Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties

An Erratum to this article was published on 16 February 2016

Abstract

Solution-processed hybrid organic–inorganic perovskites (HOIPs) exhibit long electronic carrier diffusion lengths, high optical absorption coefficients and impressive photovoltaic device performance. Recent results allow us to compare and contrast HOIP charge-transport characteristics to those of III–V semiconductors — benchmarks of photovoltaic (and light-emitting and laser diode) performance. In this Review, we summarize what is known and unknown about charge transport in HOIPs, with particular emphasis on their advantages as photovoltaic materials. Experimental and theoretical findings are integrated into one narrative, in which we highlight the fundamental questions that need to be addressed regarding the charge-transport properties of these materials and suggest future research directions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timeline of research into the optoelectronic properties of HOIPs and important discoveries in the development of HOIP solar cells.
Figure 2: Electronic structure and closely related physical properties of HOIPs.
Figure 3: Charge-transport parameters of various HOIPs that are critical to device performance.
Figure 4: Trap states and densities in HOIPs.
Figure 5: Effects of processing on charge-transport parameters.
Figure 6: Hysteresis and its possible microscopic origins.

Similar content being viewed by others

References

  1. Wells, A. F. Structural Inorganic Chemistry5th edn (Oxford Univ. Press, 1984).

    Google Scholar 

  2. Weller, M. T., Weber, O. J., Henry, P. F., Di Pumpo, A. M. & Hansen, T. C. Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K. Chem. Commun. 51, 4180–4183 (2015).

    Article  CAS  Google Scholar 

  3. Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).

    Article  CAS  Google Scholar 

  4. Goldschmidt, V. M. Die Gesetze der Krystallochemie. Naturwissenschaften 14, 477–485 (1926).

    Article  CAS  Google Scholar 

  5. Poglitsch, A. & Weber, D. Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J. Chem. Phys. 87, 6373–6378 (1987).

    Article  CAS  Google Scholar 

  6. Weber, D. CH3NH3PbX3, a Pb(II)-system with cubic perovskite structure. Z. Naturforsch. B 33, 1443–1445 (1978).

    Article  Google Scholar 

  7. Topsoe, H. Oversigt. K. Danske Vidensk. Selsk. Forh. 8, 247 (1882).

    Google Scholar 

  8. Mitzi, D. B., Feild, C. A., Harrison, W. T. A. & Guloy, A. M. Conducting tin halides with a layered organic-based perovskite structure. Nature 369, 467–469 (1994).

    Article  CAS  Google Scholar 

  9. Mitzi, D. B., Wang, S., Feild, C. A., Chess, C. A. & Guloy, A. M. Conducting layered organic-inorganic halides containing < 110 >-oriented perovskite sheets. Science 267, 1473–1476 (1995).

    Article  CAS  Google Scholar 

  10. Mitzi, D. B., Feild, C. A., Schlesinger, Z. & Laibowitz, R. B. Transport, optical, and magnetic properties of the conducting halide perovskite CH3NH3SnI3 . J. Solid State Chem. 114, 159–163 (1995).

    Article  CAS  Google Scholar 

  11. Mitzi, D. B. Synthesis, structure, and properties of organic–inorganic perovskites and related materials. Prog. Inorg. Chem. 48, 1–121 (1999). A comprehensive review of early materials chemistry for HOIP compounds.

    CAS  Google Scholar 

  12. Kagan, C. R., Mitzi, D. B. & Dimitrakopoulos, C. D. Organic–inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945–947 (1999).

    Article  CAS  Google Scholar 

  13. Noel, N. K. et al. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061–3068 (2014).

    Article  CAS  Google Scholar 

  14. Stoumpos, C. C. et al. Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties. J. Am. Chem. Soc. 137, 6804–6819 (2015).

    Article  CAS  Google Scholar 

  15. Salim, T. et al. Perovskite-based solar cells: impact of morphology and device architecture on device performance. J. Mater. Chem. A 3, 8943–8969 (2015).

    Article  CAS  Google Scholar 

  16. Zhao, Y. X. & Zhu, K. Solution chemistry engineering toward high-efficiency perovskite solar cells. J. Phys. Chem. Lett. 5, 4175–4186 (2014).

    Article  CAS  Google Scholar 

  17. Brittman, S., Adhyaksa, G. W. P. & Garnett, E. C. The expanding world of hybrid perovskites: materials properties and emerging applications. MRS Commun. 5, 7–26 (2015).

    Article  CAS  Google Scholar 

  18. Song, T. B. et al. Perovskite solar cells: film formation and properties. J. Mater. Chem. A 3, 9032–9050 (2015).

    Article  CAS  Google Scholar 

  19. Stranks, S. D., Nayak, P. K., Zhang, W., Stergiopoulos, T. & Snaith, H. J. Formation of thin films of organic-inorganic perovskites for high-efficiency solar cells. Angew. Chem. Int. Ed. Engl. 54, 3240–3248 (2015).

    Article  CAS  Google Scholar 

  20. Zhou, Z. et al. Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells. Angew. Chem. Int. Ed. Engl. 54, 9705–9709 (2015).

    Article  CAS  Google Scholar 

  21. Nie, W. Y. et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522–525 (2015).

    Article  CAS  Google Scholar 

  22. Zhou, Y. Y. et al. Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells. J. Mater. Chem. A 3, 8178–8184 (2015).

    Article  CAS  Google Scholar 

  23. Yan, K. Y. et al. Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency. J. Am. Chem. Soc. 137, 4460–4468 (2015).

    Article  CAS  Google Scholar 

  24. Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014).

    Article  CAS  Google Scholar 

  25. Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10, 391–402 (2015).

    Article  CAS  Google Scholar 

  26. Even, J. et al. Solid-state physics perspective on hybrid perovskite semiconductors. J. Phys. Chem. C 119, 10161–10177 (2015).

    Article  CAS  Google Scholar 

  27. Gratzel, M. The light and shade of perovskite solar cells. Nat. Mater. 13, 838–842 (2014).

    Article  CAS  Google Scholar 

  28. Berry, J. et al. Hybrid organic-inorganic perovskites (HOIPs): opportunities and challenges. Adv. Mater. 27, 5102–5112 (2015).

    Article  CAS  Google Scholar 

  29. Sum, T. C., Chen, S., Xing, G. C., Liu, X. F. & Wu, B. Energetics and dynamics in organic–inorganic halide perovskite photovoltaics and light emitters. Nanotechnology 26, 312009 (2015).

    Article  CAS  Google Scholar 

  30. De Angelis, F. Modeling materials and processes in hybrid/organic photovoltaics: from dye-sensitized to perovskite solar cells. Acc. Chem. Res. 47, 3349–3360 (2014).

    Article  CAS  Google Scholar 

  31. Du, M. H. Efficient carrier transport in halide perovskites: theoretical perspectives. J. Mater. Chem. A 2, 9091–9098 (2014).

    Article  CAS  Google Scholar 

  32. Nazeeruddin, M. K. et al. Perovskite photovoltaics. MRS Bull. 40, 635–685 (2015).

    Article  CAS  Google Scholar 

  33. Quarti, C., Mosconi, E. & De Angelis, F. Structural and electronic properties of organohalide hybrid perovskites from ab initio molecular dynamics. Phys. Chem. Chem. Phys. 17, 9394–9409 (2015).

    Article  CAS  Google Scholar 

  34. Yin, W. J., Yang, J. H., Kang, J., Yan, Y. F. & Wei, S. H. Halide perovskite materials for solar cells: a theoretical review. J. Mater. Chem. A 3, 8926–8942 (2015).

    Article  CAS  Google Scholar 

  35. Bisquert, J. The swift surge of perovskite photovoltaics. J. Phys. Chem. Lett. 4, 2597–2598 (2013).

    Article  CAS  Google Scholar 

  36. Christians, J. A., Manser, J. S. & Kamat, P. V. Multifaceted excited state of CH3NH3PbI3. Charge separation, recombination, and trapping. J. Phys. Chem. Lett. 6, 2086–2095 (2015).

    Article  CAS  Google Scholar 

  37. Miyasaka, T. Perovskite photovoltaics: rare functions of organo lead halide in solar cells and optoelectronic devices. Chem. Lett. 44, 720–729 (2015).

    Article  CAS  Google Scholar 

  38. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  CAS  Google Scholar 

  39. Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015).

    Article  CAS  Google Scholar 

  40. Yablonovitch, E., Miller, O. D. & Kurtz, S. R. in Photovoltaic Specialists Conference (PVSC) 38th IEEE, 1556–1559 (IEEE, Austin, Texas, 2012).

    Google Scholar 

  41. Jenny, D. A., Loferski, J. J. & Rappaport, P. Photovoltaic effect in GaAs p–n junctions and solar energy conversion. Phys. Rev. 101, 1208–1209 (1956).

    Article  CAS  Google Scholar 

  42. Snaith, H. J. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623–3630 (2013).

    Article  CAS  Google Scholar 

  43. Park, N. G. Perovskite solar cells: an emerging photovoltaic technology. Mater. Today 18, 65–72 (2015).

    Article  CAS  Google Scholar 

  44. Tan, Z. K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).

    Article  CAS  Google Scholar 

  45. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    Article  CAS  Google Scholar 

  46. Liu, M. Z., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013). The first paper on planar HOIP solar cells, demonstrating conclusively that good charge transport is possible within CH3NH3PbI3 itself, something that could be deduced from reference 45.

    Article  CAS  Google Scholar 

  47. Brivio, F., Butler, K. T., Walsh, A. & van Schilfgaarde, M. Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers. Phys. Rev. B 89, 155204 (2014).

    Article  CAS  Google Scholar 

  48. Aulbur, W. G., Jonsson, L. & Wilkins, J. W. Quasiparticle calculations in solids. Solid State Phys. 54, 1–218 (1999).

    Google Scholar 

  49. De Wolf, S. et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014).

    Article  CAS  Google Scholar 

  50. Kirchartz, T. & Rau, U. in Advanced Characterization Techniques for Thin Film Solar Cells Ch. 1 (eds Abou-Ras, D., Kirchartz, T. & Rau, U. ) 3–32 (Wiley, 2011).

    Google Scholar 

  51. Umari, P., Mosconi, E. & De Angelis, F. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci. Rep. 4, 4467 (2014).

    Article  CAS  Google Scholar 

  52. Menendez-Proupin, E., Palacios, P., Wahnon, P. & Conesa, J. C. Self-consistent relativistic band structure of the CH3NH3PbI3 perovskite. Phys. Rev. B 90, 045207 (2014).

    Article  CAS  Google Scholar 

  53. Sadhanala, A. et al. Preparation of single-phase films of CH3NH3Pb(I1−xBrx)3 with sharp optical band edges. J. Phys. Chem. Lett. 5, 2501–2505 (2014).

    Article  CAS  Google Scholar 

  54. D'Innocenzo, V. et al. Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5, 3586 (2014).

    Article  CAS  Google Scholar 

  55. Tanaka, K. et al. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3CH3NH3PbI3 . Solid State Commun. 127, 619–623 (2003).

    Article  CAS  Google Scholar 

  56. Hirasawa, M., Ishihara, T. & Goto, T. Exciton features in 0-, 2-, and 3-dimensional networks of [PbI6]4− octahedra. J. Phys. Soc. Jpn 63, 3870–3879 (1994).

    Article  CAS  Google Scholar 

  57. Saba, M. et al. Correlated electron-hole plasma in organometal perovskites. Nat. Commun. 5, 5049 (2014).

    Article  CAS  Google Scholar 

  58. Yamada, Y., Nakamura, T., Endo, M., Wakamiya, A. & Kanemitsu, Y. Photoelectronic responses in solution-processed perovskite CH3NH3PbI3 solar cells studied by photoluminescence and photoabsorption spectroscopy. IEEE J. Photovolt. 5, 401–405 (2015).

    Article  Google Scholar 

  59. Collavini, S., Volker, S. F. & Delgado, J. L. Understanding the outstanding power conversion efficiency of perovskite-based solar cells. Angew. Chem. Int. Ed. Engl. 54, 9757–9759 (2015).

    Article  CAS  Google Scholar 

  60. Lin, Q. Q., Armin, A., Nagiri, R. C. R., Burn, P. L. & Meredith, P. Electro-optics of perovskite solar cells. Nat. Photonics 9, 106–112 (2015).

    Article  CAS  Google Scholar 

  61. Hirasawa, M., Ishihara, T., Goto, T., Uchida, K. & Miura, N. Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3)PbI3 . Phys. B 201, 427–430 (1994).

    Article  CAS  Google Scholar 

  62. Juarez-Perez, E. J. et al. Photoinduced giant dielectric constant in lead halide perovskite solar cells. J. Phys. Chem. Lett. 5, 2390–2394 (2014).

    Article  CAS  Google Scholar 

  63. Miyata, A. et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat. Phys. 11, 582–594 (2015). Providing the most fundamental measurements of exciton binding energy and effective mass in CH3NH3PbI3 yet, including in the device-relevant tetragonal phase, this study supports earlier reports (see main text) that the exciton binding energy is small enough to result in a negligible population of excitons at room temperature and that the excitonic reduced mass is indeed quite low (0.1m0).

    Article  CAS  Google Scholar 

  64. Even, J., Pedesseau, L., Jancu, J. M. & Katan, C. DFT and k · p modelling of the phase transitions of lead and tin halide perovskites for photovoltaic cells. Phys. Status Solidi RRL 8, 31–35 (2014).

    Article  CAS  Google Scholar 

  65. Zhu, X., Su, H. B., Marcus, R. A. & Michel-Beyerle, M. E. Computed and experimental absorption spectra of the perovskite CH3NH3PbI3 . J. Phys. Chem. Lett. 5, 3061–3065 (2014).

    Article  CAS  Google Scholar 

  66. Ahmed, T. et al. Optical properties of organometallic perovskite: an ab initio study using relativistic GW correction and Bethe–Salpeter equation. Europhys. Lett. 108, 67015 (2014); erratum 112, 29901(2015).

    Article  CAS  Google Scholar 

  67. Chang, Y. H., Park, C. H. & Matsuishi, K. First-principles study of the structural and the electronic properties of the lead-halide-based inorganic-organic perovskites (CH3NH3)PbX3 and CsPbX3 (X = Cl, Br, I). J. Korean Phys. Soc. 44, 889–893 (2004). Appearing half a decade before the first HOIP solar cells, this computational study predicted that charge carriers in CH3NH3PbX3 materials would have small effective masses (0.1m0).

    Article  CAS  Google Scholar 

  68. Umebayashi, T., Asai, K., Kondo, T. & Nakao, A. Electronic structures of lead iodide based low-dimensional crystals. Phys. Rev. B 67, 155405 (2003).

    Article  CAS  Google Scholar 

  69. Brivio, F., Walker, A. B. & Walsh, A. Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. APL Mater. 1, 042111 (2013).

    Article  CAS  Google Scholar 

  70. Lang, L., Yang, J. H., Liu, H. R., Xiang, H. J. & Gong, X. G. First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites. Phys. Lett. A 378, 290–293 (2014).

    Article  CAS  Google Scholar 

  71. Filippetti, A. & Mattoni, A. Hybrid perovskites for photovoltaics: insights from first principles. Phys. Rev. B 89, 125203 (2014).

    Article  CAS  Google Scholar 

  72. Yin, W. J., Shi, T. T. & Yan, Y. F. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).

    Article  CAS  Google Scholar 

  73. Kim, J., Lee, S. C., Lee, S. H. & Hong, K. H. Importance of orbital interactions in determining electronic band structures of organo-lead iodide. J. Phys. Chem. C 119, 4627–4634 (2015).

    Article  CAS  Google Scholar 

  74. Zheng, F., Takenaka, H., Wang, F. G., Koocher, N. Z. & Rappe, A. M. First-principles calculation of the bulk photovoltaic effect in CH3NH3PbI3 and CH3NH3PbI3−x Clx . J. Phys. Chem. Lett. 6, 31–37 (2015).

    Article  CAS  Google Scholar 

  75. Even, J., Pedesseau, L. & Katan, C. Analysis of multivalley and multibandgap absorption and enhancement of free carriers related to exciton screening in hybrid perovskites. J. Phys. Chem. C 118, 11566–11572 (2014).

    Article  CAS  Google Scholar 

  76. Even, J., Pedesseau, L., Jancu, J. M. & Katan, C. Importance of spin–orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J. Phys. Chem. Lett. 4, 2999–3005 (2013).

    Article  CAS  Google Scholar 

  77. Giorgi, G., Fujisawa, J. I., Segawa, H. & Yamashita, K. Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis. J. Phys. Chem. Lett. 4, 4213–4216 (2013).

    Article  CAS  Google Scholar 

  78. Wei, S. H. & Zunger, A. Electronic and structural anomalies in lead chalcogenides. Phys. Rev. B 55, 13605–13610 (1997).

    Article  CAS  Google Scholar 

  79. Borriello, I., Cantele, G. & Ninno, D. Ab initio investigation of hybrid organic–inorganic perovskites based on tin halides. Phys. Rev. B 77, 235214 (2008).

    Article  CAS  Google Scholar 

  80. Baikie, T. et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 1, 5628–5641 (2013).

    Article  CAS  Google Scholar 

  81. Wang, Y. et al. Density functional theory analysis of structural and electronic properties of orthorhombic perovskite CH3NH3PbI3 . Phys. Chem. Chem. Phys. 16, 1424–1429 (2014).

    Article  CAS  Google Scholar 

  82. Sourisseau, S. et al. Reduced band gap hybrid perovskites resulting from combined hydrogen and halogen bonding at the organic-inorganic interface. Chem. Mater. 19, 600–607 (2007).

    Article  CAS  Google Scholar 

  83. Mosconi, E., Amat, A., Nazeeruddin, M. K., Gratzel, M. & De Angelis, F. First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. J. Phys. Chem. C 117, 13902–13913 (2013).

    Article  CAS  Google Scholar 

  84. Amat, A. et al. Cation-induced band-gap tuning in organohalide perovskites: interplay of spin–orbit coupling and octahedra tilting. Nano Lett. 14, 3608–3616 (2014).

    Article  CAS  Google Scholar 

  85. Egger, D. A. & Kronik, L. Role of dispersive interactions in determining structural properties of organic–inorganic halide perovskites: insights from first-principles calculations. J. Phys. Chem. Lett. 5, 2728–2733 (2014).

    Article  CAS  Google Scholar 

  86. Motta, C. et al. Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3 . Nat. Commun. 6, 7 (2015).

    Article  CAS  Google Scholar 

  87. Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (Wiley, 2007).

    Google Scholar 

  88. Oga, H., Saeki, A., Ogomi, Y., Hayase, S. & Seki, S. Improved understanding of the electronic and energetic landscapes of perovskite solar cells: high local charge carrier mobility, reduced recombination, and extremely shallow traps. J. Am. Chem. Soc. 136, 13818–13825 (2014).

    Article  CAS  Google Scholar 

  89. Wehrenfennig, C., Eperon, G. E., Johnston, M. B., Snaith, H. J. & Herz, L. M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014).

    Article  CAS  Google Scholar 

  90. Savenije, T. J. et al. Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite. J. Phys. Chem. Lett. 5, 2189–2194 (2014).

    Article  CAS  Google Scholar 

  91. Brenner, T. M. et al. Are mobilities in hybrid organic–inorganic halide perovskites actually ‘high’? J. Phys. Chem. Lett. 6, 4754–4757 (2015).

    Article  CAS  Google Scholar 

  92. Brandt, R. E., Stevanovic, V., Ginley, D. S. & Buonassisi, T. Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. MRS Commun. 5, 265–275 (2015).

    Article  CAS  Google Scholar 

  93. Stranks, S. D. et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013). Appearing simultaneously with reference 94, these papers were the first to demonstrate long carrier lifetimes, and by combining these with the diffusion coefficients that were also measured, extracted the long diffusion lengths of the electronic charge carriers in polycrystalline CH3NH3PbI3 films.

    Article  CAS  Google Scholar 

  94. Xing, G. C. et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3 . Science 342, 344–347 (2013).

    Article  CAS  Google Scholar 

  95. Sheng, R. et al. Methylammonium lead bromide perovskite-based solar cells by vapor-assisted deposition. J. Phys. Chem. C 119, 3545–3549 (2015).

    Article  CAS  Google Scholar 

  96. Guo, Z., Manser, J. S., Wan, Y., Kamat, P. V. & Huang, L. B. Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy. Nat. Commun. 6, 7471 (2015).

    Article  CAS  Google Scholar 

  97. Dong, Q. F. et al. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

    Article  CAS  Google Scholar 

  98. Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015). Appearing shortly before reference 97, this paper demonstrated growth of single-crystal CH3NH3PbX3 (X = I, Br), critical to understanding the fundamental properties of these materials, and showing that long carrier lifetimes and modest mobilities are properties of high-quality crystals as well as thin films.

    Article  CAS  Google Scholar 

  99. Saidaminov, M. I. et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 6, 7586 (2015).

    Article  Google Scholar 

  100. Zhang, M. et al. Composition-dependent photoluminescence intensity and prolonged recombination lifetime of perovskite CH3NH3PbBr3−xClx films. Chem. Commun. 50, 11727–11730 (2014).

    Article  CAS  Google Scholar 

  101. Nelson, R. J. & Sobers, R. G. Minority carrier lifetime and internal quantum efficiency of surface-free GaAs. J. Appl. Phys. 49, 6103–6108 (1978).

    Article  CAS  Google Scholar 

  102. Edri, E. et al. Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3−xClx perovskite solar cells. Nat. Commun. 5, 3461 (2014).

    Article  CAS  Google Scholar 

  103. Kedem, N. et al. Light-induced increase of electron diffusion length in a p–n junction type CH3NH3PbBr3 perovskite solar cell. J. Phys. Chem. Lett. 6, 2469–2476 (2015).

    Article  CAS  Google Scholar 

  104. Buin, A. et al. Materials processing routes to trap-free halide perovskites. Nano Lett. 14, 6281–6286 (2014).

    Article  CAS  Google Scholar 

  105. Milot, R. L., Eperon, G. E., Snaith, H. J., Johnston, M. B. & Herz, L. M. Temperature-dependent charge-carrier dynamics in CH3NH3PbI3 perovskite thin films. Adv. Funct. Mater. 25, 6218–6227 (2015).

    Article  CAS  Google Scholar 

  106. Karakus, M. et al.Phonon–electron scattering limits free charge mobility in methylammonium lead iodide perovskites.J. Phys. Chem. Lett. 6, 4991–4996(2015).

    Article  CAS  Google Scholar 

  107. Chin, X. Y., Cortecchia, D., Yin, J., Bruno, A. & Soci, C. Lead iodide perovskite light-emitting field-effect transistor. Nat. Commun. 6, 7383 (2015).

    Article  CAS  Google Scholar 

  108. Price, M. B. et al. Hot-carrier cooling and photoinduced refractive index changes in organic–inorganic lead halide perovskites. Nat. Commun. 6, 8420 (2015).

    Article  CAS  Google Scholar 

  109. Guo, Y. et al. in MRS Fall Meeting NN14.05 (Boston, 2015).

    Google Scholar 

  110. Zhu, X.-Y. & Podzorov, V. Charge carriers in hybrid organic–inorganic lead halide perovskites might be protected as large polarons. J. Phys. Chem. Lett. 6, 4758–4761(2015).

    Article  CAS  Google Scholar 

  111. Stoumpos, C. C. et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Cryst. Growth Des. 13, 2722–2727 (2013).

    Article  CAS  Google Scholar 

  112. Butler, K. T., Frost, J. M. & Walsh, A. Band alignment of the hybrid halide perovskites CH3NH3PbCl3, CH3NH3PbBr3 and CH3NH3PbI3 . Mater. Horizons 2, 228–231 (2015).

    Article  CAS  Google Scholar 

  113. Kulbak, M., Cahen, D. & Hodes, G. How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. J. Phys. Chem. Lett. 6, 2452–2456 (2015).

    Article  CAS  Google Scholar 

  114. Ogomi, Y. et al. CH3NH3SnxPb1−xI3 perovskite solar cells covering up to 1060 nm. J. Phys. Chem. Lett. 5, 1004–1011 (2014).

    Article  CAS  Google Scholar 

  115. Hao, F., Stoumpos, C. C., Cao, D. H., Chang, R. P. H. & Kanatzidis, M. G. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8, 489–494 (2014).

    Article  CAS  Google Scholar 

  116. Hao, F., Stoumpos, C. C., Chang, R. P. H. & Kanatzidis, M. G. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 136, 8094–8099 (2014).

    Article  CAS  Google Scholar 

  117. Tvingstedt, K. et al. Radiative efficiency of lead iodide based perovskite solar cells. Sci. Rep. 4, 6071 (2014).

    Article  CAS  Google Scholar 

  118. Tress, W. et al. Predicting the open-circuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: the role of radiative and non-radiative recombination. Adv. Energy Mater. 5, http://dx.doi.org/10.1002/aenm.201400812 (2015).

    Article  CAS  Google Scholar 

  119. Liu, Y. et al. Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization. Adv. Mater. 27, 5176–5183 (2015).

    Article  CAS  Google Scholar 

  120. Duan, H. S. et al. The identification and characterization of defect states in hybrid organic–inorganic perovskite photovoltaics. Phys. Chem. Chem. Phys. 17, 112–116 (2015).

    Article  CAS  Google Scholar 

  121. Samiee, M. et al. Defect density and dielectric constant in perovskite solar cells. Appl. Phys. Lett. 105, 153502 (2014).

    Article  CAS  Google Scholar 

  122. Baumann, A. et al. Identification of trap states in perovskite solar cells. J. Phys. Chem. Lett. 6, 2350–2354 (2015).

    Article  CAS  Google Scholar 

  123. Xing, G. C. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476–480 (2014).

    Article  CAS  Google Scholar 

  124. Hutter, E. M., Eperon, G. E., Stranks, S. D. & Savenije, T. J. Charge carriers in planar and meso-structured organic–inorganic perovskites: mobilities, lifetimes, and concentrations of trap states. J. Phys. Chem. Lett. 6, 3082–3090 (2015).

    Article  CAS  Google Scholar 

  125. Manser, J. S. & Kamat, P. V. Band filling with free charge carriers in organometal halide perovskites. Nat. Photonics 8, 737–743 (2014).

    Article  CAS  Google Scholar 

  126. Barnea-Nehoshtan, L., Kirmayer, S., Edri, E., Hodes, G. & Cahen, D. Surface photovoltage spectroscopy study of organo-lead perovskite solar cells. J. Phys. Chem. Lett. 5, 2408–2413 (2014).

    Article  CAS  Google Scholar 

  127. Kim, J., Lee, S. H., Lee, J. H. & Hong, K. H. The role of intrinsic defects in methylammonium lead iodide perovskite. J. Phys. Chem. Lett. 5, 1312–1317 (2014).

    Article  CAS  Google Scholar 

  128. Agiorgousis, M. L., Sun, Y. Y., Zeng, H. & Zhang, S. B. Strong covalency-induced recombination centers in perovskite solar cell material CH3NH3Pbl3 . J. Am. Chem. Soc. 136, 14570–14575 (2014).

    Article  CAS  Google Scholar 

  129. Freysoldt, C. et al. First-principles calculations for point defects in solids. Rev. Mod. Phys. 86, 253–305 (2014).

    Article  Google Scholar 

  130. Cahen, D., Abecassis, D. & Soltz, D. Doping of CuInSe2 crystals: evidence for influence of thermal defects. Chem. Mater. 1, 202–207 (1989).

    Article  CAS  Google Scholar 

  131. Dharmadasa, I. M., Chaure, N. B., Tolan, G. J. & Samantilleke, A. P. Development of p+, p, i, n, and n+-type CuInGaSe2 layers for applications in graded bandgap multilayer thin-film solar cells. J. Electrochem. Soc. 154, H466–H471 (2007).

    Article  CAS  Google Scholar 

  132. Walsh, A., Scanlon, D. O., Chen, S. Y., Gong, X. G. & Wei, S. H. Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angew. Chem. Int. Ed. Engl. 54, 1791–1794 (2015).

    Article  CAS  Google Scholar 

  133. Wang, Q. et al. Qualifying composition dependent p and n self-doping in CH3NH3PbI3 . Appl. Phys. Lett. 105, 163508 (2014).

    Article  CAS  Google Scholar 

  134. Schulz, P. et al. Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy Environ. Sci. 7, 1377–1381 (2014).

    Article  CAS  Google Scholar 

  135. Miller, E. M. et al. Substrate-controlled band positions in CH3NH3PbI3 perovskite films. Phys. Chem. Chem. Phys. 16, 22122–22130 (2014).

    Article  CAS  Google Scholar 

  136. Ren, Z. et al. Thermal assisted oxygen annealing for high efficiency planar CH3NH3PbI3 perovskite solar cells. Sci. Rep. 4, 6752 (2014).

    Article  Google Scholar 

  137. Abate, A. et al. Lithium salts as ‘redox active’ p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. Phys. Chem. Chem. Phys. 15, 2572–2579 (2013).

    Article  CAS  Google Scholar 

  138. Cahen, D. & Noufi, R. Defect chemical explanation for the effect of air anneal on CdS/CuInSe2 solar cell performance. Appl. Phys. Lett. 54, 558–560 (1989).

    Article  CAS  Google Scholar 

  139. Nayak, P. K., Rosenberg, R., Barnea-Nehoshtan, L. & Cahen, D. O2 and organic semiconductors: electronic effects. Org. Electron. 14, 966–972 (2013).

    Article  CAS  Google Scholar 

  140. Rau, U. et al. Oxygenation and air-annealing effects on the electronic properties of Cu(In,Ga)Se2 films and devices. J. Appl. Phys. 86, 497–505 (1999).

    Article  CAS  Google Scholar 

  141. Huang, J., Shao, Y. & Dong, Q. Organometal trihalide perovskite single crystals: a next wave of materials for 25% efficiency photovoltaics and applications beyond? J. Phys. Chem. Lett. 6, 3218–3227 (2015).

    Article  CAS  Google Scholar 

  142. Edri, E. et al. Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). Nano Lett. 14, 1000–1004 (2014).

    Article  CAS  Google Scholar 

  143. Yun, J. S. et al. Benefit of grain boundaries in organic–inorganic halide planar perovskite solar cells. J. Phys. Chem. Lett. 6, 875–880 (2015).

    Article  CAS  Google Scholar 

  144. deQuilettes, D. W. et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683–686 (2015).

    Article  CAS  Google Scholar 

  145. Yang, B. et al. Perovskite solar cells with near 100% internal quantum efficiency based on large single crystalline grains and vertical bulk heterojunctions. J. Am. Chem. Soc. 137, 9210–9213 (2015).

    Article  CAS  Google Scholar 

  146. Abate, A. et al. Supramolecular halogen bond passivation of organic–inorganic halide perovskite solar cells. Nano Lett. 14, 3247–3254 (2014).

    Article  CAS  Google Scholar 

  147. Noel, N. K. et al. Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic inorganic lead halide perovskites. ACS Nano 8, 9815–9821 (2014).

    Article  CAS  Google Scholar 

  148. Shao, Y. H., Xiao, Z. G., Bi, C., Yuan, Y. B. & Huang, J. S. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014).

    Article  CAS  Google Scholar 

  149. Xu, J. et al. Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 6, 7081 (2015).

    Article  CAS  Google Scholar 

  150. Chen, Q. et al. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 14, 4158–4163 (2014).

    Article  CAS  Google Scholar 

  151. Cao, D. Y. H. et al. Remnant PbI2, an unforeseen necessity in high-efficiency hybrid perovskite-based solar cells? APL Mater. 2, 091101 (2014).

    Article  CAS  Google Scholar 

  152. Zhang, W. et al. Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat. Commun. 6, 6142 (2015).

    Article  CAS  Google Scholar 

  153. Tidhar, Y. et al. Crystallization of methyl ammonium lead halide perovskites: implications for photovoltaic applications. J. Am. Chem. Soc. 136, 13249–13256 (2014).

    Article  CAS  Google Scholar 

  154. Bi, C. et al. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 6, 7747 (2015).

    Article  CAS  Google Scholar 

  155. Heo, J. H., Song, D. H. & Im, S. H. Planar CH3NH3PbBr3 hybrid solar cells with 10.4% power conversion efficiency, fabricated by controlled crystallization in the spin-coating process. Adv. Mater. 26, 8179–8183 (2014).

    Article  CAS  Google Scholar 

  156. Xiao, Z. G. et al. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 26, 6503–6509 (2014).

    Article  CAS  Google Scholar 

  157. Egger, D. A., Edri, E., Cahen, D. & Hodes, G. Perovskite solar cells: do we know what we do not know? J. Phys. Chem. Lett. 6, 279–282 (2015).

    Article  CAS  Google Scholar 

  158. Riess, I. in CRC Handbook of Solid State Electrochemistry (eds Gellings, P. J. & Bouwmeester, H. J. M. ) 223–268 (CRC, 1997).

    Google Scholar 

  159. Meier, S. B. et al. Light-emitting electrochemical cells: recent progress and future prospects. Mater. Today 17, 217–223 (2014).

    Article  CAS  Google Scholar 

  160. Xiao, Z. G. et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193–198 (2015).

    Article  CAS  Google Scholar 

  161. Yuan, Y. et al. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells. Adv. Energy Mater. 5, http://dx.doi.org/10.1002/aenm.201500615 (2015).

    Article  CAS  Google Scholar 

  162. Gottesman, R. et al. Photoinduced reversible structural transformations in free-standing CH3NH3PbI3 perovskite films. J. Phys. Chem. Lett. 6, 2332–2338 (2015).

    Article  CAS  Google Scholar 

  163. Gottesman, R. et al. Extremely slow photoconductivity response of CH3NH3PbI3 perovskites suggesting structural changes under working conditions. J. Phys. Chem. Lett. 5, 2662–2669 (2014).

    Article  CAS  Google Scholar 

  164. Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015).

    Article  CAS  Google Scholar 

  165. Snaith, H. J. et al. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014).

    Article  CAS  Google Scholar 

  166. Tress, W. et al. Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy Environ. Sci. 8, 995–1004 (2015).

    Article  CAS  Google Scholar 

  167. Eames, C. et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015).

    Article  CAS  Google Scholar 

  168. Unger, E. L. et al. Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci. 7, 3690–3698 (2014).

    Article  CAS  Google Scholar 

  169. Beilsten-Edmands, J., Eperon, G. E., Johnson, R. D., Snaith, H. J. & Radaelli, P. G. Non-ferroelectric nature of the conductance hysteresis in CH3NH3PbI3 perovskite-based photovoltaic devices. Appl. Phys. Lett. 106, 5 (2015).

    Article  CAS  Google Scholar 

  170. Guillemoles, J. F., Rau, U., Kronik, L., Schock, H. W. & Cahen, D. Cu(In,Ga)Se2 solar cells: device stability based on chemical flexibility. Adv. Mater. 11, 957–961 (1999).

    Article  CAS  Google Scholar 

  171. Mizusaki, J., Arai, K. & Fueki, K. Ionic conduction of the perovskite-type halides. Solid State Ionics 11, 203–211 (1983).

    Article  CAS  Google Scholar 

  172. Kuku, T. A. Structure and ionic conductivity of CuCdCl3 . Solid State Ionics 25, 105–108 (1987).

    Article  CAS  Google Scholar 

  173. Kuku, T. A., Akande, A. R., Erharhine, P. O., Chiodelli, G. & Adiguzel, O. Structure and ionic transport properties of some Cu2PbBr4, Cu2SNI4 compounds. Solid State Ionics 44, 99–105 (1990).

    Article  CAS  Google Scholar 

  174. Kuku, T. A. & Salau, A. M. Electrical conductivity of CuSNI3, CuPbI3 and KPbI3 . Solid State Ionics 25, 1–7 (1987).

    Article  CAS  Google Scholar 

  175. Dualeh, A. et al. Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. ACS Nano 8, 362–373 (2014).

    Article  CAS  Google Scholar 

  176. Yang, T. Y., Gregori, G., Pellet, N., Gratzel, M. & Maier, J. The significance of ion conduction in a hybrid organic–inorganic lead-iodide-based perovskite photosensitizer. Angew. Chem. Int. Ed. Engl. 54, 7905–7910 (2015).

    Article  CAS  Google Scholar 

  177. Azpiroz, J. M., Mosconi, E., Bisquert, J. & De Angelis, F. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8, 2118–2127 (2015).

    Article  CAS  Google Scholar 

  178. Haruyama, J., Sodeyama, K., Han, L. & Tateyama, Y. First-principles study of ion diffusion in perovskite solar cell sensitizers. J. Am. Chem. Soc. 137, 10048–10051 (2015).

    Article  CAS  Google Scholar 

  179. Egger, D. A., Kronik, L. & Rappe, A. M. Theory of hydrogen migration in organic–inorganic halide perovskites. Angew. Chem. Int. Ed. Engl. 54, 12437–12441 (2015).

    Article  CAS  Google Scholar 

  180. Islam, M. S., Davies, R. A. & Gales, J. D. Proton migration and defect interactions in the CaZrO3 orthorhombic perovskite: a quantum mechanical study. Chem. Mat. 13, 2049–2055 (2001).

    Article  CAS  Google Scholar 

  181. Bergmann, V. W. et al. Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell. Nat. Commun. 5, 5001 (2014).

    Article  CAS  Google Scholar 

  182. Guerrero, A., Juarez-Perez, E. J., Bisquert, J., Mora-Sero, I. & Garcia-Belmonte, G. Electrical field profile and doping in planar lead halide perovskite solar cells. Appl. Phys. Lett. 105, 133902 (2014).

    Article  CAS  Google Scholar 

  183. Dymshits, A., Henning, A., Segev, G., Rosenwaks, Y. & Etgar, L. The electronic structure of metal oxide/organo metal halide perovskite junctions in perovskite based solar cells. Sci. Rep. 5, 8704 (2015).

    Article  CAS  Google Scholar 

  184. Frost, J. M., Butler, K. T. & Walsh, A. Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells. APL Mater. 2, 081506 (2014).

    Article  CAS  Google Scholar 

  185. Zhang, W. & Xiong, R. G. Ferroelectric metal–organic frameworks. Chem. Rev. 112, 1163–1195 (2012).

    Article  CAS  Google Scholar 

  186. Grinberg, I. et al. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503, 509–512 (2013).

    Article  CAS  Google Scholar 

  187. Butler, K. T., Frost, J. M. & Walsh, A. Ferroelectric materials for solar energy conversion: photoferroics revisited. Energy Environ. Sci. 8, 838–848 (2015).

    Article  CAS  Google Scholar 

  188. Chen, B. et al. Ferroelectric solar cells based on inorganic–organic hybrid perovskites. J. Mater. Chem. A 3, 7699–7705 (2015).

    Article  CAS  Google Scholar 

  189. Frost, J. M. et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014).

    Article  CAS  Google Scholar 

  190. Liu, S. et al. Ferroelectric domain wall induced band gap reduction and charge separation in organometal halide perovskites. J. Phys. Chem. Lett. 6, 693–699 (2015).

    Article  CAS  Google Scholar 

  191. Stroppa, A., Quarti, C., De Angelis, F. & Picozzi, S. Ferroelectric polarization of CH3NH3PbI3: a detailed study based on density functional theory and symmetry mode analysis. J. Phys. Chem. Lett. 6, 2223–2231 (2015).

    Article  CAS  Google Scholar 

  192. Coll, M. et al. Polarization switching and light-enhanced piezoelectricity in lead halide perovskites. J. Phys. Chem. Lett. 6, 1408–1413 (2015).

    Article  CAS  Google Scholar 

  193. Fan, Z. et al. Ferroelectricity of CH3NH3Pbl3 perovskite. J. Phys. Chem. Lett. 6, 1155–1161 (2015).

    Article  CAS  Google Scholar 

  194. Kutes, Y. et al. Direct observation of ferroelectric domains in solution-processed CH3NH3PbI3 perovskite thin films. J. Phys. Chem. Lett. 5, 3335–3339 (2014).

    Article  CAS  Google Scholar 

  195. Yamada, Y. et al. Dynamic optical properties of CH3NH3PbI3 single crystals as revealed by one- and two-photon excited photoluminescence measurements. J. Am. Chem. Soc. 137, 10456–10459 (2015).

    Article  CAS  Google Scholar 

  196. Wasylishen, R. E., Knop, O. & Macdonald, J. B. Cation rotation in methylammonium lead halides. Solid State Commun. 56, 581–582 (1985).

    Article  CAS  Google Scholar 

  197. Leguy, A. M. A. et al. The dynamics of methylammonium ions in hybrid organic–inorganic perovskite solar cells. Nat. Commun. 6, 7124 (2015).

    Article  Google Scholar 

  198. Bakulin, A. A. et al. Real-time observation of organic cation reorientation in methylammonium lead iodide perovskites. J. Phys. Chem. Lett. 6, 3663–3669 (2015).

    Article  CAS  Google Scholar 

  199. Ehre, D., Rakita, Y., Hodes, G., Cahen, D. & Lubomirsky, I. Direct Experimental Evidence for Absence of Polarity in CH3NH3PbBr3 Crystals (MRS Fall Rump Session, 2015).

    Google Scholar 

  200. Wu, B. et al. Charge accumulation and hysteresis in perovskite-based solar cells: an electro-optical analysis. Adv. Energy Mater. 5, http://dx.doi.org/10.1002/aenm.201500829 (2015).

    Article  CAS  Google Scholar 

  201. Jena, A. K. et al. The interface between FTO and the TiO2 compact layer can be one of the origins to hysteresis in planar heterojunction perovskite solar cells. ACS Appl. Mater. Interfaces 7, 9817–9823 (2015).

    Article  CAS  Google Scholar 

  202. Nazeeruddin, M. K. & Snaith, H. Methylammonium lead triiodide perovskite solar cells: a new paradigm in photovoltaics. MRS Bull. 40, 641–645 (2015).

    Article  CAS  Google Scholar 

  203. O’Regan, B. C. et al. Optoelectronic studies of methylammonium lead iodide perovskite solar cells with mesoporous TiO2: separation of electronic and chemical charge storage, understanding two recombination lifetimes, and the evolution of band offsets during JV hysteresis. J. Am. Chem. Soc. 137, 5087–5099 (2015).

    Article  CAS  Google Scholar 

  204. Miyano, K., Yanagida, M., Tripathi, N. & Shirai, Y. Simple characterization of electronic processes in perovskite photovoltaic cells. Appl. Phys. Lett. 106, 093903 (2015).

    Article  CAS  Google Scholar 

  205. Hoke, E. T. et al. Charge Recombination and Transport in Hybrid Perovskite Solar Cells (MRS Fall Conference, 2013).

    Google Scholar 

  206. Unger, E. L. et al.Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci. 7, 3690–3698 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank M. Bonn, E. Canovas, V. Podzorov, O. Yaffe and S. Tretiak, for sharing preprints of their results. They thank I. Balberg, A. Kahn, L. Leiserowitz, I. Lubomirsky, O. M. Stafsudd and X. Y. Zhu for illuminating discussions. The authors' work is or was supported by the Leona M. and Harry B. Helmsley Charitable Trust, the Israel Ministry of Science, Israel National Nano-Initiative, a research grant from Dana and Yossie Hollander and the Austrian Science Fund (FWF):J3608−N20 (to D.A.E.). T.M.B. thanks the WIS for an Alternative Sustainable Energy Research Initiative (AERI) postdoctoral fellowship. D.C. holds the Sylvia and Rowland Schaefer Chair in Energy Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leeor Kronik, Gary Hodes or David Cahen.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brenner, T., Egger, D., Kronik, L. et al. Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat Rev Mater 1, 15007 (2016). https://doi.org/10.1038/natrevmats.2015.7

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2015.7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing