Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Materials for next-generation desalination and water purification membranes

An Erratum to this article was published on 17 May 2016

Abstract

Membrane-based separations for water purification and desalination have been increasingly applied to address the global challenges of water scarcity and the pollution of aquatic environments. However, progress in water purification membranes has been constrained by the inherent limitations of conventional membrane materials. Recent advances in methods for controlling the structure and chemical functionality in polymer films can potentially lead to new classes of membranes for water purification. In this Review, we first discuss the state of the art of existing membrane technologies for water purification and desalination, highlight their inherent limitations and establish the urgent requirements for next-generation membranes. We then describe molecular-level design approaches towards fabricating highly selective membranes, focusing on novel materials such as aquaporin, synthetic nanochannels, graphene and self-assembled block copolymers and small molecules. Finally, we highlight promising membrane surface modification approaches that minimize interfacial interactions and enhance fouling resistance.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: State-of-the-art membranes for water treatment.
Figure 2: Permeability–selectivity trade-off relationships for ultrafiltration and reverse osmosis membranes.
Figure 3: Selective membranes formed using molecular-level design.
Figure 4: Polymeric materials and self-segregation approach for fouling minimization in phase inversion membranes.

References

  1. 1

    Elimelech, M. The global challenge for adequate and safe water. J. Water Supply Res. Technol. 55, 3–10 (2006).

    Google Scholar 

  2. 2

    Shannon, M. A. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).

    CAS  Google Scholar 

  3. 3

    Schwarzenbach, R. P. et al. The challenge of micropollutants in aquatic systems. Science 313, 1072–1077 (2006).

    CAS  Google Scholar 

  4. 4

    Kolpin, D. W. et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ. Sci. Technol. 36, 1202–1211 (2002).

    CAS  Google Scholar 

  5. 5

    Tang, J. Y., Busetti, F., Charrois, J. W. & Escher, B. I. Which chemicals drive biological effects in wastewater and recycled water? Water Res. 60, 289–299 (2014).

    CAS  Google Scholar 

  6. 6

    Vidic, R. D., Brantley, S. L., Vandenbossche, J. M., Yoxtheimer, D. & Abad, J. D. Impact of shale gas development on regional water quality. Science 340, 1235009 (2013).

    CAS  Google Scholar 

  7. 7

    Shaffer, D. L. et al. Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions. Environ. Sci. Technol. 47, 9569–9583 (2013).

    CAS  Google Scholar 

  8. 8

    Gregory, K. B., Vidic, R. D. & Dzombak, D. A. Water management challenges associated with the production of shale gas by hydraulic fracturing. Elements 7, 181–186 (2011).

    Google Scholar 

  9. 9

    Bond, R. & Veerapaneni, S. Zero liquid discharge for inland desalination (Awwa Research Foundation, 2007).

    Google Scholar 

  10. 10

    Mickley, M. Survey of high-recovery and zero liquid discharge technologies for water utilities (WateReuse Foundation, 2008).

    Google Scholar 

  11. 11

    van Loosdrecht, M. C. M. & Brdjanovic, D. Anticipating the next century of wastewater treatment. Science 344, 1452–1453 (2014).

    CAS  Google Scholar 

  12. 12

    Grant, S. B. et al. Taking the “waste” out of “wastewater” for human water security and ecosystem sustainability. Science 337, 681–686 (2012).

    CAS  Google Scholar 

  13. 13

    Sales, C. M. & Lee, P. K. Resource recovery from wastewater: application of meta-omics to phosphorus and carbon management. Curr. Opin. Biotechnol. 33, 260–267 (2015).

    CAS  Google Scholar 

  14. 14

    Wang, X. et al. Probabilistic evaluation of integrating resource recovery into wastewater treatment to improve environmental sustainability. Proc. Natl Acad. Sci. USA 112, 1630–1635 (2015).

    CAS  Google Scholar 

  15. 15

    Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).

    CAS  Google Scholar 

  16. 16

    Semiat, R. Energy issues in desalination processes. Environ. Sci. Technol. 42, 8193–8201 (2008).

    CAS  Google Scholar 

  17. 17

    Baker, R. W. Membrane Technology and Applications (John Wiley & Sons, 2012).

    Google Scholar 

  18. 18

    Gin, D. L. & Noble, R. D. Designing the next generation of chemical separation membranes. Science 332, 674–676 (2011).

    CAS  Google Scholar 

  19. 19

    Tang, C. Y., Kwon, Y.-N. & Leckie, J. O. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes. Desalination 242, 168–182 (2009).

    CAS  Google Scholar 

  20. 20

    Lu, X. et al. Elements provide a clue: nanoscale characterization of thin-film composite polyamide membranes. ACS Appl. Mater. Interfaces 7, 16917–16922 (2015).

    CAS  Google Scholar 

  21. 21

    Karan, S., Jiang, Z. & Livingston, A. G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 348, 1347–1351 (2015).

    CAS  Google Scholar 

  22. 22

    Kwak, S. Y., Jung, S. G. & Kim, S. H. Structure-motion-performance relationship of flux-enhanced reverse osmosis (RO) membranes composed of aromatic polyamide thin films. Environ. Sci. Technol. 35, 4334–4340 (2001).

    CAS  Google Scholar 

  23. 23

    Mehta, A. & Zydney, A. L. Permeability and selectivity analysis for ultrafiltration membranes. J. Membr. Sci. 249, 245–249 (2005).

    CAS  Google Scholar 

  24. 24

    Geise, G. M., Paul, D. R. & Freeman, B. D. Fundamental water and salt transport properties of polymeric materials. Prog. Polym. Sci. 39, 1–42 (2014).

    CAS  Google Scholar 

  25. 25

    Geise, G. M., Park, H. B., Sagle, A. C., Freeman, B. D. & McGrath, J. E. Water permeability and water/salt selectivity tradeoff in polymers for desalination. J. Membr. Sci. 369, 130–138 (2011). A water–salt selectivity trade-off for desalination using polymeric membranes is proposed for the first time in this study.

    CAS  Google Scholar 

  26. 26

    Robeson, L. M. The upper bound revisited. J. Membr. Sci. 320, 390–400 (2008).

    CAS  Google Scholar 

  27. 27

    Yip, N. Y. & Elimelech, M. Performance limiting effects in power generation from salinity gradients by pressure retarded osmosis. Environ. Sci. Technol. 45, 10273–10282 (2011).

    CAS  Google Scholar 

  28. 28

    Iwahashi, H. et al. Advanced RO system for high temperature and high concentration seawater desalination at the Arabian Gulf. IDA World Congress (San Diego, 2015).

    Google Scholar 

  29. 29

    Cohen-Tanugi, D., McGovern, R. K., Dave, S. H., Lienhard, J. H. & Grossman, J. C. Quantifying the potential of ultra-permeable membranes for water desalination. Energy Environ. Sci. 7, 1134–1141 (2014).

    CAS  Google Scholar 

  30. 30

    Deshmukh, A., Yip, N. Y., Lin, S. & Elimelech, M. Desalination by forward osmosis: identifying performance limiting parameters through module-scale modeling. J. Membr. Sci. 491, 159–167 (2015).

    CAS  Google Scholar 

  31. 31

    Singh, R. Production of high-purity water by membrane processes. Desalin. Water Treat. 3, 99–110 (2012).

    Google Scholar 

  32. 32

    Miyashita, Y., Park, S.-H., Hyung, H., Huang, C.-H. & Kim, J.-H. Removal of N-nitrosamines and their precursors by nanofiltration and reverse osmosis membranes. J. Environ. Eng. 135, 788–795 (2009).

    CAS  Google Scholar 

  33. 33

    Ozaki, H. & Li, H. Rejection of organic compounds by ultra-low pressure reverse osmosis membrane. Water Res. 36, 123–130 (2002).

    CAS  Google Scholar 

  34. 34

    Fritzmann, C., Lö wenberg, J., Wintgens, T. & Melin, T. State-of-the-art of reverse osmosis desalination. Desalination 216, 1–76 (2007).

    CAS  Google Scholar 

  35. 35

    Le-Clech, P., Chen, V. & Fane, T. A. G. Fouling in membrane bioreactors used in wastewater treatment. J. Membr. Sci. 284, 17–53 (2006).

    CAS  Google Scholar 

  36. 36

    Cheryan, M. Ultrafiltration and Microfiltration Handbook 31–70 (CRC Press, 1998).

    Google Scholar 

  37. 37

    Matthiasson, E. The role of macromolecular adsorption in fouling of ultrafiltration membranes. J. Membr. Sci. 16, 23–36 (1983).

    CAS  Google Scholar 

  38. 38

    Belfort, G., Davis, R. H. & Zydney, A. L. The behavior of suspensions and macromolecular solutions in crossflow microfiltration. J. Membr. Sci. 96, 1–58 (1994).

    CAS  Google Scholar 

  39. 39

    Elimelech, M., Zhu, X., Childress, A. E. & Hong, S. Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes. J. Membr. Sci. 127, 101–109 (1997). The roughness of polyamide thin-film composite membrane surfaces is shown in this study to exacerbate fouling.

    CAS  Google Scholar 

  40. 40

    Herzberg, M. & Elimelech, M. Biofouling of reverse osmosis membranes: role of biofilm-enhanced osmotic pressure. J. Membr. Sci. 295, 11–20 (2007).

    CAS  Google Scholar 

  41. 41

    Li, Q. & Elimelech, M. Organic fouling and chemical cleaning of nanofiltration membranes: measurements and mechanisms. Environ. Sci. Technol. 38, 4683–4693 (2004).

    CAS  Google Scholar 

  42. 42

    Mi, B. & Elimelech, M. Gypsum scaling and cleaning in forward osmosis: measurements and mechanisms. Environ. Sci. Technol. 44, 2022–2028 (2010).

    CAS  Google Scholar 

  43. 43

    Borgnia, M. J., Kozono, D., Calamita, G., Maloney, P. C. & Agre, P. Functional reconstitution and characterization of AqpZ, the E. coli water channel protein. J. Mol. Biol. 291, 1169–1179 (1999).

    CAS  Google Scholar 

  44. 44

    Beitz, E., Wu, B., Holm, L. M., Schultz, J. E. & Zeuthen, T. Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons. Proc. Natl Acad. Sci. USA 103, 269–274 (2006).

    CAS  Google Scholar 

  45. 45

    Hub, J. S. & de Groot, B. L. Mechanism of selectivity in aquaporins and aquaglyceroporins. Proc. Natl Acad. Sci. USA 105, 1198–1203 (2008).

    CAS  Google Scholar 

  46. 46

    Sui, H., Han, B. G., Lee, J. K., Walian, P. & Jap, B. K. Structural basis of water-specific transport through the AQP1 water channel. Nature 414, 872–878 (2001). In this X-ray crystallography study, a high-resolution structure of aquaporin 1 was attained, which elucidated the basis for its selectivity for water.

    CAS  Google Scholar 

  47. 47

    Murata, K. et al. Structural determinants of water permeation through aquaporin-1. Nature 407, 599–605 (2000).

    CAS  Google Scholar 

  48. 48

    Savage, D. F., O'Connell, J. D., Miercke, L. J. W., Finer-Moore, J. & Stroud, R. M. Structural context shapes the aquaporin selectivity filter. Proc. Natl Acad. Sci. USA 107, 17164–17169 (2010).

    CAS  Google Scholar 

  49. 49

    Wang, M. et al. Layer-by-layer assembly of aquaporin Z-incorporated biomimetic membranes for water purification. Environ. Sci. Technol. 49, 3761–3768 (2015).

    CAS  Google Scholar 

  50. 50

    Wang, H. et al. Highly permeable and selective pore-spanning biomimetic membrane embedded with aquaporin Z. Small 8, 1185–1190 (2012).

    CAS  Google Scholar 

  51. 51

    Kumar, M., Grzelakowski, M., Zilles, J., Clark, M. & Meier, W. Highly permeable polymeric membranes based on the incorporation of the functional water channel protein aquaporin Z. Proc. Natl Acad. Sci. USA 104, 20719–20724 (2007).

    CAS  Google Scholar 

  52. 52

    Zhong, P. S., Chung, T.-S., Jeyaseelan, K. & Armugam, A. Aquaporin-embedded biomimetic membranes for nanofiltration. J. Membr. Sci. 407408, 27–33 (2012).

    Google Scholar 

  53. 53

    Hummer, G., Rasaiah, J. C. & Noworyta, J. P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001). This study provides the first demonstration, using molecular dynamics, of ultra-fast water permeation through the interior of carbon nanotubes.

    CAS  Google Scholar 

  54. 54

    Corry, B. Designing carbon nanotube membranes for efficient water desalination. J. Phys. Chem. B 112, 1427–1434 (2008).

    CAS  Google Scholar 

  55. 55

    Majumder, M., Chopra, N., Andrews, R. & Hinds, B. J. Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 438, 44 (2005).

    CAS  Google Scholar 

  56. 56

    Holt, J. K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).

    CAS  Google Scholar 

  57. 57

    Hinds, B. J. et al. Aligned multiwalled carbon nanotube membranes. Science 303, 62–65 (2004).

    CAS  Google Scholar 

  58. 58

    Majumder, M., Chopra, N. & Hinds, B. J. Effect of tip functionalization on transport through vertically oriented carbon nanotube membranes. J. Am. Chem. Soc. 127, 9062–9070 (2005).

    CAS  Google Scholar 

  59. 59

    Fornasiero, F. et al. Ion exclusion by sub-2-nm carbon nanotube pores. Proc. Natl Acad. Sci. USA 105, 17250–17255 (2008).

    CAS  Google Scholar 

  60. 60

    Corry, B. Water and ion transport through functionalised carbon nanotubes: implications for desalination technology. Energy Environ. Sci. 4, 751–759 (2011).

    CAS  Google Scholar 

  61. 61

    Chan, W. F. et al. Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination. ACS Nano 7, 5308–5319 (2013).

    CAS  Google Scholar 

  62. 62

    Sanchez-Valencia, J. R. et al. Controlled synthesis of single-chirality carbon nanotubes. Nature 512, 61–64 (2014).

    CAS  Google Scholar 

  63. 63

    Shen, Y. X. et al. Highly permeable artificial water channels that can self-assemble into two-dimensional arrays. Proc. Natl Acad. Sci. USA 112, 9810–9815 (2015).

    CAS  Google Scholar 

  64. 64

    Hu, X. B., Chen, Z., Tang, G., Hou, J. L. & Li, Z. T. Single-molecular artificial transmembrane water channels. J. Am. Chem. Soc. 134, 8384–8387 (2012).

    CAS  Google Scholar 

  65. 65

    Hourani, R. et al. Processable cyclic peptide nanotubes with tunable interiors. J. Am. Chem. Soc. 133, 15296–15299 (2011).

    CAS  Google Scholar 

  66. 66

    Zhou, X. et al. Self-assembling subnanometer pores with unusual mass-transport properties. Nat. Commun. 3, 949 (2012). Highly selective artificial water channels that operate by rigid molecular sieving are reported in this study.

    Google Scholar 

  67. 67

    Mauter, M. S., Elimelech, M. & Osuji, C. O. Nanocomposites of vertically aligned single-walled carbon nanotubes by magnetic alignment and polymerization of a lyotropic precursor. ACS Nano 4, 6651–6658 (2010).

    CAS  Google Scholar 

  68. 68

    Xu, T. et al. Subnanometer porous thin films by the co-assembly of nanotube subunits and block copolymers. ACS Nano 5, 1376–1384 (2011).

    CAS  Google Scholar 

  69. 69

    Gin, D. L., Gu, W., Pindzola, B. A. & Zhou, W. J. Polymerized lyotropic liquid crystal assemblies for materials applications. Acc. Chem. Res. 34, 973–980 (2001).

    CAS  Google Scholar 

  70. 70

    Gin, D. L., Bara, J. E., Noble, R. D. & Elliott, B. J. Polymerized lyotropic liquid crystal assemblies for membrane applications. Macromol. Rapid. Commun. 29, 367–389 (2008).

    CAS  Google Scholar 

  71. 71

    Zhang, Y., Sargent, J. L., Boudouris, B. W. & Phillip, W. A. Nanoporous membranes generated from self-assembled block polymer precursors: quo vadis? J. Appl. Polym. Sci. 132, 41683 (2015).

    Google Scholar 

  72. 72

    Jackson, E. A. & Hillmyer, M. A. Nanoporous membranes derived from block copolymers: from drug delivery to water filtration. ACS Nano 4, 3548–3553 (2010).

    CAS  Google Scholar 

  73. 73

    Zalusky, A. S., Olayo-Valles, R., Wolf, J. H. & Hillmyer, M. A. Ordered nanoporous polymers from polystyrene–polylactide block copolymers. J. Am. Chem. Soc. 124, 12761–12773 (2002).

    CAS  Google Scholar 

  74. 74

    Sorenson, G. P., Coppage, K. L. & Mahanthappa, M. K. Unusually stable aqueous lyotropic gyroid phases from gemini dicarboxylate surfactants. J. Am. Chem. Soc. 133, 14928–14931 (2011).

    CAS  Google Scholar 

  75. 75

    Hatakeyama, E. S., Wiesenauer, B. R., Gabriel, C. J., Noble, R. D. & Gin, D. L. Nanoporous, bicontinuous cubic lyotropic liquid crystal networks via polymerizable gemini ammonium surfactants. Chem. Mater. 22, 4525–4527 (2010).

    CAS  Google Scholar 

  76. 76

    Zhou, M. et al. New type of membrane material for water desalination based on a cross-linked bicontinuous cubic lyotropic liquid crystal assembly. J. Am. Chem. Soc. 129, 9574–9575 (2007).

    CAS  Google Scholar 

  77. 77

    Pindzola, B. A., Jin, J. & Gin, D. L. Cross-linked normal hexagonal and bicontinuous cubic assemblies via polymerizable gemini amphiphiles. J. Am. Chem. Soc. 125, 2940–2949 (2003).

    CAS  Google Scholar 

  78. 78

    Soberats, B. et al. 3D Anhydrous proton-transporting nanochannels formed by self-assembly of liquid crystals composed of a sulfobetaine and a sulfonic acid. J. Am. Chem. Soc. 135, 15286–15289 (2013).

    CAS  Google Scholar 

  79. 79

    Kerr, R. L., Miller, S. A., Shoemaker, R. K., Elliott, B. J. & Gin, D. L. New type of Li ion conductor with 3D interconnected nanopores via polymerization of a liquid organic electrolyte-filled lyotropic liquid-crystal assembly. J. Am. Chem. Soc. 131, 15972–15973 (2009).

    CAS  Google Scholar 

  80. 80

    Smith, R. C., Fischer, W. M. & Gin, D. L. Ordered poly(p-phenylenevinylene) matrix nanocomposites via lyotropic liquid-crystalline monomers. J. Am. Chem. Soc. 119, 4092–4093 (1997). This is an early demonstration of the formation of a nanoporous polymeric structure using surfactants based on polymerizable gallic acid.

    CAS  Google Scholar 

  81. 81

    Zhou, M., Kidd, T. J., Noble, R. D. & Gin, D. L. Supported lyotropic liquid-crystal polymer membranes: promising materials for molecular-size-selective aqueous nanofiltration. Adv. Mater. 17, 1850–1853 (2005).

    CAS  Google Scholar 

  82. 82

    Broer, D. J., Bastiaansen, C. M., Debije, M. G. & Schenning, A. P. Functional organic materials based on polymerized liquid-crystal monomers: supramolecular hydrogen-bonded systems. Angew. Chem. Int. Ed. Engl. 51, 7102–7109 (2012).

    CAS  Google Scholar 

  83. 83

    Henmi, M. et al. Self-organized liquid-crystalline nanostructured membranes for water treatment: selective permeation of ions. Adv. Mater. 24, 2238–2241 (2012).

    CAS  Google Scholar 

  84. 84

    Deng, H., Gin, D. L. & Smith, R. C. Polymerizable lyotropic liquid crystals containing transition-metal and lanthanide ions: architectural control and introduction of new properties into nanostructured polymers. J. Am. Chem. Soc. 120, 3522–3523 (1998).

    CAS  Google Scholar 

  85. 85

    Lee, H.-K. et al. Synthesis of a nanoporous polymer with hexagonal channels from supramolecular discotic liquid crystals. Angew. Chem. Int. Ed. Engl. 40, 2669–2671 (2001).

    Google Scholar 

  86. 86

    Ishida, Y. et al. Guest-responsive covalent frameworks by the cross-linking of liquid-crystalline salts: tuning of lattice flexibility by the design of polymerizable units. Chemistry 17, 14752–14762 (2011).

    CAS  Google Scholar 

  87. 87

    Feng, X. et al. Scalable fabrication of polymer membranes with vertically aligned 1 nm pores by magnetic field directed self-assembly. ACS Nano 8, 11977–11986 (2014).

    CAS  Google Scholar 

  88. 88

    Gopinadhan, M. et al. Thermally switchable aligned nanopores by magnetic-field directed self-assembly of block copolymers. Adv. Mater. 26, 5148–5154 (2014).

    CAS  Google Scholar 

  89. 89

    Feng, X. et al. Thin polymer films with continuous vertically aligned 1 nm pores fabricated by soft confinement. ACS Nano 10, 150–158 (2015).

    Google Scholar 

  90. 90

    Peinemann, K. V., Abetz, V. & Simon, P. F. Asymmetric superstructure formed in a block copolymer via phase separation. Nat. Mater. 6, 992–996 (2007). In this study, block copolymer self-assembly and phase inversion are combined for the first time to readily form porous membranes with a low pore size polydispersity.

    CAS  Google Scholar 

  91. 91

    Phillip, W. A. et al. Tuning structure and properties of graded triblock terpolymer-based mesoporous and hybrid films. Nano Lett. 11, 2892–2900 (2011).

    CAS  Google Scholar 

  92. 92

    Gu, Y. & Wiesner, U. Tailoring pore size of graded mesoporous block copolymer membranes: moving from ultrafiltration toward nanofiltration. Macromolecules 48, 6153–6159 (2015).

    CAS  Google Scholar 

  93. 93

    Clodt, J. I. et al. Performance study of isoporous membranes with tailored pore sizes. J. Membr. Sci. 495, 334–340 (2015).

    CAS  Google Scholar 

  94. 94

    Seo, M. & Hillmyer, M. A. Reticulated nanoporous polymers by controlled polymerization-induced microphase separation. Science 336, 1422–1425 (2012).

    CAS  Google Scholar 

  95. 95

    Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014). This is an experimental demonstration of molecular sieving through graphene oxide laminates, albeit with a size cut-off that is too large for desalination.

    CAS  Google Scholar 

  96. 96

    Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V. & Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335, 442–444 (2012).

    CAS  Google Scholar 

  97. 97

    Surwade, S. P. et al. Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 10, 459–464 (2015).

    CAS  Google Scholar 

  98. 98

    Russo, C. J. & Golovchenko, J. A. Atom-by-atom nucleation and growth of graphene nanopores. Proc. Natl Acad. Sci. USA 109, 5953–5957 (2012).

    CAS  Google Scholar 

  99. 99

    Cohen-Tanugi, D. & Grossman, J. C. Water desalination across nanoporous graphene. Nano Lett. 12, 3602–3608 (2012).

    CAS  Google Scholar 

  100. 100

    O'Hern, S. C. et al. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett. 14, 1234–1241 (2014).

    CAS  Google Scholar 

  101. 101

    O'Hern, S. C. et al. Nanofiltration across defect-sealed nanoporous monolayer graphene. Nano Lett. 15, 3254–3260 (2015).

    CAS  Google Scholar 

  102. 102

    O'Hern, S. C. et al. Selective molecular transport through intrinsic defects in a single layer of CVD graphene. ACS Nano 6, 10130–10138 (2012).

    CAS  Google Scholar 

  103. 103

    Mi, B. Graphene oxide membranes for ionic and molecular sieving. Science 343, 740–742 (2014).

    CAS  Google Scholar 

  104. 104

    Yeh, C. N., Raidongia, K., Shao, J., Yang, Q. H. & Huang, J. On the origin of the stability of graphene oxide membranes in water. Nat. Chem. 7, 166–170 (2014).

    Google Scholar 

  105. 105

    Su, Y. et al. Impermeable barrier films and protective coatings based on reduced graphene oxide. Nat. Commun. 5, 4843 (2014).

    CAS  Google Scholar 

  106. 106

    Liu, H., Wang, H. & Zhang, X. Facile fabrication of freestanding ultrathin reduced graphene oxide membranes for water purification. Adv. Mater. 27, 249–254 (2015).

    Google Scholar 

  107. 107

    Hung, W.-S. et al. Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing. Chem. Mater. 26, 2983–2990 (2014).

    CAS  Google Scholar 

  108. 108

    Zhang, Y., Zhang, S. & Chung, T. S. Nanometric graphene oxide framework membranes with enhanced heavy metal removal via nanofiltration. Environ. Sci. Technol. 49, 10235–10242 (2015).

    CAS  Google Scholar 

  109. 109

    Ostuni, E., Chapman, R. G., Holmlin, R. E., Takayama, S. & Whitesides, G. M. A survey of structure–property relationships of surfaces that resist the adsorption of protein. Langmuir 17, 5605–5620 (2001). Through adsorption measurements of proteins on model surfaces with defined functional groups, this study describes general characteristics of non-fouling surfaces.

    CAS  Google Scholar 

  110. 110

    Banerjee, I., Pangule, R. C. & Kane, R. S. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv. Mater. 23, 690–718 (2011).

    CAS  Google Scholar 

  111. 111

    Jiang, S. & Cao, Z. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv. Mater. 22, 920–932 (2010).

    CAS  Google Scholar 

  112. 112

    Callow, J. A. & Callow, M. E. Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat. Commun. 2, 244 (2011).

    Google Scholar 

  113. 113

    Kang, G. D. & Cao, Y. M. Development of antifouling reverse osmosis membranes for water treatment: a review. Water Res. 46, 584–600 (2012).

    CAS  Google Scholar 

  114. 114

    Rana, D. & Matsuura, T. Surface modifications for antifouling membranes. Chem. Rev. 110, 2448–2471 (2010).

    CAS  Google Scholar 

  115. 115

    Shaffer, D. L., Jaramillo, H., Romero-Vargas Castrillón, S., Lu, X. & Elimelech, M. Post-fabrication modification of forward osmosis membranes with a poly(ethylene glycol) block copolymer for improved organic fouling resistance. J. Membr. Sci. 490, 209–219 (2015).

    CAS  Google Scholar 

  116. 116

    Van Wagner, E. M., Sagle, A. C., Sharma, M. M., La, Y.-H. & Freeman, B. D. Surface modification of commercial polyamide desalination membranes using poly(ethylene glycol) diglycidyl ether to enhance membrane fouling resistance. J. Membr. Sci. 367, 273–287 (2011).

    CAS  Google Scholar 

  117. 117

    Barbey, R. et al. Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem. Rev. 109, 5437–5527 (2009).

    CAS  Google Scholar 

  118. 118

    Ye, G., Lee, J., Perreault, F. & Elimelech, M. Controlled architecture of dual-functional block copolymer brushes on thin-film composite membranes for integrated “defending” and “attacking” strategies against biofouling. ACS Appl. Mater. Interfaces 7, 23069–23079 (2015).

    CAS  Google Scholar 

  119. 119

    Kang, S., Asatekin, A., Mayes, A. M. & Elimelech, M. Protein antifouling mechanisms of PAN UF membranes incorporating PAN-g-PEO additive. J. Membr. Sci. 296, 42–50 (2007).

    CAS  Google Scholar 

  120. 120

    Asatekin, A., Kang, S., Elimelech, M. & Mayes, A. M. Anti-fouling ultrafiltration membranes containing polyacrylonitrile-graft-poly(ethylene oxide) comb copolymer additives. J. Membr. Sci. 298, 136–146 (2007). The in situ surface segregation approach is used in this study to readily fabricate fouling-resistant polyacrylonitrile UF membranes.

    CAS  Google Scholar 

  121. 121

    Chen, W. et al. Engineering a robust, versatile amphiphilic membrane surface through forced surface segregation for ultralow flux-decline. Adv. Funct. Mater. 21, 191–198 (2011).

    CAS  Google Scholar 

  122. 122

    Chen, W. et al. Efficient wastewater treatment by membranes through constructing tunable antifouling membrane surfaces. Environ. Sci. Technol. 45, 6545–6552 (2011).

    CAS  Google Scholar 

  123. 123

    Zhao, X. et al. Engineering amphiphilic membrane surfaces based on PEO and PDMS segments for improved antifouling performances. J. Membr. Sci. 450, 111–123 (2014).

    Google Scholar 

  124. 124

    Shaffer, D. L., Werber, J. R., Jaramillo, H., Lin, S. & Elimelech, M. Forward osmosis: where are we now? Desalination 356, 271–284 (2015).

    CAS  Google Scholar 

  125. 125

    Tiraferri, A., Yip, N. Y., Phillip, W. A., Schiffman, J. D. & Elimelech, M. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure. J. Membr. Sci. 367, 340–352 (2011).

    CAS  Google Scholar 

  126. 126

    Lu, X., Arias Chavez, L. H., Romero-Vargas Castrillón, S., Ma, J. & Elimelech, M. Influence of active layer and support layer surface structures on organic fouling propensity of thin-film composite forward osmosis membranes. Environ. Sci. Technol. 49, 1436–1444 (2015).

    CAS  Google Scholar 

  127. 127

    Pohl, P., Saparov, S. M., Borgnia, M. J. & Agre, P. Highly selective water channel activity measured by voltage clamp: analysis of planar lipid bilayers reconstituted with purified AqpZ. Proc. Natl Acad. Sci. USA 98, 9624–9629 (2001).

    CAS  Google Scholar 

  128. 128

    Ruiz, L., Wu, Y. & Keten, S. Tailoring the water structure and transport in nanotubes with tunable interiors. Nanoscale 7, 121–132 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support received from the US National Science Foundation (NSF) under award numbers CBET-1437630 and CMMI-1246804 and through the NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (ERC-1449500). The authors also acknowledge the NSF Graduate Research Fellowship awarded to J.R.W.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Menachem Elimelech.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Werber, J., Osuji, C. & Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat Rev Mater 1, 16018 (2016). https://doi.org/10.1038/natrevmats.2016.18

Download citation

Further reading

Search

Quick links