, K. J. Experimental observations of stress-driven grain boundary migration. Science 326, 1686–1690 (2009).

    CAS  Google Scholar 

  29. 29

    Gianola, D. S. et al. Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 54, 2253–2263 (2006).

    CAS  Google Scholar 

  30. 30

    Fang, T. H., Tao, N. R. & Lu, K. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 331, 1587–1590 (2011). The first report on gradient nanograined metals with extraordinary mechanical properties.

    CAS  Google Scholar 

  31. 31

    Brandstetter, S., Zhang, K., Escuadro, A., Weertman, J. R. & Van Swygenhoven, H. Grain coarsening during compression of bulk nanocrystalline nickel and copper. Scr. Mater. 58, 61–64 (2008).

    CAS  Google Scholar 

  32. 32

    Zhang, K., Weertman, J. R. & Eastman, J. A. Rapid stress-driven grain coarsening in nanocrystalline Cu at ambient and cryogenic temperatures. Appl. Phys. Lett. 87, 061921 (2005).

    Google Scholar 

  33. 33

    Jin, M., Minor, A. M., Stach, E. A. & Morris, J. W. Jr Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature. Acta Mater. 52, 5381–5387 (2004).

    CAS  Google Scholar 

  34. 34

    Hanlon, T., Kwon, Y. N. & Suresh, S. Grain size effects on the fatigue response of nanocrystalline metals. Scr. Mater. 49, 675–680 (2003).

    CAS  Google Scholar 

  35. 35

    Hasnaoui, A., Van Swygenhoven, H. & Derlet, P. M. Dimples on nanocrystalline fracture surfaces as evidence for shear plane formation. Science 300, 1550–1552 (2003).

    CAS  Google Scholar 

  36. 36

    Wang, Y. M., Ma, E. & Chen, M. W. Enhanced tensile ductility and toughness in nanostructured Cu. Appl. Phys. Lett. 80, 2395–2397 (2002).

    CAS  Google Scholar 

  37. 37

    Lu, L., Sui, M. L. & Lu, K. Superplastic extensibility of nanocrystalline copper at room temperature. Science 287, 1463–1466 (2000).

    CAS  Google Scholar 

  38. 38

    Pippan, R. et al. Saturation of fragmentation during severe plastic deformation. Annu. Rev. Mater. Res. 40, 319–343 (2010).

    CAS  Google Scholar 

  39. 39

    Darling, K. A. et al. Thermal stability of nanocrystalline nickel with yttrium additions. J. Mater. Res. 28, 1813–1819 (2013).

    CAS  Google Scholar 

  40. 40

    Weissmuller, J. Alloy effects in nanostructures. Nanostruct. Mater. 3, 261–272 (1993).

    Google Scholar 

  41. 41

    Kirchheim, R. Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background. Acta Mater. 55, 5129–5138 (2007).

    CAS  Google Scholar 

  42. 42

    Chookajorn, T., Murdoch, H. A. & Schuh, C. A. Design of stable nanocrystalline alloys. Science 337, 951–954 (2012).

    CAS  Google Scholar 

  43. 43

    Babyak, W. J. & Rhines, F. N. The relationship between the boundary area and hardness of recrystallized cartridge brass. Trans. Mettall. Soc. AIME 218, 21–23 (1960).

    Google Scholar 

  44. 44

    Lu, L. & Lu, K. in Mechanical Properties of Nanocrystalline Materials (ed. Li, J. C. M. ) (Pan Stanford, 2011).

    Google Scholar 

  45. 45

    You, Z. et al. Plastic anisotropy and associated deformation mechanisms in nanotwinned metals. Acta Mater. 61, 217–227 (2013).

    CAS  Google Scholar 

  46. 46

    Zhu, T. & Gao, H. Plastic deformation mechanism in nanotwinned metals: an insight from molecular dynamics and mechanistic modeling. Scr. Mater. 66, 843–848 (2012).

    CAS  Google Scholar 

  47. 47

    Jin, Z. H. et al. The interaction mechanism of screw dislocations with coherent twin boundaries in different face-centred cubic metals. Scr. Mater. 54, 1163–1168 (2006).

    CAS  Google Scholar 

  48. 48

    Jin, Z. H. et al. Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals. Acta Mater. 56, 1126–1135 (2008).

    CAS  Google Scholar 

  49. 49

    Zhu, T., Li, J., Samanta, A., Kim, H. G. & Suresh, S. Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proc. Natl Acad. Sci. USA 104, 3031–3036 (2007).

    CAS  Google Scholar 

  50. 50

    Zhou, H. F., Li, X. Y., Qu, S. X., Yang, W. & Gao, H. J. A. Jogged dislocation governed strengthening mechanism in nanotwinned metals. Nano Lett. 14, 5075–5080 (2014).

    CAS  Google Scholar 

  51. 51

    Zhou, H. F. & Gao, H. J. A plastic deformation mechanism by necklace dislocations near crack-like defects in nanotwinned metals. J. Appl. Mech. 82, 071015 (2015).

    Google Scholar 

  52. 52

    Chen, J., Lu, L. & Lu, K. Hardness and strain rate sensitivity of nanocrystalline Cu. Scr. Mater. 54, 1913–1918 (2006).

    CAS  Google Scholar 

  53. 53

    Shen, Y. F., Lu, L., Lu, Q. H., Jin, Z. H. & Lu, K. Tensile properties of copper with nano-scale twins. Scr. Mater. 52, 989–994 (2005).

    CAS  Google Scholar 

  54. 54

    Lu, L., Chen, X., Huang, X. & Lu, K. Revealing the maximum strength in nanotwinned copper. Science 323, 607–610 (2009).

    CAS  Google Scholar 

  55. 55

    Li, X., Wei, Y., Lu, L., Lu, K. & Gao, H. Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature 464, 877–880 (2010).

    CAS  Google Scholar 

  56. 56

    Lu, L. et al. Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta Mater. 53, 2169–2179 (2005).

    CAS  Google Scholar 

  57. 57

    You, Z. S., Lu, L. & Lu, K. Tensile behavior of columnar grained Cu with preferentially oriented nanoscale twins. Acta Mater. 59, 6927–6937 (2011).

    CAS  Google Scholar 

  58. 58

    Pan, Q. S., Lu, Q. H. & Lu, L. Fatigue behavior of columnar-grained Cu with preferentially oriented nanoscale twins. Acta Mater. 61, 1383–1393 (2013).

    CAS  Google Scholar 

  59. 59

    Pan, Q. S. & Lu, L. Strain-controlled cyclic stability and properties of Cu with highly oriented nanoscale twins. Acta Mater. 81, 248–257 (2014).

    CAS  Google Scholar 

  60. 60

    Hodge, A. M. et al. Twin stability in highly nanotwinned Cu under compression, torsion and tension. Scr. Mater. 66, 872–877 (2012).

    CAS  Google Scholar 

  61. 61

    Zhang, X. & Misra, A. Superior thermal stability of coherent twin boundaries in nanotwinned metals. Scr. Mater. 66, 860–865 (2012).

    CAS  Google Scholar 

  62. 62

    Zhang, X. et al. Thermal stability of sputter-deposited 330 austenitic stainless-steel thin films with nanoscale growth twins. Appl. Phys. Lett. 87, 233116 (2005).

    Google Scholar 

  63. 63

    Anderoglu, O., Misra, A., Wang, H. & Zhang, X. Thermal stability of sputtered Cu films with nanoscale growth twins. J. Appl. Phys. 103, 094322 (2008).

    Google Scholar 

  64. 64

    Chen, K.-C., Wu, W.-W., Liao, C.-N., Chen, L.-J. & Tu, K. N. Observation of atomic diffusion at twin-modified grain boundaries in copper. Science 321, 1066–1069 (2008).

    CAS  Google Scholar 

  65. 65

    Lu, K., Yan, F. K., Wang, H. T. & Tao, N. R. Strengthening austenitic steels by using nanotwinned austenitic grains. Scr. Mater. 66, 878–883 (2012).

    CAS  Google Scholar 

  66. 66

    Yan, F. K., Liu, G. Z., Tao, N. R. & Lu, K. Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles. Acta Mater. 60, 1059–1071 (2012).

    CAS  Google Scholar 

  67. 67

    Yan, F. K. et al. Deformation mechanisms in an austenitic single-phase duplex microstructured steel with nanotwinned grains. Acta Mater. 81, 487–500 (2014).

    CAS  Google Scholar 

  68. 68

    Wang, H. T., Tao, N. R. & Lu, K. Strengthening an austenitic Fe–Mn steel using nanotwinned austenitic grains. Acta Mater. 60, 4027–4040 (2012).

    CAS  Google Scholar 

  69. 69

    Bouaziz, O., Barbier, D., Cugy, P. & Petigand, G. Effect of process parameters on a metallurgical route providing nano-structured single phase steel with high work-hardening. Adv. Eng. Mater. 14, 49–51 (2012).

    CAS  Google Scholar 

  70. 70

    Yuan, Y. et al. A novel strategy for the design of advanced engineering alloys-strengthening turbine disk superalloys via twinning structures. Adv. Eng. Mater. 13, 296–300 (2011).

    CAS  Google Scholar 

  71. 71

    Yuan, Y. et al. A new method to strengthen turbine disc superalloys at service temperatures. Scr. Mater. 66, 884–889 (2012).

    CAS  Google Scholar 

  72. 72

    Solozhenko, V. L., Kurakevych, O. O. & Le Godec, Y. Creation of nanostructures by extreme conditions: high-pressure synthesis of ultrahard nanocrystalline cubic boron nitride. Adv. Mater. 24, 1540–1544 (2012).

    CAS  Google Scholar 

  73. 73

    Irifune, T., Kurio, A., Sakamoto, S., Inoue, T. & Sumiya, H. Materials: ultrahard polycrystalline diamond from graphite. Nature 421, 599–600 (2003).

    CAS  Google Scholar 

  74. 74

    Tian, Y. et al. Ultrahard nanotwinned cubic boron nitride. Nature 493, 385–388 (2013).

    CAS  Google Scholar 

  75. 75

    Huang, Q. et al. Nanotwinned diamond with unprecedented hardness and stability. Nature 510, 250–253 (2014). The first report on nanotwinned diamond and its unique properties.

    CAS  Google Scholar 

  76. 76

    Hansen, N. New discoveries in deformed metals. Metall. Mater. Trans. A 32, 2917–2935 (2001).

    Google Scholar 

  77. 77

    Hughes, D. A. & Hansen, N. Microstructure and strength of nickel at large strains. Acta Mater. 48, 2985–3004 (2000).

    CAS  Google Scholar 

  78. 78

    Luo, Z. P., Zhang, H. W., Hansen, N. & Lu, K. Quantification of the microstructures of high purity nickel subjected to dynamic plastic deformation. Acta Mater. 60, 1322 (2012).

    CAS  Google Scholar 

  79. 79

    Ashby, M. F. The deformation of plastically non-homogeneous materials. Philos. Mag. 21, 399–424 (1970).

    CAS  Google Scholar 

  80. 80

    Zhang, D. L. & Cantor, B. Melting behaviour of In and Pb particles embedded in an Al matrix. Acta Metall. Mater. 39, 1595–1602 (1991).

    CAS  Google Scholar 

  81. 81

    Sheng, H. W., Ren, G., Peng, L. M., Hu, Z. Q. & Lu, K. Superheating and melting-point depression of Pb nanoparticles embedded in Al matrices. Phil. Mag. Lett. 73, 179–186 (1996).

    CAS  Google Scholar 

  82. 82

    Mei, Q. S. & Lu, K. Melting and superheating of crystalline solids: from bulk to nanocrystals. Prog. Mater. Sci. 52, 1175–1262 (2007).

    CAS  Google Scholar 

  83. 83

    Zhang, L., Jin, Z. H., Zhang, L. H., Sui, M. L. & Lu, K. Superheating of confined Pb thin films. Phys. Rev. Lett. 85, 1484–1487 (2000).

    CAS  Google Scholar 

  84. 84

    Zheng, S. et al. High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces. Nat. Commun. 4, 1696 (2013).

    Google Scholar 

  85. 85

    Beyerlein, I. J. et al. Emergence of stable interfaces under extreme plastic deformation. Proc. Natl Acad. Sci. USA 111, 4386–4390 (2014). A concise summary of formation of low-energy bimetal boundaries under extreme straining.

    CAS  Google Scholar 

  86. 86

    Li, Y. J. et al. Mechanisms of subgrain coarsening and its effect on the mechanical properties of carbon-supersaturated nanocrystalline hypereutectoid steel. Acta Mater. 84, 110–123 (2015).

    CAS  Google Scholar 

  87. 87

    Li, Y. et al. Segregation stabilizes nanocrystalline bulk steel with near theoretical strength. Phys. Rev. Lett. 113, 106104 (2014).

    Google Scholar 

  88. 88

    Lu, K. in Proc. 35th Riso Int. Symp. Mater. Sci. (eds Faster, S., Hansen, N., Juul Jensen, D., Ralph, B. & Sun, J. ) 80–102 (Roskilde, 2014). A comprehensive review article on gradient nanostructures in metals.

    Google Scholar 

  89. 89

    Lu, K. & Lu, J. Nanostructured surface layer on metallic materials induced by SMAT. Mater. Sci. Eng. A 375377, 38–45 (2004).

    Google Scholar 

  90. 90

    Lu, K. & Lu, J. Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach. J. Mater. Sci. Technol. 15, 193–197 (1999).

    CAS  Google Scholar 

  91. 91

    Huang, H. W., Wang, Z. B., Lu, J. & Lu, K. Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer. Acta Mater. 87, 150–160 (2015).

    CAS  Google Scholar 

  92. 92

    Yang, L., Tao, N. R., Lu, K. & Lu, L. Enhanced fatigue resistance of Cu with a gradient nanograined surface layer. Scr. Mater. 68, 801–804 (2013).

    CAS  Google Scholar 

  93. 93

    Huang, H. W., Wang, Z. B., Yong, X. P. & Lu, K. Enhancing torsion fatigue behaviour of martensitic stainless steel by generating gradient nanograined layer via surface mechanical grinding treatment. Mater. Sci. Technol. 29, 1200–1205 (2012).

    Google Scholar 

  94. 94

    Wu, X., Jiang, P., Chen, L., Yuan, F. & Zhu, Y. T. Extraordinary strain hardening by gradient structure. Proc. Natl Acad. Sci. USA 111, 7197–7201 (2014).

    CAS  Google Scholar 

  95. 95

    Wei, Y. et al. Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins. Nat. Commun. 5, 3580 (2014).

    Google Scholar 

  96. 96

    Kou, H., Lu, J. & Li, Y. High-strength and high-ductility nanostructured and amorphous metallic materials. Adv. Mater. 26, 5518–5524 (2014).

    CAS  Google Scholar 

  97. 97

    Li, Y. S., Zhang, Y., Tao, N. R. & Lu, K. Effect of thermal annealing on mechanical properties of a nanostructured copper prepared by means of dynamic plastic deformation. Scr. Mater. 59, 475–478 (2008).

    CAS  Google Scholar 

  98. 98

    Lu, K. Making strong nanomaterials ductile with gradients. Science 345, 1455–1456 (2014).

    CAS  Google Scholar 

  99. 99

    Li, J. & Soh, A. K. Enhanced ductility of surface nano-crystallized materials by modulating grain size gradient. Model. Simul. Mater. Sci. 20, 085002 (2012).

    Google Scholar 

  100. 100

    Fang, T. H., Tao, N. R. & Lu, K. Tension-induced softening and hardening in gradient nanograined surface layer in copper. Scr. Mater. 77, 17–20 (2014).

    CAS  Google Scholar 

  101. 101

    Zhang, Y. S., Han, Z., Wang, K. & Lu, K. Friction and wear behaviors of nanocrystalline surface layer of pure copper. Wear 260, 942–948 (2006).

    CAS  Google Scholar 

  102. 102

    Fu, T. et al. Mechanical properties of DLC coating sputter deposited on surface nanocrystallized 304 stainless steel. Surf. Coat. Technol. 207, 555–564 (2012).

    CAS  Google Scholar 

  103. 103

    Howe, J. M. Interface in Materials (Wiley, 1997).

    Google Scholar 

  104. 104

    Hughes, G. D., Smith, S. D., Pande, C. S., Johnson, H. R. & Armstrong, R. W. Hall–Petch strengthening for the microhardness of twelve nanometer grain diameter electrodeposited nickel. Scr. Metall. 20, 93–97 (1986).

    CAS  Google Scholar 

  105. 105

    Zhang, H. W., Huang, X. & Hansen, N. Evolution of microstructural parameters and flow stresses toward limits in nickel deformed to ultra-high strains. Acta Mater. 56, 5451–5465 (2008).

    CAS  Google Scholar 

  106. 106

    Ebrahimi, F., Bourne, G. R., Kelly, M. S. & Matthews, T. E. Mechanical properties of nanocrystalline nickel produced by electrodeposition. Nanostruct. Mater. 11, 343–350 (1999).

    CAS  Google Scholar 

  107. 107

    Dalla Torre, F., Van Swygenhoven, H. & Victoria, M. Nanocrystalline electrodeposited Ni: microstructure and tensile properties. Acta Mater. 50, 3957–3970 (2002).

    CAS  Google Scholar 

  108. 108

    Zhang, H. W., Lu, K., Pippan, R., Huang, X. & Hansen, N. Enhancement of strength and stability of nanostructured Ni by small amounts of solutes. Scr. Mater. 65, 481–484 (2011).

    CAS  Google Scholar 

  109. 109

    Dalla Torre, F., Spä tig, P., Schä ublin, R. & Victoria, M. Deformation behaviour and microstructure of nanocrystalline electrodeposited and high pressure torsioned nickel. Acta Mater. 53, 2337–2349 (2005).

    CAS  Google Scholar 

  110. 110

    Sanders, P. G., Eastman, J. A. & Weertman, J. R. Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Mater. 45, 4019–4025 (1997).

    CAS  Google Scholar 

  111. 111

    Wang, Y. M. et al. Microsample tensile testing of nanocrystalline copper. Scr. Mater. 48, 1581–1586 (2003).

    CAS  Google Scholar 

  112. 112

    Cheng, S. et al. Tensile properties of in situ consolidated nanocrystalline Cu. Acta Mater. 53, 1521–1533 (2005).

    CAS  Google Scholar 

  113. 113

    Zhao, Y. H., Bingert, J. E., Liao, X. Z. & Cui, B. Simultaneously increasing the ductility and strength of ultra-fine-grained pure copper. Adv. Mater. 18, 2949–2953 (2006).

    CAS  Google Scholar 

  114. 114

    Ebrahimi, F., Zhai, Q. & Kong, D. Deformation and fracture of electrodeposited copper. Scr. Mater. 39, 315–321 (1998).

    CAS  Google Scholar 

  115. 115

    Tsuji, N., Ito, Y., Saito, Y. & Minamino, Y. Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scr. Mater. 47, 893–899 (2002).

    CAS  Google Scholar 

  116. 116

    Kamikawa, N., Huang, X., Tsuji, N. & Hansen, N. Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed. Acta Mater. 57, 4198–4208 (2009).

    CAS  Google Scholar 

  117. 117

    Islamgaliev, R. K., Clmelik, F. & Kuzel, R. Thermal stability of submicron grained copper and nickel. Mater. Sci. Eng. A 237, 43–51 (1997).

    Google Scholar 

  118. 118

    Sitarama Raju, K. et al. Microstructure evolution and hardness variation during annealing of equal channel angular pressed ultra-fine grained nickel subjected to 12 passes. J. Mater. Sci. 46, 2662–2671 (2011).

    CAS  Google Scholar 

  119. 119

    Zhilyaev, A., Nurislamova, G., Valiev, R., Baro, M. & Langdon, T. Thermal stability and microstructural evolution in ultrafine-grained nickel after equal-channel angular pressing (ECAP). Metall. Mater. Trans. A 33, 1865–1868 (2002).

    Google Scholar 

  120. 120

    Schafler, E. & Pippan, R. Effect of thermal treatment on microstructure in high pressure torsion (HPT) deformed nickel. Mater. Sci. Eng. A 387389, 799–804 (2004).

    Google Scholar 

  121. 121

    Zhang, H. W., Huang, X., Pippan, R. & Hansen, N. Thermal behavior of Ni (99.967% and 99.5% purity) deformed to an ultra-high strain by high pressure torsion. Acta Mater. 58, 1698–1707 (2010).

    CAS  Google Scholar 

  122. 122

    Oh-ishi, K., Horita, Z. & Smith, D. J. Fabrication and thermal stability of a nanocrystalline Ni. J. Mater. Res. 14, 4200–4207 (1999).

    CAS  Google Scholar 

  123. 123

    Saldana, C., King, A. H. & Chandrasekar, S. Thermal stability and strength of deformation microstructures in pure copper. Acta Mater. 60, 4107–4116 (2012).

    CAS  Google Scholar 

  124. 124

    Zhang, Y., Wang, J. T., Cheng, C. & Liu, J. Stored energy and recrystallization temperature in high purity copper after equal channel angular pressing. J. Mater. Sci. 43, 7326–7330 (2008).

    CAS  Google Scholar 

  125. 125

    Molodova, X., Gottstein, G., Winning, M. & Hellmig, R. J. Thermal stability of ECAP processed pure copper. Mater. Sci. Eng. A 460, 204–213 (2007).

    Google Scholar 

  126. 126

    Wang, Y. L., Lapovok, R., Wang, J. T., Qi, Y. S. & Estrin, Y. Thermal behavior of copper processed by ECAP with and without back pressure. Mater. Sci. Eng. A 628, 21–29 (2015).

    CAS  Google Scholar 

  127. 127

    Lugo, N., Llorca, N., Suñol, J. J. & Cabrera, J. M. Thermal stability of ultrafine grains size of pure copper obtained by equal-channel angular pressing. J. Mater. Sci. 45, 2264–2273 (2010).

    CAS  Google Scholar 

  128. 128

    Hasegawa, H. et al. Thermal stability of ultrafine-grained aluminum in the presence of Mg and Zr additions. Mater. Sci. Eng. A 265, 188–196 (1999).

    Google Scholar 

  129. 129

    Mishra, A., Kad, B. K., Gregori, F. & Meyers, M. A. Microstructural evolution in copper subjected to severe plastic deformation: experiments and analysis. Acta Mater. 55, 13–28 (2007).

    CAS  Google Scholar 

  130. 130

    Hebesberger, T., Stuwe, H. P., Vorhauer, A., Wetscher, F. & Pippan, R. Structure of Cu deformed by high pressure torsion. Acta Mater. 53, 393–402 (2005).

    CAS  Google Scholar 

  131. 131

    Li, Y. S., Tao, N. R. & Lu, K. Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures. Acta Mater. 56, 230–241 (2008).

    CAS  Google Scholar 

  132. 132

    Zhilyaev, A. P. et al. Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion. Acta Mater. 51, 753–765 (2003).

    CAS  Google Scholar 

  133. 133

    Liu, X. C., Zhang, H. W. & Lu, K. Formation of nano-laminated structure in nickel by means of surface mechanical grinding treatment. Acta Mater. 96, 24–36 (2015).

    CAS  Google Scholar 

  134. 134

    Sus´-Ryszkowska, M., Wejrzanowski, T., Pakieła, Z. & Kurzydłowski, K. J. Microstructure of ECAP severely deformed iron and its mechanical properties. Mater. Sci. Eng. A 369, 151–156 (2004).

    Google Scholar 

  135. 135

    Ivanisenko, Y., Valiev, R. Z. & Fecht, H. J. Grain boundary statistics in nano-structured iron produced by high pressure torsion. Mater. Sci. Eng. A 390, 159–165 (2005).

    Google Scholar 

  136. 136

    Iwahashi, Y., Horita, Z. & Nemoto, M. The process of grain refinement in equal-channel angular pressing. Acta Mater. 46, 3317–3331 (1998).

    CAS  Google Scholar 

  137. 137

    Xu, C., Horita, Z. & Langdon, T. G. The evolution of homogeneity in processing by high-pressure torsion. Acta Mater. 55, 203–212 (2007).

    CAS  Google Scholar 

  138. 138

    Zhang, Y., Tao, N. R. & Lu, K. Effect of stacking-fault energy on deformation twin thickness in Cu–Al alloys. Scr. Mater. 60, 211–213 (2009).

    CAS  Google Scholar 

  139. 139

    Xiao, G. H., Tao, N. R. & Lu, K. Effects of strain, strain rate and temperature on deformation twinning in a Cu–Zn alloy. Scr. Mater. 59, 975–978 (2008).

    CAS  Google Scholar 

Download references

Acknowledgements

The author thanks the Ministry of Science and Technology of China (Grant 2012CB932201), the National Natural Science Foundation of China (Grants 51231006), the Danish-Chinese Center for Nanometals (Grants 51261130091 and DNRF86-5) and the Key Research Program of Chinese Academy of Sciences (Grant KGZD-EW-T06) for financial support, and X. C. Liu, X. Y. Li and L. Lu for discussions and assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Lu.

Ethics declarations

Competing interests

The author declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, K. Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat Rev Mater 1, 16019 (2016). https://doi.org/10.1038/natrevmats.2016.19

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing