Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

High-temperature superconductivity in iron pnictides and chalcogenides

Abstract

Superconductivity develops in metals upon the formation of a coherent macroscopic quantum state of electron pairs. Iron pnictides and chalcogenides are materials that have high superconducting transition temperatures. In this Review, we describe the advances in the field that have led to higher superconducting transition temperatures in iron-based superconductors and the wide range of materials that are used to form these superconductors. We summarize the essential aspects of the normal state and the mechanism for superconductivity. We emphasize the degree of electron–electron correlations and their manifestation in properties of the normal state. We examine the nature of magnetism, analyse its role in driving the electronic nematicity and discuss quantum criticality at the border of magnetism in the phase diagram. Finally, we review the amplitude and structure of the superconducting pairing, and survey the potential material settings for optimizing superconductivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Materials characteristics of iron-based superconductors.
Figure 2: Bad-metal behaviour and electron correlations.
Figure 3: Magnetism in the iron pnictides.
Figure 4: Magnetism in iron chalcogenides.
Figure 5: Quantum criticality in iron pnictides.
Figure 6: Superconductivity in iron pnictides and chalcogenides.

Similar content being viewed by others

References

  1. Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Iron-based layered superconductor La[O1−xFx]FeAs (x = 0.05–0.12) with Tc = 26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008).

    CAS  Google Scholar 

  2. Bednorz, J. G. & Müller, K. A. Possible high Tc superconductivity in the Ba–La–Cu–O system. Z. Phys. B. 64, 189–193 (1986).

    CAS  Google Scholar 

  3. Ren, Z. A. et al. Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O1−xFx]FeAs. Chin. Phys. Lett. 25, 2215–2216 (2008).

    CAS  Google Scholar 

  4. Wang, Q.-Y. et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3 . Chin. Phys. Lett. 29, 037402 (2012). Observation of superconductivity in the single-layer FeSe system that possesses the highest superconducting transition temperature in FeSCs.

    Google Scholar 

  5. He, S. et al. Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films. Nat. Mater. 12, 605–610 (2013).

    Article  CAS  Google Scholar 

  6. Lee, J. J. et al. Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3 . Nature 515, 245–248 (2014).

    CAS  Google Scholar 

  7. Zhang, Z. et al. Onset of the Meissner effect at 65 K in FeSe thin film grown on Nb-doped SrTiO3 substrate. Sci. Bull. 60, 1301–1304 (2015).

    CAS  Google Scholar 

  8. Ge, J.-F. et al. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3 . Nat. Mater. 14, 285–289 (2015).

    CAS  Google Scholar 

  9. Boeri, L., Dolgov, O. V. & Golubov, A. A. Is LaFeAsO1−xFx an electron-phonon superconductor?. Phys. Rev. Lett. 101, 026403 (2008).

    CAS  Google Scholar 

  10. Rotter, M., Tegel, M. & Johrendt, D. Superconductivity at 38 K in the iron arsenide (Ba1−xKx)Fe2As2 . Phys. Rev. Lett. 101, 107006 (2008).

    Google Scholar 

  11. Hsu, F.-C. et al. Superconductivity in the PbO-type structure α-FeSe. Proc. Natl Acad. Sci. USA 105, 14262–14264 (2008).

    Article  CAS  Google Scholar 

  12. Guo, J. et al. Superconductivity in the iron selenide KxFe2Se2 (0 ≤ x ≤ 1.0). Phys. Rev. B 82, 180520 (2010).

    Google Scholar 

  13. Sun, L. et al. Re-emerging superconductivity at 48 kelvin in iron chalcogenides. Nature 483, 67–69 (2012).

    CAS  Google Scholar 

  14. Yi, M. et al. Electronic structure of the BaFe2As2 family of iron-pnictide superconductors. Phys. Rev. B 80, 024515 (2009).

    Google Scholar 

  15. Sato, T. et al. Band structure and Fermi surface of an extremely overdoped iron-based superconductor KFe2As2 . Phys. Rev. Lett. 103, 047002 (2009).

    CAS  Google Scholar 

  16. Dai, P. C. Antiferromagnetic order and spin dynamics in iron-based superconductors. Rev. Mod. Phys. 87, 855–896 (2015).

    CAS  Google Scholar 

  17. Hussey, N. E., Takenaka, K. & Takagi, H. Universality of the Mott–Ioffe–Regel limit in metals. Philos. Mag. 84, 2847–2864 (2004).

    CAS  Google Scholar 

  18. Abrahams, E. & Si, Q. Quantum criticality in the iron pnictides and chalcogenides. J. Phys. Condens. Matter 23, 223201 (2011).

    Google Scholar 

  19. Fawcett, E. Spin-density-wave antiferromagnetism in chromium. Rev. Mod. Phys. 60, 209–283 (1988).

    CAS  Google Scholar 

  20. Si, Q. & Abrahams, E. Strong correlations and magnetic frustration in the high Tc iron pnictides. Phys. Rev. Lett. 101, 076401 (2008). A theoretical study that emphasizes that the parent systems of the FeSCs display bad-metal behaviour and infers that their electron correlations are strong.

    Google Scholar 

  21. Si, Q., Abrahams, E., Dai, J. & Zhu, J.-X. Correlation effects in the iron pnictides. New J. Phys. 11, 045001 (2009).

    Google Scholar 

  22. Qazilbash, M. M. et al. Electronic correlations in the iron pnictides. Nat. Phys. 5, 647–650 (2009). Experimental evidence from optical conductivity that iron arsenides possess strong electron correlations.

    CAS  Google Scholar 

  23. Nakajima, M. et al. Normal-state charge dynamics in doped BaFe2As2: roles of doping and necessary ingredients for superconductivity. Sci. Rep. 4, 5873 (2014).

    CAS  Google Scholar 

  24. Yi, M. et al. Electronic reconstruction through the structural and magnetic transitions in detwinned NaFeAs. New J. Phys. 14, 073019 (2012).

    Google Scholar 

  25. Tamai, A. et al. Strong electron correlations in the normal state of the iron-based FeSe0.42Te0.58 superconductor observed by angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 104, 097002 (2010).

    CAS  Google Scholar 

  26. Yi, M. et al. Observation of temperature-induced crossover to an orbital-selective Mott phase in AxFe2−ySe2 (A = K, Rb) superconductors. Phys. Rev. Lett. 110, 067003 (2013).

    CAS  Google Scholar 

  27. Yi, M. et al. Observation of universal strong orbital-dependent correlation effects in iron chalcogenides. Nat. Commun. 6, 7777 (2015). Angle-resolved photoemission measurements provide evidence for strong and orbital-selective electron correlations in iron chalcogenides.

    CAS  Google Scholar 

  28. Zhu, J.-X. et al. Band narrowing and Mott localization in iron oxychalcogenides La2O2Fe2O(Se, S)2 . Phys. Rev. Lett. 104, 216405 (2010).

    Google Scholar 

  29. Free, D. G. & Evans, J. S. O. Low-temperature nuclear and magnetic structures of La2O2Fe2OSe2 from x-ray and neutron diffraction measurements. Phys. Rev. B 81, 214433 (2010).

    Google Scholar 

  30. Imada, M., Fujimori, A. & Tokura, Y. Metal-insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    CAS  Google Scholar 

  31. Freelon, B. et al. Mott-Kondo insulator behavior in the iron oxychalcogenides. Phys. Rev. B 92, 155139 (2015).

    Google Scholar 

  32. Fang, M.-H. et al. Fe-based superconductivity with Tc = 31 K bordering an antiferromagnetic insulator in (Tl, K)FexSe2 . Europhys. Lett. 94, 27009 (2011).

    Google Scholar 

  33. Bao, W. et al. A novel large moment antiferromagnetic order in K0.8Fe1.6Se2 superconductor. Chin. Phys. Lett. 28, 086104 (2011).

    Google Scholar 

  34. Yu, R., Zhu, J.-X. & Si, Q. Mott transition in modulated lattices and parent insulator of (K, Tl)yFexSe2 superconductors. Phys. Rev. Lett. 106, 186401 (2011).

    Google Scholar 

  35. Zhou, Y., Xu, D.-H., Zhang, F.-C. & Chen, W.-Q. Theory for superconductivity in (Tl, K)FexSe2 as a doped Mott insulator. Europhys. Lett. 95, 17003 (2011).

    Google Scholar 

  36. Wang, M. et al. Mott localization in a pure stripe antiferromagnet Rb1−δFe1.5−σS2 . Phys. Rev. B 92, 121101 (2015).

    Google Scholar 

  37. Wang, Z. et al. Orbital-selective metal–insulator transition and gap formation above TC in superconducting Rb1−xFe2−ySe2 . Nat. Commun. 5, 3202 (2014).

    Google Scholar 

  38. Ding, X., Pan, Y., Yang, H. & Wen, H.-H. Strong and nonmonotonic temperature dependence of Hall coefficient in superconducting KxFe2−ySe2 single crystals. Phys. Rev. B 89, 224515 (2014).

    Google Scholar 

  39. Li, W. et al. Mott behaviour in KxFe2−ySe2 superconductors studied by pump-probe spectroscopy. Phys. Rev. B 89, 134515 (2014).

    Google Scholar 

  40. Gao, P. et al. Role of the 245 phase in alkaline iron selenide superconductors revealed by high-pressure studies. Phys. Rev. B 89, 094514 (2014).

    Google Scholar 

  41. Yu, R. & Si, Q. Orbital-selective Mott phase in multiorbital models for alkaline iron selenides K1−xFe2−ySe2 . Phys. Rev. Lett. 110, 146402 (2013).

    Google Scholar 

  42. Yu, R., Zhu, J.-X. & Si, Q. Orbital-dependent effects of electron correlations in microscopic models for iron-based superconductors. Curr. Opin. Solid State Mater. Sci. 17, 65–71 (2013).

    CAS  Google Scholar 

  43. Anisimov, V. I., Nekrasov, I. A., Kondakov, D. E., Rice, T. M. & Sigrist, M. Orbital-selective Mott-insulator transition in Ca2−xSrxRuO4 . Eur. Phys. J. B 25, 191–201 (2002).

    CAS  Google Scholar 

  44. Yu, R. & Si, Q. U(1) slave-spin theory and its application to Mott transition in a multi-orbital model for iron pnictides. Phys. Rev. B 86, 085104 (2012).

    Google Scholar 

  45. de'Medici, L., Giovannetti, G. & Capone, M. Selective Mottness as a key to iron superconductors. Phys. Rev. Lett. 112, 177001 (2014).

    Google Scholar 

  46. Bascones, E., Valenzuela, B. & Calderón, M. J. Orbital differentiation and the role of orbital ordering in the magnetic state of Fe superconductors. Phys. Rev. B 86, 174508 (2012).

    Google Scholar 

  47. Neupane, M. et al. Observation of a novel orbital selective Mott transition in Ca1.8Sr0.2RuO4 . Phys. Rev. Lett. 103, 097001 (2009).

    CAS  Google Scholar 

  48. Yin, Z. P., Haule, K. & Kotliar, G. Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides. Nat. Mater. 10, 932–935 (2011). An article reporting calculations using dynamical mean field theory, illustrating that iron pnictides and chalcogenides provide a continuous range in the strength of electron correlations among the FeSCs.

    CAS  Google Scholar 

  49. Yu, R., Goswami, P., Si, Q. Nikolic, P. & Zhu, J.-X. Superconductivity at the border of electron localization and itinerancy. Nat. Commun. 4, 2783 (2013).

    Google Scholar 

  50. Fang, C., Yao, H., Tsai, W.-F., Hu, J. P. & Kivelson, S. A. Theory of electron nematic order in LaFeAsO. Phys. Rev. B 77, 224509 (2008).

    Google Scholar 

  51. Xu, C., Muller, M. & Sachdev, S. Ising and spin orders in the iron-based superconductors. Phys. Rev. B 78, 020501(R) (2008).

    Google Scholar 

  52. Laad, M. S., Craco, L., Leoni, S. & Rosner, H. Electrodynamic response of incoherent metals: normal phase of iron pnictides. Phys. Rev. B 79, 024515 (2009).

    Google Scholar 

  53. Seo, K., Bernevig, B. A. & Hu, J. Pairing symmetry in a two-orbital exchange coupling model of oxypnictides. Phys. Rev. Lett. 101, 206404 (2008).

    Google Scholar 

  54. Moreo, A., Daghofer, M., Riera, J. A. & Dagotto, E. Properties of a two-orbital model for oxypnictide superconductors: magnetic order, B2g spin-singlet pairing channel, and its nodal structure. Phys. Rev. B 79, 134502 (2009).

    Google Scholar 

  55. Chen, W.-Q., Yang, K.-Y., Zhou, Y. & Zhang, F.-C. Strong coupling theory for superconducting iron pnictides. Phys. Rev. Lett. 102, 047006 (2009).

    Google Scholar 

  56. Yang, F., Wang, F. & Lee, D.-H. Fermiology, orbital order, orbital fluctuations, and Cooper pairing in iron-based superconductors. Phys. Rev. B 88, 100504(R) (2013).

    Google Scholar 

  57. Berg, E., Kivelson, S. A. & Scalapino, D. J. A twisted ladder: relating the Fe superconductors to the high-Tc cuprates. New J. Phys. 11, 085007 (2009).

    Google Scholar 

  58. Lv, W., Krü ger, F. & Phillips, P. Orbital ordering and unfrustrated (π, 0) magnetism from degenerate double exchange in the iron pnictides. Phys. Rev. B 82, 045125 (2010).

    Google Scholar 

  59. Yu, R. & Si, Q. Antiferroquadrupolar and Ising-nematic orders of a frustrated bilinear-biquadratic Heisenberg model and implications for the magnetism of FeSe. Phys. Rev. Lett. 115, 116401 (2015).

    Google Scholar 

  60. Wang, F., Kivelson, S. A. & Lee, D.-H. Nematicity and quantum paramagnetism in FeSe. Nat. Phys. 11, 959–963 (2015).

    CAS  Google Scholar 

  61. de la Cruz, C. et al. Magnetic order close to superconductivity in the iron-based layered La(O1−xFx)FeAs systems. Nature 453, 899–902 (2008). Neutron scattering measurements demonstrate AFM and structural phase transitions in a parent compound of the FeSCs.

    CAS  Google Scholar 

  62. Diallo, S. O. et al. Paramagnetic spin correlations in CaFe2As2 single crystals. Phys. Rev. B 81, 214407 (2010).

    Google Scholar 

  63. Harriger, L. W. et al. Nematic spin fluid in the tetragonal phase of BaFe2As2 . Phys. Rev. B 84, 054544 (2011).

    Google Scholar 

  64. Ewings, R. A. et al. Itinerant spin excitations in SrFe2As2 measured by inelastic neutron scattering. Phys. Rev. B 83, 214519 (2011).

    Google Scholar 

  65. Yildirim, T. Origin of the 150-K anomaly in LaFeAsO: competing antiferromagnetic interactions, frustration, and a structural phase transition. Phys. Rev. Lett. 101, 057010 (2008).

    CAS  Google Scholar 

  66. Ma, F., Lu, Z.-Y. & Xiang, T. Antiferromagnetic superexchange interactions in LaOFeAs. Phys. Rev. B 78, 224517 (2008).

    Google Scholar 

  67. Chandra, P., Coleman, P. & Larkin, A. I. Ising transition in frustrated Heisenberg models. Phys. Rev. Lett. 64, 88–91 (1990).

    CAS  Google Scholar 

  68. Fazekas, P. Lecture Notes on Electron Correlation and Magnetism Ch. 5 (World Scientific, 1999).

    Google Scholar 

  69. Yu, R. et al. Spin dynamics of a J1–J2–K model for the paramagnetic phase of iron pnictides. Phys. Rev. B 86, 085148 (2012).

    Google Scholar 

  70. Wysocki, A. L., Belashchenko, K. D. & Antropov, V. P. Consistent model of magnetism in ferropnictides. Nat. Phys. 7, 485–489 (2011).

    CAS  Google Scholar 

  71. Liu, M. S. et al. Nature of magnetic excitations in superconducting BaFe1.9Ni0.1As2 . Nat. Phys. 8, 376–381 (2012). Inelastic neutron scattering measurements demonstrate that the integrated spin spectral weight of iron pnictides is much larger than what is expected from particle–hole excitations near the Fermi energy.

    CAS  Google Scholar 

  72. Dong, J. et al. Competing orders and spin-density-wave instability in La(O1−xFx)FeAs. Europhys. Lett. 83, 27006 (2008).

    Google Scholar 

  73. Knolle, J., Eremin, I. & Moessner, R. Multiorbital spin susceptibility in a magnetically ordered state: orbital versus excitonic spin density wave scenario. Phys. Rev. B 83, 224503 (2011).

    Google Scholar 

  74. Ma, F., Ji, W., Hu, J., Lu, Z.-Y. & Xiang, T. First-principles calculations of the electronic structure of tetragonal α-FeTe and α-FeSe crystals: evidence for a bicollinear antiferromagnetic order. Phys. Rev. Lett. 102, 177003 (2009).

    Google Scholar 

  75. Wen, J. Magnetic neutron scattering studies on the Fe-based superconductor system Fe1+yTe1−xSex . Ann. Phys. 358, 92–107 (2015).

    CAS  Google Scholar 

  76. Yu, R., Goswami, P. & Si, Q. The magnetic phase diagram of an extended J1–J2 model on a modulated square lattice and its implications for the antiferromagnetic phase of KyFexSe2 . Phys. Rev. B 84, 094451 (2011).

    Google Scholar 

  77. Cao, C. & Dai, J. Block spin ground state and three-dimensionality of (K, Tl)Fe1.6Se2 . Phys. Rev. Lett. 107, 056401 (2011).

    Google Scholar 

  78. Wang, M. et al. Spin waves and magnetic exchange interactions in insulating Rb0.89Fe1.58Se2 . Nat. Commun. 2, 580 (2011).

    Google Scholar 

  79. Chi, S. et al. Neutron scattering study of spin dynamics in superconducting (Tl, Rb)2Fe4Se5 . Phys. Rev. B 87, 100501 (2013).

    Google Scholar 

  80. Wang, M. et al. Two spatially separated phases in semiconducting Rb0.8Fe1.5S2 . Phys. Rev. B 90, 125148 (2014).

    Google Scholar 

  81. Chu, J. H., Kuo, H.-H., Analytis, J. G. & Fisher, I. R. Divergent nematic susceptibility in an iron arsenide superconductor. Science 337, 710–712 (2012). An experimental study of resistivity anisotropy in the presence of an uniaxial strain, demonstrating that the structural transition is driven by electronic nematicity.

    CAS  Google Scholar 

  82. Kuo, H.-H., Chu, J.-H., Kivelson, S. A. & Fisher, I. R. Ubiquitous signatures of nematic quantum criticality in optimally doped Fe-based superconductors. Preprint at http://arXiv.org/abs/1503.00402 (2015).

  83. Böhmer, A. E. et al. Nematic susceptibility of hole-doped and electron-doped BaFe2As2 iron-based superconductors from shear modulus measurements. Phys. Rev. Lett. 112, 047001 (2015).

    Google Scholar 

  84. Thorsmølle, V. K. et al. Critical quadrupole fluctuations and collective modes in iron pnictide superconductors. Phys. Rev. B 93, 054515 (2016).

    Google Scholar 

  85. Kretzschmar, F. et al. Nematic fluctuations and the magneto-structural phase transition in Ba(Fe1−xCox)2As2. Preprint at http://arXiv.org/abs/1507.06116 (2015).

  86. Dai, J., Si, Q., Zhu, J.-X. & Abrahams, E. Iron pnictides as a new setting for quantum criticality. Proc. Natl Acad. Sci. USA 106, 4118–4121 (2009). Theoretical proposal for quantum criticality in iron pnictides and for its realization by isoelectronic phosphorus for arsenic substitution in iron arsenides.

    CAS  Google Scholar 

  87. Fernandes, R. M., Chubukov, A. V. & Schmalian, J. What drives nematic order in iron-based superconductors? Nat. Phys. 10, 97–104 (2014).

    CAS  Google Scholar 

  88. Chen, C.-C. et al. Orbital order and spontaneous orthorhombicity in iron pnictides. Phys. Rev. B 82, 100504(R) (2010).

    Google Scholar 

  89. Lee, C. C., Yin, W. G. & Ku, W. Ferro-orbital order and strong magnetic anisotropy in the parent compounds of iron-pnictide superconductors. Phys. Rev. Lett. 103, 267001 (2009).

    Google Scholar 

  90. Krüger, F., Kumar, S., Zaanen, J. & van den Brink, J. Spin-orbital frustrations and anomalous metallic state in iron-pnictide superconductors. Phys. Rev. B 79, 054504 (2009).

    Google Scholar 

  91. Yi, M. et al. Symmetry-breaking orbital anisotropy on detwinned Ba(Fe1−xCox)2As2 above the spin density wave transition. Proc. Natl Acad. Sci. USA 108, 6878–6883 (2011).

    CAS  Google Scholar 

  92. Lu, X. et al. Nematic spin correlations in the tetragonal state of uniaxial strained BaFe2−xNixAs2 . Science 345, 657–660 (2014).

    CAS  Google Scholar 

  93. Song, Y. et al. Energy dependence of the spin excitation anisotropy in uniaxial-strained BaFe1.9Ni0.1As2 . Phys. Rev. B 92, 180504(R) (2015).

    Google Scholar 

  94. McQueen, T. M. et al. Tetragonal-to-orthorhombic structural phase transition at 90 K in the superconductor Fe1.01Se. Phys. Rev. Lett. 103, 057002 (2009).

    CAS  Google Scholar 

  95. Medvedev, S. et al. Electronic and magnetic phase diagram of β-Fe1.01Se with superconductivity at 36.7 K under pressure. Nat. Mater. 8, 630–633 (2009).

    CAS  Google Scholar 

  96. Böhmer, A. E. et al. Origin of the tetragonal-to-orthorhombic phase transition in FeSe: a combined thermodynamic and NMR study of nematicity. Phys. Rev. Lett. 114, 027001 (2015).

    Google Scholar 

  97. Baek, S.-H. et al. Orbital-driven nematicity in FeSe. Nat. Mater. 14, 210–214 (2015).

    CAS  Google Scholar 

  98. Glasbrenner, J. K. et al. Effect of magnetic frustration on nematicity and superconductivity in iron chalcogenides. Nat. Phys. 11, 953–958 (2015).

    CAS  Google Scholar 

  99. Rahn, M. C., Ewings, R. A., Sedlmaier, S. J., Clarke, S. J. & Boothroyd, A. T. Strong (π, 0) spin fluctuations in β-FeSe observed by neutron spectroscopy. Phys. Rev. B 91, 180501(R) (2015).

    Google Scholar 

  100. Wang, Q. et al. Strong interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe. Nat. Mater. 15, 159–163 (2016).

    CAS  Google Scholar 

  101. Kasahara, S. et al. Evolution from non-Fermi- to Fermi-liquid transport via isovalent doping in BaFe2(As1−xPx)2 superconductors. Phys. Rev. B 81, 184519 (2010). An experimental study that demonstrates the proposed quantum criticality in phosphorus-doped iron arsenides.

    Google Scholar 

  102. Löhneysen, H. v., Rosch, A., Vojta, M., & Wölfle, P. Fermi-liquid instabilities at magnetic quantum phase transitions. Rev. Mod. Phys. 79, 1015–1075 (2007).

    Google Scholar 

  103. Analytis, J. G. et al. Transport near a quantum critical point in BaFe2(As1−xPx)2 . Nat. Phys. 10, 194–197 (2014).

    CAS  Google Scholar 

  104. Kadowaki, K. & Woods, S. B. Universal relationship of the resistivity and specific heat in heavy-Fermion compounds. Solid State Commun. 58, 507–509 (1986).

    CAS  Google Scholar 

  105. Walmsley, P. et al. Quasiparticle mass enhancement close to the quantum critical point in BaFe2(As1−xPx)2 . Phys. Rev. Lett. 110, 257002 (2013).

    CAS  Google Scholar 

  106. Gooch, M., Lv, B., Lorenz, B., Guloy, A. M. & Chu, C.-W. Evidence of quantum criticality in the phase diagram of KxSr1−xFe2As2 from measurements of transport and thermoelectricity. Phys. Rev. B 79, 104504 (2009).

    Google Scholar 

  107. Ning, F. L. et al. Contrasting spin dynamics between underdoped and overdoped Ba(Fe1−xCox)2As2 . Phys. Rev. Lett. 104, 037001 (2010).

    CAS  Google Scholar 

  108. Yoshizawa, M. et al. Structural quantum criticality and superconductivity in iron-based superconductor Ba(Fe1−xCox)2As2 . J. Phys. Soc. Jpn 81, 024604 (2012).

    Google Scholar 

  109. Ni, N. et al. Effects of Co substitution on thermodynamic and transport properties and anisotropic Hc2 in Ba(Fe1−xCox)2As2 single crystals. Phys. Rev. B 78, 214515 (2008).

    Google Scholar 

  110. Chu, J.-H., Analytis, J. G., Kucharczyk, C. & Fisher, I. R. Determination of the phase diagram of the electron-doped superconductor Ba(Fe1−xCox)2As2 . Phys. Rev. B 79, 014506 (2009).

    Google Scholar 

  111. Lester, C. et al. Neutron scattering study of the interplay between structure and magnetism in Ba(Fe1−xCox)2As2 . Phys. Rev. B 79, 144523 (2009).

    Google Scholar 

  112. Nandi, S. et al. Anomalous suppression of the orthorhombic lattice distortion in superconducting Ba(Fe1−xCox)2As2 single crystals. Phys. Rev. Lett. 104, 057006 (2010).

    CAS  Google Scholar 

  113. Zhou, R. et al. Quantum criticality in electron-doped BaFe2−xNixAs2 . Nat. Commun. 4, 2265 (2013).

    CAS  Google Scholar 

  114. Lu, X. et al. Avoided quantum criticality and magnetoelastic coupling in BaFe2−xNixAs2 . Phys. Rev. Lett. 110, 257001 (2013).

    Google Scholar 

  115. Lu, X. et al. Short-range cluster spin glass near optimal superconductivity in BaFe2−xNixAs2 . Phys. Rev. B 90, 024509 (2014).

    Google Scholar 

  116. Reid, J. -Ph. et al. Universal heat conduction in the iron arsenide superconductor KFe2As2: evidence of a d-wave state. Phys. Rev. Lett. 109, 087001 (2012).

    Google Scholar 

  117. Okazaki, K. et al. Octet-line node structure of superconducting order parameter in KFe2As2 . Science 337, 1314–1317 (2012).

    CAS  Google Scholar 

  118. Hong, X. C. et al. Nodal gap in iron-based superconductor CsFe2As2 probed by quasiparticle heat transport. Phys. Rev. B 87, 144502 (2013).

    Google Scholar 

  119. Zhang, Z. et al. Heat transport in RbFe2As2 single crystals: evidence for nodal superconducting gap. Phys. Rev. B 91, 024502 (2015).

    Google Scholar 

  120. Hardy, F. et al. Evidence of strong correlations and coherence–incoherence crossover in the iron pnictide superconductor KFe2As2 . Phys. Rev. Lett. 111, 027002 (2013).

    CAS  Google Scholar 

  121. Wang, A. F. et al. Calorimetric study of single-crystal CsFe2As2 . Phys. Rev. B 87, 214509 (2013).

    Google Scholar 

  122. Eilers, F. et al. Quantum criticality in AFe2As2 with A = K, Rb, and Cs suppresses superconductivity. Preprint at http://arXiv.org/abs/1510.01857 (2015).

  123. Ding, H. et al. Observation of Fermi-surface-dependent nodeless superconducting gaps in Ba0.6K0.4Fe2As2 . Europhys. Lett. 83, 47001 (2008). Measurement of the quasi-particle excitation energy gap, which provides evidence that the superconducting pairing function in iron arsenides has no nodes.

    Google Scholar 

  124. Hirschfeld, P. J., Korshunov, M. M. & Mazin, I. I. Gap symmetry and structure of Fe-based superconductors. Rep. Prog. Phys. 74, 124508 (2011).

    Google Scholar 

  125. Goswami, P., Nikolic, P. & Si, Q. Superconductivity in multi-orbital tJ1–J2 model and its implications for iron pnictides. Europhys. Lett. 91, 37006 (2010).

    Google Scholar 

  126. Graser, S., Maier, T. A., Hirschfeld, P. J. & Scalapino, D. J. Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides. New J. Phys. 11, 025016 (2009).

    Google Scholar 

  127. Kuroki, K. et al. Unconventional pairing originating from the disconnected Fermi surfaces of superconducting LaFeAsO1−xFx . Phys. Rev. Lett. 101, 087004 (2008).

    Google Scholar 

  128. Wang, F., Zhai, H., Ran, Y., Vishwanath, A. & Lee, D.-H. Functional renormalization-group study of the pairing symmetry and pairing mechanism of the FeAs-based high-temperature superconductor. Phys. Rev. Lett. 102, 047005 (2009).

    Google Scholar 

  129. Yu, R., Zhu, J.-X. & Si, Q. Orbital-selective superconductivity, gap anisotropy, and spin resonance excitations in a multiorbital tJ1–J2 model for iron pnictides. Phys. Rev. B 89, 024509 (2014).

    Google Scholar 

  130. Ge, Q. et al. Anisotropic but nodeless superconducting gap in the presence of spin-density wave in iron-pnictide superconductor NaFe1−xCoxAs. Phys. Rev. X 3, 011020 (2013).

    Google Scholar 

  131. Zhang, C. et al. Double spin resonances and gap anisotropy in superconducting underdoped NaFe0.985Co0.015As. Phys. Rev. Lett. 111, 207002 (2013).

    Google Scholar 

  132. Zhang, C. et al. Neutron spin resonance as a probe of superconducting gap anisotropy in partially detwinned electron underdoped NaFe0.985Co0.015As. Phys. Rev. B 91, 104520 (2015).

    Google Scholar 

  133. Nica, E., Yu, R. & Si, Q. Orbital selectivity and emergent superconducting state from quasi-degenerate s- and d-wave pairing channels in iron-based superconductors. Preprint at http://arXiv.org/abs/1505.04170 (2015).

  134. Xu, M. et al. Evidence for an s-wave superconducting gap in KxFe2−ySe2 from angle-resolved photoemission. Phys. Rev. B 85, 220504 (2012).

    Google Scholar 

  135. Mou, D. et al. Distinct Fermi surface topology and nodeless superconducting gap in a (Tl0.58Rb0.42)Fe1.72Se2 superconductor. Phys. Rev. Lett. 106, 107001 (2011). An angle-resolved photoemission experiment confirming that the superconducting pairing amplitude in iron chalcogenides without Fermi-surface nesting is comparable to that in iron pnictides.

    Google Scholar 

  136. Wang, X. P. et al. Strong nodeless pairing on separate electron Fermi surface sheets in (Tl, K)Fe1.78Se2 probed by ARPES. Europhys. Lett. 93, 57001 (2011).

    Google Scholar 

  137. Wang, X.-P. et al. Observation of an isotropic superconducting gap at the Brillouin zone centre of Tl0.63K0.37Fe1.78Se2 . Europhys. Lett. 99, 67001 (2012).

    Google Scholar 

  138. Park, J. T. et al. Magnetic resonant mode in the low-energy spin-excitation spectrum of superconducting Rb2Fe4Se5 single crystals. Phys. Rev. Lett. 107, 177005 (2011).

    CAS  Google Scholar 

  139. Friemel, G. et al. Reciprocal-space structure and dispersion of the magnetic resonant mode in the superconducting phase of RbxFe2−ySe2 single crystals. Phys. Rev. B 85, 140511(R) (2012).

    Google Scholar 

  140. Niu, X. H. et al. A unifying phase diagram with correlation-driven superconductor-to-insulator transition for the 122* series of iron chalcogenides. Phys. Rev. B 93, 054516 (2016).

    Google Scholar 

  141. Yi, M. et al. Electron correlation-tuned superconductivity in Rb0.8Fe2(Se1−zSz)2 . Phys. Rev. Lett. 115, 256403 (2015).

    CAS  Google Scholar 

  142. Miao, H. et al. Observation of strong electron pairing on bands without Fermi surfaces in LiFe1−xCoxAs. Nat. Commun. 6, 6056 (2015).

    CAS  Google Scholar 

  143. Ding, W., Yu, R., Si, Q. & Abrahams, E. Effective exchange interactions for bad metals and implications for iron-based superconductors. Preprint at http://arXiv.org/abs/1410.8118 (2014).

  144. van Delft, D. & Kes, P. The discovery of superconductivity. Phys. Today 63, 38–43 (2010).

    Google Scholar 

  145. Bardeen, J., Cooper, L. & Schrieffer, J. R. Microscopic theory of superconductivity. Phys. Rev. 106, 162–164 (1957).

    CAS  Google Scholar 

  146. Hosono, H. & Kuroki, K. Iron-based superconductors: current status of materials and pairing mechanism. Physica C 514, 399–422 (2015).

    CAS  Google Scholar 

  147. Si, Q. Iron pnictide superconductors: electrons on the verge. Nat. Phys. 5, 629–630 (2009).

    CAS  Google Scholar 

  148. Terashima, T. et al. Pressure-induced antiferromagnetic transition and phase diagram in FeSe. J. Phys. Soc. Jpn 84, 063701 (2015).

    Google Scholar 

  149. Bendele, M. et al. Coexistence of superconductivity and magnetism in FeSe1−x under pressure. Phys. Rev. B 85, 064517 (2012).

    Google Scholar 

Download references

Acknowledgements

The authors thank J. Analytis, M. Bendele, P. C. Dai, W. Ding, L. Harriger, X. Lu and P. Nikolic for their input. They have benefited from collaborations and/or discussions with J. Dai, P. C. Dai, W. Ding, P. Goswami, K. Grube, D. H. Lu, A. H. Nevidomskyy, E. Nica, P. Nikolic, Z.-X. Shen, H. von Löhneysen, Z. Wang, M. Yi, and J.-X. Zhu. This work was supported in part by the NSF (grant number DMR-1309531) and the Robert A. Welch Foundation (grant number C-1411) (Q.S.), and by the National Science Foundation of China (grant number 11374361) and the Fundamental Research Funds for the Central Universities and the Research Funds of Renmin University of China (R.Y.). They acknowledge the support provided in part by the NSF (grant number. NSF PHY11-25915) at KITP, UCSB, for our participation in the autumn 2014 programme on “Magnetism, Bad Metals and Superconductivity: Iron Pnictides and Beyond”. Q.S. and E.A. acknowledge the hospitality of the Aspen Center for Physics (NSF grant number 1066293).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qimiao Si, Rong Yu or Elihu Abrahams.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, Q., Yu, R. & Abrahams, E. High-temperature superconductivity in iron pnictides and chalcogenides. Nat Rev Mater 1, 16017 (2016). https://doi.org/10.1038/natrevmats.2016.17

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2016.17

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing