Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Solution-processed semiconductors for next-generation photodetectors

A Corrigendum to this article was published on 01 March 2017

Abstract

Efficient light detection is central to modern science and technology. Current photodetectors mainly use photodiodes based on crystalline inorganic elemental semiconductors, such as silicon, or compounds such as III–V semiconductors. Photodetectors made of solution-processed semiconductors — which include organic materials, metal-halide perovskites and quantum dots — have recently emerged as candidates for next-generation light sensing. They combine ease of processing, tailorable optoelectronic properties, facile integration with complementary metal–oxide–semiconductors, compatibility with flexible substrates and good performance. Here, we review the recent advances and the open challenges in the field of solution-processed photodetectors, examining the topic from both the materials and the device perspective and highlighting the potential of the synergistic combination of materials and device engineering. We explore hybrid phototransistors and their potential to overcome trade-offs in noise, gain and speed, as well as the rapid advances in metal-halide perovskite photodiodes and their recent application in narrowband filterless photodetection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Solution-processed photodetectors.
Figure 2: Metal-halide perovskite photodiodes.
Figure 3: Phototransistors, gain and transport.
Figure 4: Performance metrics for solution-processed photodetectors.
Figure 5: Colour selectivity and charge collection narrowing.

Similar content being viewed by others

References

  1. Suzuki, T. Challenges of image-sensor development. IEEE Int. Solid-State Circuits Conf. (ISSCC) 27–30 (2010).

  2. Lee, K.-H. et al. Dynamic characterization of green-sensitive organic photodetectors using nonfullerene small molecules: frequency response based on the molecular structure. J. Phys. Chem. C 118, 13424–13431 (2014).

    CAS  Google Scholar 

  3. Armin, A., Jansen-van Vuuren, R. D., Kopidakis, N., Burn, P. L. & Meredith, P. Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes. Nat. Commun. 6, 6343 (2015).

    CAS  Google Scholar 

  4. Lyons, D. M. et al. Narrow band green organic photodiodes for imaging. Org. Electron. 15, 2903–2911 (2014).

    CAS  Google Scholar 

  5. Gong, X. et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 325, 1665–1667 (2009).

    CAS  Google Scholar 

  6. Armin, A. et al. Thick junction broadband organic photodiodes. Laser Photonics Rev. 8, 924–932 (2014).

    CAS  Google Scholar 

  7. Konstantatos, G. et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180–183 (2006).

    CAS  Google Scholar 

  8. Clifford, J. P. et al. Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. Nat. Nanotechnol. 4, 40–44 (2009).

    CAS  Google Scholar 

  9. Saran, R. & Curry, R. J. Lead sulphide nanocrystal photodetector technologies. Nat. Photonics 10, 81–92 (2016).

    CAS  Google Scholar 

  10. Mohd Yusoff, A. R. Bin & Nazeeruddin, M. K. Organohalide lead perovskites for photovoltaic applications. J. Phys. Chem. Lett. 7, 851–866 (2016).

    Google Scholar 

  11. Brenner, T. M., Egger, D. A., Kronik, L., Hodes, G. & Cahen, D. Hybrid organic–inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 15007 (2016).

    CAS  Google Scholar 

  12. Sze, S. M. Physics of Semiconductor Devices (Wiley, 1981).

    Google Scholar 

  13. McNeill, R., Siudak, R., Wardlaw, J. & Weiss, D. Electronic conduction in polymers. I. The chemical structure of polypyrrole. Aust. J. Chem. 16, 1056–1075 (1963).

    CAS  Google Scholar 

  14. Tang, C. W. Photovoltaic effects of metal–chlorophyll-a–metal sandwich cells. J. Chem. Phys. 62, 2139 (1975).

    CAS  Google Scholar 

  15. Koezuka, H., Tsumura, A. & Ando, T. Field-effect transistor with polythiophene thin film. Synth. Met. 18, 699–704 (1987).

    CAS  Google Scholar 

  16. Baeg, K.-J., Binda, M., Natali, D., Caironi, M. & Noh, Y.-Y. Organic light detectors: photodiodes and phototransistors. Adv. Mater. 25, 4267–4295 (2013).

    CAS  Google Scholar 

  17. Harrison, M. G., Grüner, J. & Spencer, G. C. W. Analysis of the photocurrent action spectra of MEH-PPV polymer photodiodes. Phys. Rev. B 55, 7831–7849 (1997).

    CAS  Google Scholar 

  18. Armin, A. et al. Spectral dependence of the internal quantum efficiency of organic solar cells: effect of charge generation pathways. J. Am. Chem. Soc. 136, 11465–11472 (2014).

    CAS  Google Scholar 

  19. Fang, Y., Guo, F., Xiao, Z. & Huang, J. Large gain, low noise nanocomposite ultraviolet photodetectors with a linear dynamic range of 120 dB. Adv. Opt. Mater. 2, 348–353 (2014).

    CAS  Google Scholar 

  20. Li, L., Huang, Y., Peng, J., Cao, Y. & Peng, X. Highly responsive organic near-infrared photodetectors based on a porphyrin small molecule. J. Mater. Chem. C 2, 1372 (2014).

    CAS  Google Scholar 

  21. Yao, Y. et al. Plastic near-infrared photodetectors utilizing low band gap polymer. Adv. Mater. 19, 3979–3983 (2007).

    CAS  Google Scholar 

  22. Pierre, A., Deckman, I., Lechêne, P. B. & Arias, A. C. High detectivity all-printed organic photodiodes. Adv. Mater. 27, 6411–6417 (2015).

    CAS  Google Scholar 

  23. You, J. et al. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 4, 1446 (2013).

    Google Scholar 

  24. Coffin, R. C., Peet, J., Rogers, J. & Bazan, G. C. Streamlined microwave-assisted preparation of narrow-bandgap conjugated polymers for high-performance bulk heterojunction solar cells. Nat. Chem. 1, 657–661 (2009).

    CAS  Google Scholar 

  25. Armin, A. et al. Quantum efficiency of organic solar cells: electro-optical cavity considerations. ACS Photonics 1, 173–181 (2014).

    CAS  Google Scholar 

  26. Lupton, J. M. et al. Organic microcavity photodiodes. Adv. Mater. 15, 1471–1474 (2003).

    CAS  Google Scholar 

  27. Qi, J. et al. Panchromatic small molecules for UV–Vis–NIR photodetectors with high detectivity. J. Mater. Chem. C 2, 2431 (2014).

    CAS  Google Scholar 

  28. Rauch, T. et al. Near-infrared imaging with quantum-dot-sensitized organic photodiodes. Nat. Photonics 3, 332–336 (2009).

    CAS  Google Scholar 

  29. Guo, F. et al. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat. Nanotechnol. 7, 798–802 (2012).

    CAS  Google Scholar 

  30. Dong, R. et al. An ultraviolet-to-NIR broad spectral nanocomposite photodetector with gain. Adv. Opt. Mater. 2, 549–554 (2014).

    CAS  Google Scholar 

  31. Greenham, N. C., Peng, X. & Alivisatos, A. P. Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys. Rev. B 54, 17628–17637 (1996).

    CAS  Google Scholar 

  32. Oertel, D. C., Bawendi, M. G., Arango, A. C. & Bulovic´, V. Photodetectors based on treated CdSe quantum-dot films. Appl. Phys. Lett. 87, 213505 (2005).

    Google Scholar 

  33. McDonald, S. et al. A Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 4, 138–142 (2005).

    CAS  Google Scholar 

  34. Konstantatos, G., Clifford, J., Levina, L. & Sargent, E. H. Sensitive solution-processed visible-wavelength photodetectors. Nat. Photonics 1, 531–534 (2007).

    CAS  Google Scholar 

  35. Konstantatos, G. & Sargent, E. H. PbS colloidal quantum dot photoconductive photodetectors: transport, traps, and gain. Appl. Phys. Lett. 91, 173505 (2007).

    Google Scholar 

  36. Konstantatos, G., Levina, L., Fischer, A. & Sargent, E. H. Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states. Nano Lett. 8, 1446–1450 (2008).

    CAS  Google Scholar 

  37. Lee, J.-S., Kovalenko, M. V., Huang, J., Chung, D. S. & Talapin, D. V. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nat. Nanotechnol. 6, 348–352 (2011).

    CAS  Google Scholar 

  38. Kim, S. J., Kim, W. J., Sahoo, Y., Cartwright, A. N. & Prasad, P. N. Multiple exciton generation and electrical extraction from a PbSe quantum dot photoconductor. Appl. Phys. Lett. 92, 31107 (2008).

    Google Scholar 

  39. Sukhovatkin, V., Hinds, S., Brzozowski, L. & Sargent, E. H. Colloidal quantum-dot photodetectors exploiting multiexciton generation. Science 324, 1542–1544 (2009).

    CAS  Google Scholar 

  40. Ka, I. et al. Multiple exciton generation induced enhancement of the photoresponse of pulsed-laser-ablation synthesized single-wall-carbon-nanotube/PbS-quantum-dots nanohybrids. Sci. Rep. 6, 20083 (2016).

    CAS  Google Scholar 

  41. Gao, J., Fidler, A. F. & Klimov, V. I. Carrier multiplication detected through transient photocurrent in device-grade films of lead selenide quantum dots. Nat. Commun. 6, 8185 (2015).

    Google Scholar 

  42. Nair, G., Geyer, S. M., Chang, L.-Y. & Bawendi, M. G. Carrier multiplication yields in PbS and PbSe nanocrystals measured by transient photoluminescence. Phys. Rev. B 78, 125325 (2008).

    Google Scholar 

  43. Clifford, J. P., Johnston, K. W., Levina, L. & Sargent, E. H. Schottky barriers to colloidal quantum dot films. Appl. Phys. Lett. 91, 253117 (2007).

    Google Scholar 

  44. Pal, B. N. et al. High-sensitivity p–n junction photodiodes based on PbS nanocrystal quantum dots. Adv. Funct. Mater. 22, 1741–1748 (2012).

    CAS  Google Scholar 

  45. Szendrei, K. et al. Solution-processable near-IR photodetectors based on electron transfer from PbS nanocrystals to fullerene derivatives. Adv. Mater. 21, 683–687 (2009).

    CAS  Google Scholar 

  46. Kim, J. Y. et al. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films. Nat. Commun. 6, 7772 (2015).

    Google Scholar 

  47. Pelayo García de Arquer, F., Beck, F. J., Bernechea, M. & Konstantatos, G. Plasmonic light trapping leads to responsivity increase in colloidal quantum dot photodetectors. Appl. Phys. Lett. 100, 43101 (2012).

    Google Scholar 

  48. Beck, F. J., Stavrinadis, A., Diedenhofen, S. L., Lasanta, T. & Konstantatos, G. Surface plasmon polariton couplers for light trapping in thin-film absorbers and their application to colloidal quantum dot optoelectronics. ACS Photonics 1, 1197–1205 (2014).

    CAS  Google Scholar 

  49. Diedenhofen, S. L., Kufer, D., Lasanta, T. & Konstantatos, G. Integrated colloidal quantum dot photodetectors with color-tunable plasmonic nanofocusing lenses. Light Sci. Appl. 4, e234 (2015).

    CAS  Google Scholar 

  50. Beck, F. J., García de Arquer, F. P., Bernechea, M. & Konstantatos, G. Electrical effects of metal nanoparticles embedded in ultra-thin colloidal quantum dot films. Appl. Phys. Lett. 101, 41103 (2012).

    Google Scholar 

  51. García de Arquer, F. P., Lasanta, T., Bernechea, M. & Konstantatos, G. Tailoring the electronic properties of colloidal quantum dots in metal-semiconductor nanocomposites for high performance photodetectors. Small 11, 2636–2641 (2015).

    Google Scholar 

  52. Lin, Q., Armin, A., Nagiri, R. C. R., Burn, P. L. & Meredith, P. Electro-optics of perovskite solar cells. Nat. Photonics 9, 106–112 (2014).

    Google Scholar 

  53. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    CAS  Google Scholar 

  54. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    CAS  Google Scholar 

  55. Hu, X. et al. High-performance flexible broadband photodetector based on organolead halide perovskite. Adv. Funct. Mater. 24, 7373–7380 (2014).

    CAS  Google Scholar 

  56. Lin, Q., Armin, A., Lyons, D. M., Burn, P. L. & Meredith, P. Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging. Adv. Mater. 27, 2060–2064 (2015).

    CAS  Google Scholar 

  57. Dou, L. et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 5, 5404 (2014).

    CAS  Google Scholar 

  58. Sutherland, B. R. et al. Sensitive, fast, and stable perovskite photodetectors exploiting interface engineering. ACS Photonics 2, 1117–1123 (2015).

    CAS  Google Scholar 

  59. Fang, Y. & Huang, J. Resolving weak light of sub-picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction. Adv. Mater. 27, 2804–2810 (2015).

    CAS  Google Scholar 

  60. Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).

    CAS  Google Scholar 

  61. Jeon, N. J. et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014).

    CAS  Google Scholar 

  62. Dong, R. et al. High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites. Adv. Mater. 27, 1912–1918 (2015).

    CAS  Google Scholar 

  63. Liu, C. et al. Ultrasensitive solution-processed broad-band photodetectors using CH3NH3PbI3 perovskite hybrids and PbS quantum dots as light harvesters. Nanoscale 7, 16460–16469 (2015).

    CAS  Google Scholar 

  64. Lin, Q., Armin, A., Burn, P. L. & Meredith, P. Filterless narrowband visible photodetectors. Nat. Photonics 9, 687–694 (2015).

    Google Scholar 

  65. Yakunin, S. et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat. Photonics 9, 444–449 (2015).

    CAS  Google Scholar 

  66. Wei, H. et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photonics 10, 333–339 (2016).

    CAS  Google Scholar 

  67. Shah, K. et al. Lead iodide X-ray detection systems. Nucl. Instrum. Methods Phys. Res. A 380, 266–270 (1996).

    CAS  Google Scholar 

  68. Gu, P., Yao, Y., Feng, L., Niu, S. & Dong, H. Recent advances in polymer phototransistors. Polym. Chem. 6, 7933–7944 (2015).

    CAS  Google Scholar 

  69. Konstantatos, G. et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363–368 (2012).

    CAS  Google Scholar 

  70. Sun, Z. et al. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater. 24, 5878–5883 (2012).

    CAS  Google Scholar 

  71. Wang, Y. et al. Hybrid graphene–perovskite phototransistors with ultrahigh responsivity and gain. Adv. Opt. Mater. 3, 1389–1396 (2015).

    CAS  Google Scholar 

  72. Lee, Y. et al. High-performance perovskite–graphene hybrid photodetector. Adv. Mater. 27, 41–46 (2015).

    CAS  Google Scholar 

  73. Li, F. et al. Ambipolar solution-processed hybrid perovskite phototransistors. Nat. Commun. 6, 8238 (2015).

    Google Scholar 

  74. Kufer, D. et al. Hybrid 2D–0D MoS2–PbS quantum dot photodetectors. Adv. Mater. 27, 176–180 (2015).

    CAS  Google Scholar 

  75. Kufer, D. & Konstantatos, G. Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed. Nano Lett. 15, 7307–7313 (2015).

    CAS  Google Scholar 

  76. Kufer, D. & Konstantatos, G. Photo-FETs: phototransistors enabled by 2D and 0D nanomaterials. ACS Photonics 3, 2197–2210 (2016).

    CAS  Google Scholar 

  77. Yuan, Y. et al. Solution-processed nanoparticle super-float-gated organic field-effect transistor as un-cooled ultraviolet and infrared photon counter. Sci. Rep. 3, 2707 (2013).

    Google Scholar 

  78. Adinolfi, V. et al. Photojunction field-effect transistor based on a colloidal quantum dot absorber channel layer. ACS Nano 9, 356–362 (2015).

    CAS  Google Scholar 

  79. Masala, S. et al. The silicon:colloidal quantum dot heterojunction. Adv. Mater. 27, 7445–7450 (2015).

    CAS  Google Scholar 

  80. Kufer, D., Lasanta, T., Bernechea, M., Koppens, F. H. L. & Konstantatos, G. Interface engineering in hybrid quantum dot–2D phototransistors. ACS Photonics 3, 1324–1330 (2016).

    CAS  Google Scholar 

  81. Nikitskiy, I. et al. Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor. Nat. Commun. 7, 11954 (2016).

    CAS  Google Scholar 

  82. Zhang, Y. et al. Ultrasensitive photodetectors exploiting electrostatic trapping and percolation transport. Nat. Commun. 7, 11924 (2016).

    CAS  Google Scholar 

  83. Keuleyan, S., Lhuillier, E., Brajuskovic, V. & Guyot-Sionnest, P. Mid-infrared HgTe colloidal quantum dot photodetectors. Nat. Photonics 5, 489–493 (2011).

    CAS  Google Scholar 

  84. Deng, Z., Jeong, K. S. & Guyot-Sionnest, P. Colloidal quantum dots intraband photodetectors. ACS Nano 8, 11707–11714 (2014).

    CAS  Google Scholar 

  85. Peumans, P., Bulovic´, V. & Forrest, S. R. Efficient, high-bandwidth organic multilayer photodetectors. Appl. Phys. Lett. 76, 3855 (2000).

    CAS  Google Scholar 

  86. Saidaminov, M. I. et al. Planar-integrated single-crystalline perovskite photodetectors. Nat. Commun. 6, 8724 (2015).

    CAS  Google Scholar 

  87. Gao, J., Nguyen, S. C., Bronstein, N. D. & Alivisatos, A. P. Solution-processed, high-speed, and high-quantum-efficiency quantum dot infrared photodetectors. ACS Photonics 3, 1217–1222 (2016).

    CAS  Google Scholar 

  88. Ning, Z. et al. Quantum-dot-in-perovskite solids. Nature 523, 324–328 (2015).

    CAS  Google Scholar 

  89. Saparov, B. & Mitzi, D. B. Organic–inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 116, 4558–4596 (2016).

    CAS  Google Scholar 

  90. Ramasamy, P. et al. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun. (Camb.) 52, 2067–2070 (2016).

    CAS  Google Scholar 

  91. Hayden, O., Agarwal, R. & Lieber, C. M. Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nat. Mater. 5, 352–356 (2006).

    CAS  Google Scholar 

  92. Martyniuk, P. & Rogalski, A. Quantum-dot infrared photodetectors: status and outlook. Prog. Quantum Electron. 32, 89–120 (2008).

    Google Scholar 

  93. Rogalski, A. Infrared Detectors (CRC, 2010).

    Google Scholar 

  94. Choi, J.-H. et al. Exploiting the colloidal nanocrystal library to construct electronic devices. Science 352, 205–208 (2016).

    CAS  Google Scholar 

  95. Aihara, S. et al. Stacked image sensor with green- and red-sensitive organic photoconductive films applying zinc oxide thin-film transistors to a signal readout circuit. IEEE Trans. Electron. Devices 56, 2570–2576 (2009).

    CAS  Google Scholar 

  96. Antognazza, M. R., Scherf, U., Monti, P. & Lanzani, G. Organic-based tristimuli colorimeter. Appl. Phys. Lett. 90, 163509 (2007).

    Google Scholar 

  97. Seo, H. et al. A 128 × 96 pixel stack-type color image sensor: stack of individual blue-, green-, and red-sensitive organic photoconductive films integrated with a ZnO thin film transistor readout circuit. Jpn J. Appl. Phys. 50, 24103 (2011).

    Google Scholar 

  98. Lim, S.-J. et al. Organic-on-silicon complementary metal-oxide-semiconductor colour image sensors. Sci. Rep. 5, 7708 (2015).

    CAS  Google Scholar 

  99. Jansen-van Vuuren, R. D., Pivrikas, A., Pandey, A. K. & Burn, P. L. Colour selective organic photodetectors utilizing ketocyanine-cored dendrimers. J. Mater. Chem. C 1, 3532 (2013).

    CAS  Google Scholar 

  100. Johnston, M. B. Optoelectronics: colour-selective photodiodes. Nat. Photonics 9, 634–636 (2015).

    CAS  Google Scholar 

  101. Tait, J. G. et al. Interfacial depletion regions: beyond the space charge limit in thick bulk heterojunctions. ACS Appl. Mater. Interfaces 8, 2211–2219 (2016).

    CAS  Google Scholar 

  102. Armin, A. et al. Electro-optics of conventional and inverted thick junction organic solar cells. ACS Photonics 2, 1745–1754 (2015).

    CAS  Google Scholar 

  103. Qiao, K. et al. Spectra-selective PbS quantum dot infrared photodetectors. Nanoscale 8, 7137–7143 (2016).

    CAS  Google Scholar 

  104. Fang, Y., Dong, Q., Shao, Y., Yuan, Y. & Huang, J. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics 9, 679–686 (2015).

    CAS  Google Scholar 

  105. Shen, L., Fang, Y., Wei, H., Yuan, Y. & Huang, J. A. Highly sensitive narrowband nanocomposite photodetector with gain. Adv. Mater. 28, 2043–2048 (2016).

    CAS  Google Scholar 

  106. Gong, X. et al. Semiconducting polymer photodetectors with electron and hole blocking layers: high detectivity in the near-infrared. Sensors (Basel) 10, 6488–6496 (2010).

    CAS  Google Scholar 

  107. Liu, X., Wang, H., Yang, T., Zhang, W. & Gong, X. Solution-processed ultrasensitive polymer photodetectors with high external quantum efficiency and detectivity. ACS Appl. Mater. Interfaces 4, 3701–3705 (2012).

    CAS  Google Scholar 

  108. Hu, X. et al. High-detectivity inverted near-infrared polymer photodetectors using cross-linkable conjugated polyfluorene as an electron extraction layer. J. Mater. Chem. C 2, 9592–9598 (2014).

    CAS  Google Scholar 

  109. Liu, C. et al. Ultrasensitive solution-processed perovskite hybrid photodetectors. J. Mater. Chem. C 3, 6600–6606 (2015).

    CAS  Google Scholar 

  110. Liu, H., Lhuillier, E. & Guyot-Sionnest, P. 1/f noise in semiconductor and metal nanocrystal solids. J. Appl. Phys. 115, 154309 (2014).

    Google Scholar 

  111. Solis-Ibarra, D., Smith, I. C. & Karunadasa, H. I. Post-synthetic halide conversion and selective halogen capture in hybrid perovskites. Chem. Sci. 6, 4054–4059 (2015).

    CAS  Google Scholar 

  112. Filip, M. R., Eperon, G. E., Snaith, H. J. & Giustino, F. Steric engineering of metal-halide perovskites with tunable optical band gaps. Nat. Commun. 5, 5757 (2014).

    CAS  Google Scholar 

  113. Lin, Q., Stoltzfus, D. M., Armin, A., Burn, P. L. & Meredith, P. An hydrophilic anode interlayer for solution processed organohalide perovskite solar cells. Adv. Mater. Interfaces 3, 1500420 (2016).

    Google Scholar 

  114. Yu, G., Wang, J., McElvain, J. & Heeger, A. J. Large-area, full-color image sensors made with semiconducting polymers. Adv. Mater. 10, 1431–1434 (1998).

    CAS  Google Scholar 

  115. Hamilton, M. C., Martin, S. & Kanicki, J. Thin-film organic polymer phototransistors. IEEE Trans. Electron. Devices 51, 877–885 (2004).

    CAS  Google Scholar 

  116. Agostinelli, T. et al. A polymer/fullerene based photodetector with extremely low dark current for X-ray medical imaging applications. Appl. Phys. Lett. 93, 203305 (2008).

    Google Scholar 

  117. Guo, F., Xiao, Z. & Huang, J. Fullerene photodetectors with a linear dynamic range of 90 dB enabled by a cross-linkable buffer layer. Adv. Opt. Mater. 1, 289–294 (2013).

    Google Scholar 

  118. Zhang, H. et al. Transparent organic photodetector using a near-infrared absorbing cyanine dye. Sci. Rep. 5, 9439 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

P.M. is an Australian Research Council Discovery Outstanding Research Award Fellow, and a Ser Cymru Research Chair funded under the Ser Cymru II Program by the Welsh Assembly Government and the Welsh European Funding Office. A.A. and P.M. acknowledge funding from the Australian Research Council through the Discovery Program and the Australian Centre for Advanced Photovoltaics (Australian Renewable Energy Agency). This work was supported by the Ontario Research Fund: Research Excellence Program, the Natural Sciences and Engineering Research Council (NSERC) of Canada, and the Connaught Global Challenges Program of the University of Toronto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward H. Sargent.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary information S1 (figure)

Performance metrics for solution-processed photodetectors. (PDF 197 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García de Arquer, F., Armin, A., Meredith, P. et al. Solution-processed semiconductors for next-generation photodetectors. Nat Rev Mater 2, 16100 (2017). https://doi.org/10.1038/natrevmats.2016.100

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2016.100

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing