Lithium battery chemistries enabled by solid-state electrolytes

Subjects

Abstract

Solid-state electrolytes are attracting increasing interest for electrochemical energy storage technologies. In this Review, we provide a background overview and discuss the state of the art, ion-transport mechanisms and fundamental properties of solid-state electrolyte materials of interest for energy storage applications. We focus on recent advances in various classes of battery chemistries and systems that are enabled by solid electrolytes, including all-solid-state lithium-ion batteries and emerging solid-electrolyte lithium batteries that feature cathodes with liquid or gaseous active materials (for example, lithium–air, lithium–sulfur and lithium–bromine systems). A low-cost, safe, aqueous electrochemical energy storage concept with a ‘mediator-ion’ solid electrolyte is also discussed. Advanced battery systems based on solid electrolytes would revitalize the rechargeable battery field because of their safety, excellent stability, long cycle lives and low cost. However, great effort will be needed to implement solid-electrolyte batteries as viable energy storage systems. In this context, we discuss the main issues that must be addressed, such as achieving acceptable ionic conductivity, electrochemical stability and mechanical properties of the solid electrolytes, as well as a compatible electrolyte/electrode interface.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: A historical outline of the development of solid-state electrolyte batteries.
Figure 2: Performance of different solid electrolyte materials.
Figure 3: All-solid-state batteries.
Figure 4: Dual-electrolyte lithium–air batteries.
Figure 5: Lithium–sulfur batteries based on solid electrolytes.
Figure 6: Solid-state lithium–bromine batteries.
Figure 7: Aqueous batteries with mediator-ion solid electrolytes.

References

  1. 1

    Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

    CAS  Google Scholar 

  2. 2

    Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    CAS  Google Scholar 

  3. 3

    Cabana, J., Monconduit, L., Larcher, D. & Palacin, M. R. Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170–E192 (2010).

    CAS  Google Scholar 

  4. 4

    Quartarone, E. & Mustarelli, P. Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem. Soc. Rev. 40, 2525–2540 (2011).

    CAS  Google Scholar 

  5. 5

    Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).

    CAS  Google Scholar 

  6. 6

    Goodenough, J. B. & Park, K. S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).

    CAS  Google Scholar 

  7. 7

    Bachman, J. C. et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016). This paper reviews the ion-transport mechanisms and fundamental properties of solid-state electrolytes to be used in electrochemical energy storage systems.

    CAS  Google Scholar 

  8. 8

    Hu, Y. S. Batteries: getting solid. Nat. Energy 1, 16042 (2016). This paper demonstrates a solid-state battery that can deliver 70% of its maximum capacity in just one minute at room temperature.

    CAS  Google Scholar 

  9. 9

    Linford, R. G. & Hackwood, S. Physical techniques for the study of solid electrolytes. Chem. Rev. 81, 327–364 (1981).

    CAS  Google Scholar 

  10. 10

    Sakuda, A., Hayashi, A. & Tatsumisago, M. Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery. Sci. Rep. 3, 02261 (2013).

    Google Scholar 

  11. 11

    Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011).

    CAS  Google Scholar 

  12. 12

    Busche, M. R. et al. Dynamic formation of a solid–liquid electrolyte interphase and its consequences for hybrid-battery concepts. Nat. Chem. 8, 426–434 (2016).

    CAS  Google Scholar 

  13. 13

    Faraday, M. Experimental researches in electricity. Third series. Phil. Trans. R. Soc. Lond. 123, 23–54 (1833).

    Google Scholar 

  14. 14

    Takahashi, T. Early history of solid state ionics. Mater. Res. Soc. Symp. Proc. 135, 3–9 (1988).

    Google Scholar 

  15. 15

    Knödler, R. Thermal properties of sodium–sulphur cells. J. Appl. Electrochem. 14, 39–46 (1984).

    Google Scholar 

  16. 16

    Kummer, J. T., Arbor, A. & Weber, N. Thermo-electric generator. US patent 3,458,356 (1969).

  17. 17

    Chandra, S., Lal, H. B. & Shahi, K. An electrochemical cell with solid, super-ionic Ag4KI5 as the electrolyte. J. Phys. D: Appl. Phys. 7, 194–198 (1974).

    CAS  Google Scholar 

  18. 18

    Yu Yao, Y. -F. & Kummer, J. T. Ion exchange properties of and rates of ionic diffusion in beta-alumina. J. Inorg. Nucl. Chem. 29, 2453–2457 (1967).

    Google Scholar 

  19. 19

    Reuter, B. & Hardel, K. Silbersulfidbromid und silbersulfidjodid. Angew. Chem. 72, 138–139 (1960).

    CAS  Google Scholar 

  20. 20

    Owens, B. Advances in Electrochemistry and Electrochemical Engineering (Wiley, 1971).

    Google Scholar 

  21. 21

    Fenton, D. E., Parker, J. M. & Wright, P. V. Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14, 589 (1973).

    CAS  Google Scholar 

  22. 22

    Bones, R. J., Coetzer, J., Galloway, R. C. & Teagle, D. A. A sodium/iron(ii) chloride cell with a beta alumina electrolyte. J. Electrochem. Soc. 134, 2379–2382 (1987).

    CAS  Google Scholar 

  23. 23

    Coetzer, J. A. A new high-energy density battery system. J. Power Sources 18, 377–380 (1986).

    CAS  Google Scholar 

  24. 24

    Oshima, T., Kajita, M. & Okuno, A. Development of sodium-sulfur batteries. Int. J. Appl. Ceram. Technol. 1, 269–276 (2004).

    CAS  Google Scholar 

  25. 25

    Capasso, C. & Veneri, O. Experimental analysis of a Zebra battery based propulsion system for urban bus under dynamic conditions. Energy Procedia 61, 1138–1141 (2014).

    Google Scholar 

  26. 26

    Funke, K. Solid state ionics: from Michael Faraday to green energy—the European dimension. Sci. Technol. Adv. Mater. 14, 043502 (2013).

    Google Scholar 

  27. 27

    Knauth, P. & Tuller, H. L. Solid-state ionics: roots, status, and future prospects. J. Am. Ceram. Soc. 85, 1654–1680 (2002). This paper reviews the evolution of solid-state ionics over approximately the past 100 years.

    CAS  Google Scholar 

  28. 28

    Svensson, J. S. E. M. & Granqvist, C. G. Electrochromic coatings for “smart windows”. Sol. Energy Mater. 12, 391–402 (1985).

    CAS  Google Scholar 

  29. 29

    Li, H., Wang, Z. X., Chen, L. Q. & Huang, X. J. Research on advanced materials for Li-ion batteries. Adv. Mater. 21, 4593–4607 (2009).

    Google Scholar 

  30. 30

    Gao, J., Shi, S. Q. & Li, H. Brief overview of electrochemical potential in lithium ion batteries. Chin. Phys. B 25, 018210 (2016).

    Google Scholar 

  31. 31

    Li, W., Dahn, J. R. & Wainwright, D. S. Rechargeable lithium batteries with aqueous electrolytes. Science 264, 1115–1118 (1994).

    CAS  Google Scholar 

  32. 32

    Gray, F. M., MacCallum, J. R. & Vincent, C. A. Poly(ethylene oxide) - LiCF3SO3 - polystyrene electrolyte systems. Solid State Ionics 18–19, 282–286 (1986).

    Google Scholar 

  33. 33

    Gorecki, W. et al. NMR, DSC, and conductivity study of a poly(ethylene oxide) complex electrolyte: PEO(LiClO4)x . Solid State Ionics 18–19, 295–299 (1986).

    Google Scholar 

  34. 34

    Kelly, I. E., Owen, J. R. & Steele, B. C. H. Poly(ethylene oxide) electrolytes for operation at near room temperature. J. Power Sources 14, 13–21 (1985).

    CAS  Google Scholar 

  35. 35

    Abraham, K. M. & Alamgir, M. Li+-Conductive solid polymer electrolytes with liquid-like conductivity. J. Electrochem. Soc. 137, 1657–1658 (1990).

    CAS  Google Scholar 

  36. 36

    Wang, Z. X. et al. Investigation of the position of Li+ ions in a polyacrylonitrile-based electrolyte by Raman and infrared spectroscopy. Electrochim. Acta 41, 1443–1446 (1996).

    CAS  Google Scholar 

  37. 37

    Appetecchi, G. B., Croce, F. & Scrosati, B. Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes. Electrochim. Acta 40, 991–997 (1995).

    CAS  Google Scholar 

  38. 38

    Iijima, T., Toyoguchi, Y. & Eda, N. Quasi-solid organic electrolytes gelatinized with polymethylmethacrylate and their applications for lithium batteries. Denki Kagaku 53, 619–623 (1985).

    CAS  Google Scholar 

  39. 39

    Choe, H. S., Giaccai, J., Alamgir, M. & Abraham, K. M. Preparation and characterization of poly(vinyl sulfone) based- and poly(vinylidene fluoride)-based electrolytes. Electrochim. Acta 40, 2289–2293 (1995).

    CAS  Google Scholar 

  40. 40

    Dudney, N. J., Bates, J. B., Zuhr, R. A., Luck, C. F. & Robertson, J. D. Sputtering of lithium compounds for preparation of electrolyte thin films. Solid State Ionics 53–56, 655–661 (1992).

    Google Scholar 

  41. 41

    Bates, J. B. et al. Electrical properties of amorphous lithium electrolyte thin films. Solid State Ionics 53–56, 647–654 (1992).

    Google Scholar 

  42. 42

    Inaguma, Y. et al. High ionic conductivity in lithium lanthanum titanate. Solid State Commun. 86, 689–693 (1993).

    CAS  Google Scholar 

  43. 43

    Goodenough, J. B., Hong, H. Y. -P. & Kafalas, J. A. Fast Na+-ion transport in skeleton structures. Mater. Res. Bull. 11, 203–220 (1976).

    CAS  Google Scholar 

  44. 44

    Subramanian, M. A., Subramanian, R. & Clearfield, A. Lithium ion conductors in the system AB(iv)2(PO4)3 (B = Ti, Zr and Hf). Solid State Ionics 18–19, 562–569 (1986).

    Google Scholar 

  45. 45

    Cussen, E. J. The structure of lithium garnets: cation disorder and clustering in a new family of fast Li+ conductors. Chem. Commun. 412–413 (2006).

  46. 46

    Kasper, H. M. A new series of rare earth garnets Ln3+3M2Li+3O12(M = Te, W). Inorg. Chem. 8, 1000–1005 (1969).

    CAS  Google Scholar 

  47. 47

    Mazza, D. Remarks on a ternary phase in the La2O3–Me2O5–Li2O system (Me = Nb, Ta). Mater. Lett. 7, 205–207 (1988).

    CAS  Google Scholar 

  48. 48

    Kennedy, J. H., Sahami, S., Shea, S. W. & Zhang, Z. M. Preparation and conductivity measurements of SiS2–Li2S glasses doped with LiBr and LiCl. Solid State Ionics 18–19, 368–371 (1986).

    Google Scholar 

  49. 49

    Kennedy, J. H. & Yang, Y. A highly conductive Li+-glass system: (1 - x)(0.4SiS2-0.6Li2S)-xLil. J. Electrochem. Soc. 133, 2437–2438 (1986).

    CAS  Google Scholar 

  50. 50

    Li, H. Q., Wang, Y. G., Na, H. T., Liu, H. M. & Zhou, H. S. Rechargeable Ni-Li battery integrated aqueous/nonaqueous system. J. Am. Chem. Soc. 131, 15098–15101 (2009).

    CAS  Google Scholar 

  51. 51

    Lu, Y. H. & Goodenough, J. B. Rechargeable alkali-ion cathode-flow battery. J. Mater. Chem. 21, 10113–10117 (2011).

    CAS  Google Scholar 

  52. 52

    Wang, L., Wang, Y. G. & Xia, Y. Y. A high performance lithium-ion sulfur battery based on a Li2S cathode using a dual-phase electrolyte. Energy Environ. Sci. 8, 1551–1558 (2015). This paper is the first report of the feasibility of using a dual-phase electrolyte in a lithium–sulfur battery separated by a LISICON-type solid electrolyte.

  53. 53

    Yu, X. W., Bi, Z. H., Zhao, F. & Manthiram, A. Hybrid lithium–sulfur batteries with a solid electrolyte membrane and lithium polysulfide catholyte. ACS Appl. Mater. Interfaces 7, 16625–16631 (2015).

    CAS  Google Scholar 

  54. 54

    Chang, Z. et al. Rechargeable Li//Br battery: a promising platform for post lithium ion batteries. J. Mater. Chem. A 2, 19444–19450 (2014).

    CAS  Google Scholar 

  55. 55

    Takemoto, K. & Yamada, H. Development of rechargeable lithium–bromine batteries with lithium ion conducting solid electrolyte. J. Power Sources 281, 334–340 (2015).

    CAS  Google Scholar 

  56. 56

    Kim, J. -K. et al. Rechargeable seawater battery and its electrochemical mechanism. ChemElectroChem 2, 328–332 (2014).

    Google Scholar 

  57. 57

    Chen, L., Guo, Z. Y., Xia, Y. Y. & Wang, Y. G. High-voltage aqueous battery approaching 3 V using an acidic–alkaline double electrolyte. Chem. Commun. 49, 2204–2206 (2013).

    CAS  Google Scholar 

  58. 58

    Dong, X. L., Wang, Y. G. & Xia, Y. G. Re-building Daniell cell with a Li-ion exchange film. Sci. Rep. 4, 6916 (2014).

    CAS  Google Scholar 

  59. 59

    Zhang, H. P. et al. Using Li+ as the electrochemical messenger to fabricate an aqueous rechargeable Zn–Cu battery. Chem. Commun. 51, 7294–7297 (2015).

    CAS  Google Scholar 

  60. 60

    Mehrer, H. Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes (Springer, 2007).

    Google Scholar 

  61. 61

    Wu, M., Xu, B. & Ouyang, C. Physics of electron and lithium-ion transport in electrode materials for Li-ion batteries. Chin. Phys. B 25, 018206 (2015).

    Google Scholar 

  62. 62

    Park, M., Zhang, X. C., Chung, M. D., Less, G. B. & Sastry, A. M. A review of conduction phenomena in Li-ion batteries. J. Power Sources 195, 7904–7929 (2010).

    CAS  Google Scholar 

  63. 63

    Kumar, P. P. & Yashonath, S. Ionic conduction in the solid state. J. Chem. Sci. 118, 135–154 (2006). This paper provides a survey of experimental, theoretical and computational studies with the aim of understanding the high ionic conductivity in solid electrolytes.

    CAS  Google Scholar 

  64. 64

    Perram, J. (ed) The Physics of Superionic Conductors and Electrode Materials (Springer, 1983).

    Google Scholar 

  65. 65

    Hagenmuller, P. & Van Gool, V. (eds) Solid Electrolytes: General Principles, Characterization, Materials, Applications (Academic Press, 1978).

    Google Scholar 

  66. 66

    Angell, C. A. Mobile ions in amorphous solids. Annu. Rev. Phys. Chem. 43, 693–717 (1992).

    CAS  Google Scholar 

  67. 67

    Berthier, C. et al. Microscopic investigation of ionic-conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ionics 11, 91–95 (1983).

    CAS  Google Scholar 

  68. 68

    Nitzan, A. & Ratner, M. A. Conduction in polymers: dynamic disorder transport. J. Phys. Chem. 98, 1765–1775 (1994). This paper discusses the ionic transportation mechanisms in polymer solid electrolytes.

    CAS  Google Scholar 

  69. 69

    Borodin, O. & Smith, G. D. Mechanism of ion transport in amorphous poly(ethylene oxide)/LiTFSI from molecular dynamics simulations. Macromolecules 39, 1620–1629 (2006).

    CAS  Google Scholar 

  70. 70

    Fergus, J. W. Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sources 195, 4554–4569 (2010).

    CAS  Google Scholar 

  71. 71

    Xia, W. H. et al. Ionic conductivity and air stability of Al-doped Li7La3Zr2O12 sintered in alumina and Pt crucibles. ACS Appl. Mater. Interfaces 8, 5335–5342 (2016).

    CAS  Google Scholar 

  72. 72

    Matsuyama, T. et al. Electrochemical properties of all-solid-state lithium batteries with amorphous titanium sulfide electrodes prepared by mechanical milling. J. Solid State Electr. 17, 2697–2701 (2013).

    CAS  Google Scholar 

  73. 73

    Hagman, L. O. & Kierkega, P. Crystal structure of NaMe2iv(PO4)3; Meiv = Ge, Ti, Zr. Acta Chem. Scand. 22, 1822–1826 (1968).

    CAS  Google Scholar 

  74. 74

    Thangadurai, V. & Weppner, W. Recent progress in solid oxide and lithium ion conducting electrolytes research. Ionics 12, 81–92 (2006). This paper reviews the progress in fast lithium-ion conductors (solid-oxide materials) with the emphasis on the correlation among composition, structure and electrical transport properties.

    CAS  Google Scholar 

  75. 75

    Casciola, M., Costantino, U., Merlini, L., Andersen, I. G. K. & Andersen, E. K. Preparation, structural characterization and conductivity of LiZr2(PO4)3 . Solid State Ionics 26, 229–235 (1988).

    CAS  Google Scholar 

  76. 76

    Martínez-Juárez, A., Rojo, J. M., Iglesias, J. E. & Sanz, J. Reversible monoclinic–rhombohedral transformation in LiSn2(PO4)3 with NASICON-type structure. Chem. Mater. 7, 1857–1862 (1995).

    Google Scholar 

  77. 77

    Aono, H., Sugimoto, E., Sadaoka, Y., Imanaka, N. & Adachi, G. Ionic conductivity and sinterability of lithium titanium phosphate system. Solid State Ionics 40–41, 38–42 (1990).

    Google Scholar 

  78. 78

    Morimoto, H. et al. Preparation of lithium ion conducting solid electrolyte of NASICON-type Li1 + xAlxTi2 - x(PO4)3 (x = 0.3) obtained by using the mechanochemical method and its application as surface modification materials of LiCoO2 cathode for lithium cell. J. Power Sources 240, 636–643 (2013).

    CAS  Google Scholar 

  79. 79

    Xu, X. X., Wen, Z. Y., Wu, X. W., Yang, X. L. & Gu, Z. H. Lithium ion-conducting glass–ceramics of Li1.5Al0.5Ge1.5(PO4)3–x Li2O (x = 0.0–0.20) with good electrical and electrochemical properties. J. Am. Ceram. Soc. 90, 2802–2806 (2007).

    CAS  Google Scholar 

  80. 80

    Xu, X. X., Wen, Z. Y., Yang, X. L. & Chen, L. D. Dense nanostructured solid electrolyte with high Li-ion conductivity by spark plasma sintering technique. Mater. Res. Bull. 43, 2334–2341 (2008).

    CAS  Google Scholar 

  81. 81

    Cruz, A. M., Ferreira, E. B. & Rodrigues, A. C. M. Controlled crystallization and ionic conductivity of a nanostructured LiAlGePO4 glass–ceramic. J. Non-Cryst. Solids 355, 2295–2301 (2009).

    CAS  Google Scholar 

  82. 82

    Fu, J. Fast Li+ ion conducting glass-ceramics in the system Li2O–Al2O3–GeO2–P2O5 . Solid State Ionics 104, 191–194 (1997).

    CAS  Google Scholar 

  83. 83

    Thokchom, J. S., Gupta, N. & Kumar, B. Superionic conductivity in a lithium aluminum germanium phosphate glass–ceramic. J. Electrochem. Soc. 155, A915–A920 (2008).

    CAS  Google Scholar 

  84. 84

    Thangadurai, V., Kaack, H. & Weppner, W. J. F. Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta). J. Am. Ceram. Soc. 86, 437–440 (2003).

    CAS  Google Scholar 

  85. 85

    Geiger, C. A. et al. Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor. Inorg. Chem. 50, 1089–1097 (2011).

    CAS  Google Scholar 

  86. 86

    Murugan, R., Ramakumar, S. & Janani, N. High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet. Electrochem. Commun. 13, 1373–1375 (2011).

    CAS  Google Scholar 

  87. 87

    Allen, J. L., Wolfenstine, J., Rangasamy, E. & Sakamoto, J. Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12 . J. Power Sources 206, 315–319 (2012).

    CAS  Google Scholar 

  88. 88

    Ohta, S., Kobayashi, T. & Asaoka, T. High lithium ionic conductivity in the garnet-type oxide Li7 - X La3(Zr2 - X, NbX)O12 (X = 0–2). J. Power Sources 196, 3342–3345 (2011).

    CAS  Google Scholar 

  89. 89

    Deviannapoorani, C., Dhivya, L., Ramakumar, S. & Murugan, R. Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets. J. Power Sources 240, 18–25 (2013).

    CAS  Google Scholar 

  90. 90

    Ahn, B. T. & Huggins, R. A. Phase behavior and conductivity of Li2SiS3 composition. Solid State Ionics 46, 237–242 (1991).

    Google Scholar 

  91. 91

    Kondo, S., Takada, K. & Yamamura, Y. New lithium ion conductors based on Li2S-SiS2 system. Solid State Ionics 53, 1183–1186 (1992).

    Google Scholar 

  92. 92

    Morimoto, H., Yamashita, H., Tatsumisago, M. & Minami, T. Mechanochemical synthesis of new amorphous materials of 60Li2S·40SiS2 with high lithium ion conductivity. J. Am. Ceram. Soc. 82, 1352–1354 (1999).

    CAS  Google Scholar 

  93. 93

    Kanno, R. & Maruyama, M. Lithium ionic conductor thio-LISICON: the Li2S GeS2 P2S5 system. J. Electrochem. Soc. 148, A742–A746 (2001).

    CAS  Google Scholar 

  94. 94

    Hayashi, A., Ohtomo, T., Mizuno, F., Tadanaga, K. & Tatsumisago, M. All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes. Electrochem. Commun. 5, 701–705 (2003).

    CAS  Google Scholar 

  95. 95

    Liu, Z. C. et al. Anomalous high ionic conductivity of nanoporous β-Li3PS4 . J. Am. Chem. Soc. 135, 975–978 (2013).

    CAS  Google Scholar 

  96. 96

    Mizuno, F., Hayashi, A., Tadanaga, K. & Tatsumisago, M. New, highly ion-conductive crystals precipitated from Li2S–P2S5 glasses. Adv. Mater. 17, 918–922 (2005).

    CAS  Google Scholar 

  97. 97

    Rangasamy, E. et al. An iodide-based Li7P2S8I superionic conductor. J. Am. Chem. Soc. 137, 1384–1387 (2015).

    CAS  Google Scholar 

  98. 98

    Hayashi, A., Muramatsu, H., Ohtomo, T., Hama, S. & Tatsumisago, M. Improved chemical stability and cyclability in Li2S–P2S5–P2O5–ZnO composite electrolytes for all-solid-state rechargeable lithium batteries. J. Alloys Compd. 591, 247–250 (2014).

    CAS  Google Scholar 

  99. 99

    Minami, K., Hayashi, A., Ujiie, S. & Tatsumisago, M. Electrical and electrochemical properties of glass–ceramic electrolytes in the systems Li2S–P2S5–P2S3 and Li2S–P2S5–P2O5 . Solid State Ionics 192, 122–125 (2011).

    CAS  Google Scholar 

  100. 100

    Muramatsu, H., Hayashi, A., Ohtomo, T., Hama, S. & Tatsumisago, M. Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ionics 182, 116–119 (2011).

    CAS  Google Scholar 

  101. 101

    Alamgir, M. & Abraham, K. M. Li ion conductive electrolytes based on poly(vinyl chloride). J. Electrochem. Soc. 140, L96–L97 (1993).

    CAS  Google Scholar 

  102. 102

    Capiglia, C. et al. Structure and transport properties of polymer gel electrolytes based on PVdF-HFP and LiN(C2F5SO2)2 . Solid State Ionics 131, 291–299 (2000).

    CAS  Google Scholar 

  103. 103

    Feuillade, G. & Perche, P. Ion-conductive macromolecular gels and membranes for solid lithium cells. J. Appl. Electrochem. 5, 63–69 (1975).

    CAS  Google Scholar 

  104. 104

    Zhou, Y. F., Xie, S., Ge, X. W., Chen, C. H. & Amine, K. Preparation of rechargeable lithium batteries with poly(methyl methacrylate) based gel polymer electrolyte by in situ γ-ray irradiation-induced polymerization. J. Appl. Electrochem. 34, 1119–1125 (2004).

    CAS  Google Scholar 

  105. 105

    Appetecchi, G. B., Croce, F., Persi, L., Ronci, F. & Scrosati, B. Transport and interfacial properties of composite polymer electrolytes. Electrochim. Acta 45, 1481–1490 (2000). This paper demonstrates the advantages of the composite PEO–LiX polymer electrolytes in addressing the interfacial problems between lithium metal and the solid electrolyte.

  106. 106

    Kumar, B. & Fellner, J. P. Polymer–ceramic composite protonic conductors. J. Power Sources 123, 132–136 (2003).

    CAS  Google Scholar 

  107. 107

    Miyake, N., Wainright, J. S. & Savinell, R. F. Evaluation of a sol-gel derived Nafion/silica hybrid membrane for proton electrolyte membrane fuel cell applications: I. Proton conductivity and water content. J. Electrochem. Soc. 148, A898–A904 (2001).

    CAS  Google Scholar 

  108. 108

    Chen-Yang, Y. W., Chen, H. C., Lin, F. J. & Chen, C. C. Polyacrylonitrile electrolytes: 1. A novel high-conductivity composite polymer electrolyte based on PAN, LiClO4 and α-Al2O3 . Solid State Ionics 150, 327–335 (2002).

    CAS  Google Scholar 

  109. 109

    Di Noto, V. & Zago, V. Inorganic-organic polymer electrolytes based on PEG400 and Al[OCH(CH3)2]3 I. Synthesis and vibrational characterizations. J. Electrochem. Soc. 151, A216–A223 (2004).

    CAS  Google Scholar 

  110. 110

    Liu, Y., Lee, J. Y. & Hong, L. In situ preparation of poly(ethylene oxide)–SiO2 composite polymer electrolytes. J. Power Sources 129, 303–311 (2004).

    CAS  Google Scholar 

  111. 111

    Magistris, A., Mustarelli, P., Quartarone, E. & Tomasi, C. Transport and thermal properties of (PEO)n–LiPF6 electrolytes for super-ambient applications. Solid State Ionics 136, 1241–1247 (2000).

    Google Scholar 

  112. 112

    Marcinek, M. et al. Ionic association in liquid (polyether–Al2O3–LiClO4) composite electrolytes. Solid State Ionics 176, 367–376 (2005).

    CAS  Google Scholar 

  113. 113

    Panero, S., Scrosati, B. & Greenbaum, S. G. Ionic conductivity and 7Li NMR study of poly(ethylene glycol) complexed with lithium salts. Electrochim. Acta 37, 1533–1538 (1992).

    CAS  Google Scholar 

  114. 114

    Borghini, M. C., Mastragostino, M., Passerini, S. & Scrosati, B. Electrochemical properties of polyethylene oxide-Li[(CF3SO2)2N]-gamma-LiAlO2 composite polymer electrolytes. J. Electrochem. Soc. 142, 2118–2121 (1995).

    CAS  Google Scholar 

  115. 115

    Golodnitsky, D. et al. Conduction mechanisms in concentrated LiI-polyethylene oxide-Al2O3-based solid electrolytes. J. Electrochem. Soc. 144, 3484–3491 (1997).

    CAS  Google Scholar 

  116. 116

    Krawiec, W. et al. Polymer nanocomposites: a new strategy for synthesizing solid electrolytes for rechargeable lithium batteries. J. Power Sources 54, 310–315 (1995).

    CAS  Google Scholar 

  117. 117

    Wang, C. S., Zhang, X. W. & Appleby, A. J. Solvent-free composite PEO-ceramic fiber/mat electrolytes for lithium secondary cells. J. Electrochem. Soc. 152, A205–A209 (2005).

    CAS  Google Scholar 

  118. 118

    Li, Q. et al. Cycling performances and interfacial properties of a Li/PEO-Li(CF3SO2)2N-ceramic filler/LiNi0.8Co0.2O2 cell. J. Power Sources 97–98, 795–797 (2001).

    Google Scholar 

  119. 119

    Kanehori, K., Ito, Y., Kirino, F., Miyauchi, K. & Kudo, T. Titanium disulfide films fabricated by plasma CVD. Solid State Ionics 18–19, 818–822 (1986).

    Google Scholar 

  120. 120

    Ohtsuka, H. & Yamaki, J. Electrical characteristics of Li2OV2O5SiO2 thin films. Solid State Ionics 35, 201–206 (1989).

    CAS  Google Scholar 

  121. 121

    Akridge, J. R. & Vourlis, H. Solid state batteries using vitreous solid electrolytes. Solid State Ionics 18–19, 1082–1087 (1986).

    Google Scholar 

  122. 122

    Akridge, J. R. & Vourlis, H. Performance of Li/TiS2 solid-state batteries using phosphorus chalcogenide network former glasses as solid electrolyte. Solid State Ionics 28–30, 841–846 (1988).

    Google Scholar 

  123. 123

    Bates, J. B. et al. Fabrication and characterization of amorphous lithium electrolyte thin-films and rechargeable thin-film batteries. J. Power Sources 43, 103–110 (1993).

    CAS  Google Scholar 

  124. 124

    Bates, J. B., Dudney, N. J., Neudecker, B., Ueda, A. & Evans, C. D. Thin-film lithium and lithium-ion batteries. Solid State Ionics 135, 33–45 (2000).

    CAS  Google Scholar 

  125. 125

    Bates, J. B. et al. Preferred orientation of polycrystalline LiCoO2 films. J. Electrochem. Soc. 147, 59–70 (2000).

    CAS  Google Scholar 

  126. 126

    Magistris, A., Chiodelli, G. & Villa, M. Lithium borophosphate vitreous electrolytes. J. Power Sources 14, 87–91 (1985).

    CAS  Google Scholar 

  127. 127

    Tealdi, C., Quartarone, E. & Mustarelli, P. in Rechargeable Batteries. Materials, Technologies and New Trends (eds Zhang, Z. & Zhang, S. S. ) 311–335 (Springer, 2015).

    Google Scholar 

  128. 128

    Yoon, Y., Park, C., Kim, J. & Shin, D. Characterization of lithium borophosphate glass thin film electrolytes deposited by RF-magnetron sputtering for micro-batteries. Solid State Ionics 225, 636–640 (2012).

    CAS  Google Scholar 

  129. 129

    Fleutot, B., Pecquenard, B., Martinez, H. & Levasseur, A. Lithium borophosphate thin film electrolyte as an alternative to LiPON for solder-reflow processed lithium-ion microbatteries. Solid State Ionics 249, 49–55 (2013).

    Google Scholar 

  130. 130

    Aaltonen, T., Alnes, M., Nilsen, O., Costelle, L. & Fjellvag, H. Lanthanum titanate and lithium lanthanum titanate thin films grown by atomic layer deposition. J. Mater. Chem. 20, 2877–2881 (2010).

    CAS  Google Scholar 

  131. 131

    Hamalainen, J. et al. Lithium phosphate thin films grown by atomic layer deposition. J. Electrochem. Soc. 159, A259–A263 (2012).

    CAS  Google Scholar 

  132. 132

    Comstock, D. J. & Elam, J. W. Mechanistic study of lithium aluminum oxide atomic layer deposition. J. Phys. Chem. C 117, 1677–1683 (2013).

    CAS  Google Scholar 

  133. 133

    Aaltonen, T., Nilsen, O., Magrasó, A. & Fjellvåg, H. Atomic layer deposition of Li2O–Al2O3 thin films. Chem. Mater. 23, 4669–4675 (2011).

    CAS  Google Scholar 

  134. 134

    Perng, Y. -C. et al. Synthesis of ion conducting LixAlySizO thin films by atomic layer deposition. J. Mater. Chem. A 2, 9566–9573 (2014).

    CAS  Google Scholar 

  135. 135

    Kozen, A. C., Pearse, A. J., Lin, C. F., Noked, M. & Rubloff, G. W. Atomic layer deposition of the solid electrolyte LiPON. Chem. Mater. 27, 5324–5331 (2015). This paper demonstrates an emerging technique (atomic layer deposition) for the fabrication of lithium phosphorus oxynitride (LiPON) thin-film solid electrolyte.

    CAS  Google Scholar 

  136. 136

    Haruyama, J., Sodeyama, K., Han, L. Y., Takada, K. & Tateyama, Y. Space–charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery. Chem. Mater. 26, 4248–4255 (2014).

    CAS  Google Scholar 

  137. 137

    Sakuda, A., Hayashi, A. & Tatsumisago, M. Intefacial observation between LiCoO2 electrode and Li2S–P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy. Chem. Mater. 22, 949–956 (2010).

    CAS  Google Scholar 

  138. 138

    Sakuda, A. et al. All-solid-state lithium secondary batteries using Li2S–P2S5 solid electrolytes and LiFePO4 electrode particles with amorphous surface layer. Chem. Lett. 41, 260–261 (2012).

    CAS  Google Scholar 

  139. 139

    Kitaura, H., Hayashi, A., Tadanaga, K. & Tatsumisago, M. Improvement of electrochemical performance of all-solid-state lithium secondary batteries by surface modification of LiMn2O4 positive electrode. Solid State Ionics 192, 304–307 (2011).

    CAS  Google Scholar 

  140. 140

    Barghamadi, M. et al. Lithium–sulfur batteries–the solution is in the electrolyte, but is the electrolyte a solution? Energy Environ. Sci. 7, 3902–3920 (2014).

    CAS  Google Scholar 

  141. 141

    Yamaguchi, Y. et al. Ab initio simulations of Li/pyrite-MS2 (M = Fe, Ni) battery cells. J. Electrochem. Soc. 157, A630–A635 (2010).

    CAS  Google Scholar 

  142. 142

    Nagao, M. et al. In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S–P2S5 solid electrolyte. Phys. Chem. Chem. Phys. 15, 18600–18606 (2013).

    CAS  Google Scholar 

  143. 143

    Sahu, G. et al. Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4 . Energy Environ. Sci. 7, 1053–1058 (2014).

    Google Scholar 

  144. 144

    Takahara, H. et al. All-solid-state lithium secondary battery using oxysulfide glass. Addition and coating of carbon to positive electrode. J. Electrochem. Soc. 151, A1539–A1544 (2004).

    CAS  Google Scholar 

  145. 145

    Jung, Y. S., Lee, K. T., Kim, J. H., Kwon, J. Y. & Oh, S. M. Thermo-electrochemical activation of an In–Cu intermetallic electrode for the anode in lithium secondary batteries. Adv. Funct. Mater. 18, 3010–3017 (2008).

    CAS  Google Scholar 

  146. 146

    Takada, K. et al. Solid-state lithium battery with graphite anode. Solid State Ionics 158, 269–274 (2003).

    CAS  Google Scholar 

  147. 147

    Takada, K. et al. Compatibility of lithium ion conductive sulfide glass with carbon-lithium electrode. J. Electrochem. Soc. 150, A274–A277 (2003).

    CAS  Google Scholar 

  148. 148

    Baba, M. et al. Fabrication and electrochemical characteristics of all-solid-state lithium-ion rechargeable batteries composed of LiMn2O4 positive and V2O5 negative electrodes. J. Power Sources 97–98, 798–800 (2001).

    Google Scholar 

  149. 149

    Ohta, N. et al. Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification. Adv. Mater. 18, 2226–2230 (2006).

    CAS  Google Scholar 

  150. 150

    Takada, K. Progress and prospective of solid-state lithium batteries. Acta Mater. 61, 759–770 (2013).

    CAS  Google Scholar 

  151. 151

    Santosh, K. C., Longo, R. C., Xiong, K. & Cho, K. Electrode-electrolyte interface for solid state Li-ion batteries: point defects and mechanical strain. J. Electrochem. Soc. 161, F3104–F3110 (2014).

    Google Scholar 

  152. 152

    Ebner, M., Marone, F., Stampanoni, M. & Wood, V. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries. Science 342, 716–720 (2013).

    CAS  Google Scholar 

  153. 153

    Herbert, E. G., Tenhaeff, W. E., Dudney, N. J. & Pharr, G. M. Mechanical characterization of LiPON films using nanoindentation. Thin Solid Films 520, 413–418 (2011).

    CAS  Google Scholar 

  154. 154

    Luntz, A. C., Voss, J. & Reuter, K. Interfacial challenges in solid-state Li ion batteries. J. Phys. Chem. Lett. 6, 4599–4604 (2015).

    CAS  Google Scholar 

  155. 155

    Gwon, H. et al. Recent progress on flexible lithium rechargeable batteries. Energy Environ. Sci. 7, 538–551 (2014). This paper provides a review and perspective of flexible lithium-ion batteries and discusses how flexibility can be introduced into each component (especially the flexible electrolyte materials) of the lithium-ion batteries.

    CAS  Google Scholar 

  156. 156

    Qiu, W. L., Ma, X. H., Yang, Q. H., Fu, Y. B. & Zong, X. F. Novel preparation of nanocomposite polymer electrolyte and its application to lithium polymer batteries. J. Power Sources 138, 245–252 (2004).

    CAS  Google Scholar 

  157. 157

    Zhang, S. S., Ervin, M. H., Xu, K. & Jow, T. R. Microporous poly(acrylonitrile-methyl methacrylate) membrane as a separator of rechargeable lithium battery. Electrochim. Acta 49, 3339–3345 (2004).

    CAS  Google Scholar 

  158. 158

    Zhou, W. et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J. Am. Chem. Soc. 138, 9385–9388 (2016).

    CAS  Google Scholar 

  159. 159

    Li, J. C., Ma, C., Chi, M. F., Liang, C. D. & Dudney, N. J. Solid electrolyte: the key for high-voltage lithium batteries. Adv. Energy Mater. 5, 1401408 (2015).

    Google Scholar 

  160. 160

    Tealdi, C., Heath, J. & Islam, M. S. Feeling the strain: enhancing ionic transport in olivine phosphate cathodes for Li- and Na-ion batteries through strain effects. J. Mater. Chem. A 4, 6998–7004 (2016).

    CAS  Google Scholar 

  161. 161

    Brunetti, G. et al. Confirmation of the domino-cascade model by LiFePO4/FePO4 precession electron diffraction. Chem. Mater. 23, 4515–4524 (2011).

    CAS  Google Scholar 

  162. 162

    Xu, B., Qian, D. N., Wang, Z. Y. & Meng, Y. S. L. Recent progress in cathode materials research for advanced lithium ion batteries. Mater. Sci. Eng. R. 73, 51–65 (2012).

    CAS  Google Scholar 

  163. 163

    Semkow, K. W. & Sammells, A. F. A lithium oxygen secondary battery. J. Electrochem. Soc. 134, C412–C413 (1987).

    Google Scholar 

  164. 164

    Abraham, K. M. & Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1–5 (1996).

    CAS  Google Scholar 

  165. 165

    Read, J. Characterization of the lithium/oxygen organic electrolyte battery. J. Electrochem. Soc. 149, A1190–A1195 (2002).

    CAS  Google Scholar 

  166. 166

    Kuboki, T., Okuyama, T., Ohsaki, T. & Takami, N. Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte. J. Power Sources 146, 766–769 (2005).

    CAS  Google Scholar 

  167. 167

    Ogasawara, T., Debart, A., Holzapfel, M., Novak, P. & Bruce, P. G. Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 128, 1390–1393 (2006).

    CAS  Google Scholar 

  168. 168

    Débart, A., Bao, J., Armstrong, G. & Bruce, P. G. An O2 cathode for rechargeable lithium batteries: the effect of a catalyst. J. Power Sources 174, 1177–1182 (2007).

    Google Scholar 

  169. 169

    Girishkumar, G., McCloskey, B., Luntz, A. C., Swanson, S. & Wilcke, W. Lithium–air battery: promise and challenges. J. Phys. Chem. Lett. 1, 2193–2203 (2010).

    CAS  Google Scholar 

  170. 170

    Zhou, H. S., Wang, Y. G., Li, H. Q. & He, P. The development of a new type of rechargeable batteries based on hybrid electrolytes. ChemSusChem 3, 1009–1019 (2010).

    CAS  Google Scholar 

  171. 171

    Lee, J. S. et al. Metal–air batteries with high energy density: Li–air versus Zn–air. Adv. Energy Mater. 1, 34–50 (2011).

    CAS  Google Scholar 

  172. 172

    Christensen, J. et al. A critical review of Li/air batteries. J. Electrochem. Soc. 159, R1–R30 (2012).

    CAS  Google Scholar 

  173. 173

    Kitaura, H. & Zhou, H. S. Electrochemical performance of solid-state lithium–air batteries using carbon nanotube catalyst in the air electrode. Adv. Energy Mater. 2, 889–894 (2012).

    CAS  Google Scholar 

  174. 174

    Zhang, T. et al. Li/polymer electrolyte/water stable lithium-conducting glass ceramics composite for lithium–air secondary batteries with an aqueous electrolyte. J. Electrochem. Soc. 155, A965–A969 (2008).

    CAS  Google Scholar 

  175. 175

    Zhang, T. et al. A novel high energy density rechargeable lithium/air battery. Chem. Commun. 46, 1661–1663 (2010).

    CAS  Google Scholar 

  176. 176

    He, P., Wang, Y. G. & Zhou, H. S. A Li-air fuel cell with recycle aqueous electrolyte for improved stability. Electrochem. Commun. 12, 1686–1689 (2010).

    CAS  Google Scholar 

  177. 177

    Li, L. J., Chai, S. H., Dai, S. & Manthiram, A. Advanced hybrid Li–air batteries with high-performance mesoporous nanocatalysts. Energy Environ. Sci. 7, 2630–2636 (2014). This paper demonstrates a solid-electrolyte lithium–air battery with the best cycling performance among the hybrid lithium–air battery studies.

  178. 178

    Li, L. J., Fu, Y. Z. & Manthiram, A. Imidazole-buffered acidic catholytes for hybrid Li–air batteries with high practical energy density. Electrochem. Commun. 47, 67–70 (2014).

    Google Scholar 

  179. 179

    Li, L. J., Liu, C., He, G., Fan, D. L. & Manthiram, A. Hierarchical pore-in-pore and wire-in-wire catalysts for rechargeable Zn– and Li–air batteries with ultra-long cycle life and high cell efficiency. Energy Environ. Sci. 8, 3274–3282 (2015).

    CAS  Google Scholar 

  180. 180

    Li, L. J., Liu, S. Y. & Manthiram, A. Co3O4 nanocrystals coupled with O- and N-doped carbon nanoweb as a synergistic catalyst for hybrid Li–air batteries. Nano Energy 12, 852–860 (2015).

    CAS  Google Scholar 

  181. 181

    Li, L. J. & Manthiram, A. Dual-electrolyte lithium–air batteries: influence of catalyst, temperature, and solid-electrolyte conductivity on the efficiency and power density. J. Mater. Chem. A 1, 5121–5127 (2013).

    CAS  Google Scholar 

  182. 182

    Li, L. J. & Manthiram, A. Decoupled bifunctional air electrodes for high-performance hybrid lithium-air batteries. Nano Energy 9, 94–100 (2014).

    CAS  Google Scholar 

  183. 183

    Li, L. J. & Manthiram, A. O- and N-doped carbon nanowebs as metal-free catalysts for hybrid Li-air batteries. Adv. Energy Mater. 4, 1301795 (2014).

    Google Scholar 

  184. 184

    Li, L. J., Zhao, X. S., Fu, Y. Z. & Manthiram, A. Polyprotic acid catholyte for high capacity dual-electrolyte Li–air batteries. Phys. Chem. Chem. Phys. 14, 12737–12740 (2012).

    CAS  Google Scholar 

  185. 185

    Li, L. J., Zhao, X. S. & Manthiram, A. A dual-electrolyte rechargeable Li-air battery with phosphate buffer catholyte. Electrochem. Commun. 14, 78–81 (2012).

    CAS  Google Scholar 

  186. 186

    Manthiram, A. & Li, L. J. Hybrid and aqueous lithium-air batteries. Adv. Energy Mater. 5, 1401302 (2015). This paper provides an overview of recent developments in hybrid and aqueous lithium–air batteries and discusses the benefits of adopting a cell configuration that uses a lithium-ion solid electrolyte to protect the lithium-metal anode.

  187. 187

    Wang, Y. G. & Zhou, H. S. A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy. J. Power Sources 195, 358–361 (2010).

    CAS  Google Scholar 

  188. 188

    Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J. M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).

    CAS  Google Scholar 

  189. 189

    Hasegawa, S. et al. Study on lithium/air secondary batteries—stability of NASICON-type lithium ion conducting glass–ceramics with water. J. Power Sources 189, 371–377 (2009).

    CAS  Google Scholar 

  190. 190

    Bresser, D., Passerini, S. & Scrosati, B. Recent progress and remaining challenges in sulfur-based lithium secondary batteries – a review. Chem. Commun. 49, 10545–10562 (2013).

    CAS  Google Scholar 

  191. 191

    Chen, R. J., Zhao, T. & Wu, F. From a historic review to horizons beyond: lithium–sulphur batteries run on the wheels. Chem. Commun. 51, 18–33 (2015).

    CAS  Google Scholar 

  192. 192

    Scheers, J., Fantini, S. & Johansson, P. A review of electrolytes for lithium–sulphur batteries. J. Power Sources 255, 204–218 (2014).

    CAS  Google Scholar 

  193. 193

    Zhang, Q., Cheng, X. B., Huang, J. Q., Peng, H. J. & Wei, F. Review of carbon materials for advanced lithium–sulfur batteries. New Carbon Mater. 29, 241–264 (2014).

    Google Scholar 

  194. 194

    Fang, X. & Peng, H. S. A revolution in electrodes: recent progress in rechargeable lithium–sulfur batteries. Small 11, 1488–1511 (2015).

    CAS  Google Scholar 

  195. 195

    Li, Z., Huang, Y. M., Yuan, L. X., Hao, Z. X. & Huang, Y. H. Status and prospects in sulfur–carbon composites as cathode materials for rechargeable lithium–sulfur batteries. Carbon 92, 41–63 (2015).

    CAS  Google Scholar 

  196. 196

    Bruce, P. G., Hardwick, L. J. & Abraham, K. M. Lithium-air and lithium-sulfur batteries. MRS Bull. 36, 506–512 (2011).

    CAS  Google Scholar 

  197. 197

    Nazar, L. F., Cuisinier, M. & Pang, Q. Lithium-sulfur batteries. MRS Bull. 39, 436–442 (2014).

    CAS  Google Scholar 

  198. 198

    Zhang, S. S. Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J. Power Sources 231, 153–162 (2013).

    CAS  Google Scholar 

  199. 199

    Hu, J. J., Li, G. R. & Gao, X. P. Current status, problems and challenges in lithium–sulfur batteries. J. Inorg. Mater. 28, 1181–1186 (2013).

    CAS  Google Scholar 

  200. 200

    Song, J. X. et al. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium–sulfur battery cathodes. Angew. Chem. Int. Ed. 54, 4325–4329 (2015).

    CAS  Google Scholar 

  201. 201

    Song, J. et al. Polysulfide rejection layer from alpha-lipoic acid for high performance lithium–sulfur battery. J. Mater. Chem. A 3, 323–330 (2015).

    CAS  Google Scholar 

  202. 202

    Huang, J. Q. et al. Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries. Energy Environ. Sci. 7, 347–353 (2014).

    CAS  Google Scholar 

  203. 203

    Hart, C. J. et al. Rational design of sulphur host materials for Li–S batteries: correlating lithium polysulphide adsorptivity and self-discharge capacity loss. Chem. Commun. 51, 2308–2311 (2015).

    CAS  Google Scholar 

  204. 204

    Liang, X. et al. A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat. Commun. 6, 5682 (2015).

    Google Scholar 

  205. 205

    Chung, S. H., Han, P., Singhal, R., Kalra, V. & Manthiram, A. Electrochemically stable rechargeable lithium–sulfur batteries with a microporous carbon nanofiber filter for polysulfide. Adv. Energy Mater. 5, 1500738 (2015).

    Google Scholar 

  206. 206

    Zhou, G. M., Paek, E., Hwang, G. S. & Manthiram, A. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat. Commun. 6, 7760 (2015).

    CAS  Google Scholar 

  207. 207

    Su, Y. S., Fu, Y. Z., Cochell, T. & Manthiram, A. A strategic approach to recharging lithium-sulphur batteries for long cycle life. Nat. Commun. 4, 2985 (2013).

    Google Scholar 

  208. 208

    Chung, S. H. & Manthiram, A. A polyethylene glycol-supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium–sulfur batteries. Adv. Mater. 26, 7352–7357 (2014).

    CAS  Google Scholar 

  209. 209

    Zheng, J. M. et al. Lewis acid–base interactions between polysulfides and metal organic framework in lithium sulfur batteries. Nano Lett. 14, 2345–2352 (2014).

    CAS  Google Scholar 

  210. 210

    Hassoun, J. & Scrosati, B. Moving to a solid-state configuration: a valid approach to making lithium-sulfur batteries viable for practical applications. Adv. Mater. 22, 5198–5203 (2010).

    CAS  Google Scholar 

  211. 211

    Hayashi, A., Ohtsubo, R., Ohtomo, T., Mizuno, F. & Tatsumisago, M. All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material. J. Power Sources 183, 422–426 (2008).

    CAS  Google Scholar 

  212. 212

    Kobayashi, T. et al. All solid-state battery with sulfur electrode and thio-LISICON electrolyte. J. Power Sources 182, 621–625 (2008).

    CAS  Google Scholar 

  213. 213

    Nagao, M. et al. Reaction mechanism of all-solid-state lithium–sulfur battery with two-dimensional mesoporous carbon electrodes. J. Power Sources 243, 60–64 (2013).

    CAS  Google Scholar 

  214. 214

    Nagao, M. et al. All-solid-state Li–sulfur batteries with mesoporous electrode and thio-LISICON solid electrolyte. J. Power Sources 222, 237–242 (2013).

    CAS  Google Scholar 

  215. 215

    Li, N. et al. An aqueous dissolved polysulfide cathode for lithium–sulfur batteries. Energy Environ. Sci. 7, 3307–3312 (2014).

    CAS  Google Scholar 

  216. 216

    Yu, X., Bi, Z., Zhao, F. & Manthiram, A. Polysulfide-shuttle control in lithium-sulfur batteries with a chemically/electrochemically compatible NaSICON-type solid electrolyte. Adv. Energy Mater. 6, 1601392 (2016). This paper demonstrates an important approach in controlling the polysulfide-crossover problem in lithium–sulfur batteries with a chemically and electrochemically compatible NASICON-type lithium-ion solid electrolyte.

  217. 217

    Wang, Q. S. et al. A shuttle effect free lithium sulfur battery based on a hybrid electrolyte. Phys. Chem. Chem. Phys. 16, 21225–21229 (2014).

    CAS  Google Scholar 

  218. 218

    Lühder, K., Schmidt, L., Schnittke, A. & Füllbier, H. A study on novel lithium-iodine and lithium-bromine solid electrolyte batteries. J. Power Sources 40, 257–263 (1992).

    Google Scholar 

  219. 219

    Chang, Z. et al. Rechargeable Li//Br battery: a promising platform for post lithium ion batteries. J. Mater. Chem. A 2, 19444–19450 (2014). This paper demonstrates a rechargeable lithium–bromine battery platform operated with a lithium-ion solid electrolyte, an aqueous bromine cathode and a non-aqueous lithium anode.

    CAS  Google Scholar 

  220. 220

    Bai, P., Viswanathan, V. & Bazant, M. Z. A dual-mode rechargeable lithium–bromine/oxygen fuel cell. J. Mater. Chem. A 3, 14165–14172 (2015).

    CAS  Google Scholar 

  221. 221

    Takemoto, K. & Yamada, H. Development of rechargeable lithium–bromine batteries with lithium ion conducting solid electrolyte Mater. Res. Soc. Symp. Proc. 1740, 381 (2015).

    Google Scholar 

  222. 222

    Bai, P. & Bazant, M. Z. Performance and degradation of a lithium-bromine rechargeable fuel cell using highly concentrated catholytes. Electrochim. Acta 202, 216–223 (2016).

    CAS  Google Scholar 

  223. 223

    Gong, M. & Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 8, 23–39 (2015).

    CAS  Google Scholar 

  224. 224

    Linden, D. Handbook of Batteries 2nd edn (McGraw Hill, 1995).

    Google Scholar 

  225. 225

    Plust, H. G. Alkali batteries for electric vehicles —technical and economic aspects. Chem. Ing. Tech. 51, 583–593 (1979).

    CAS  Google Scholar 

  226. 226

    Licht, S., Wang, B. H. & Ghosh, S. Energetic iron(vi) chemistry: the super-iron battery. Science 285, 1039–1042 (1999).

    CAS  Google Scholar 

  227. 227

    Licht, S. & Yu, X. W. An alkaline periodate cathode and its unusual solubility behavior in KOH. Electrochem. Solid-State Lett. 10, A36–A39 (2007).

    CAS  Google Scholar 

  228. 228

    Köhler, J., Imanaka, N. & Adachi, G. Y. Multivalent cationic conduction in crystalline solids. Chem. Mater. 10, 3790–3812 (1998).

    Google Scholar 

  229. 229

    Ikeda, S., Kanbayashi, Y., Nomura, K., Kasai, A. & Ito, K. Solid electrolytes with multivalent cation conduction (2) zinc ion conduction in Zn-Zr-PO4 system. Solid State Ionics 40–41, 79–82 (1990).

    Google Scholar 

  230. 230

    Li, L. & Manthiram, A. Long-life, high-voltage acidic Zn–air batteries Adv. Energy Mater. 6, 1502054 (2015). This paper demonstrates a new approach for the development of zinc–air batteries with a mediator-ion solid electrolyte that enables an alkaline Zn/Zn(OH)42− redox reaction at the anode side, and an acidic oxygen reduction reaction and oxygen evolution reaction at the cathode side.

Download references

Acknowledgements

This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering under award number DE-SC0005397.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arumugam Manthiram.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater 2, 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing