Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Design principles for therapeutic angiogenic materials

Abstract

Despite extensive research, pro-angiogenic drugs have failed to translate clinically, and therapeutic angiogenesis, which has potential in the treatment of various cardiovascular diseases, remains a major challenge. Physiologically, angiogenesis — the process of blood-vessel growth from existing vasculature — is regulated by a complex interplay of biophysical and biochemical cues from the extracellular matrix (ECM), angiogenic factors and multiple cell types. The ECM can be regarded as the natural 3D material that regulates angiogenesis. Here, we leverage knowledge of ECM properties to derive design rules for engineering pro-angiogenic materials. We propose that pro-angiogenic materials should be biomimetic, incorporate angiogenic factors and mimic cooperative interactions between growth factors and the ECM. We highlight examples of material designs that demonstrate these principles and considerations for designing better angiogenic materials.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clinical overview of cardiovascular diseases and pro-angiogenic factor-based therapies.
Figure 2: Multiscale microenvironmental regulation of angiogenesis.
Figure 3: Molecular changes directly regulate spatial cues within tissues.
Figure 4: Perturbation of extracellular matrix-mediated regulation of angiogenesis in disease.
Figure 5: Design rules for the development of pro-angiogenic materials.
Figure 6: Delivery systems for angiogenic factors.

Similar content being viewed by others

References

  1. Potente, M., Gerhardt, H. & Carmeliet, P. Basic and therapeutic aspects of angiogenesis. Cell 146, 873–887 (2011).

    CAS  Google Scholar 

  2. Carmeliet, P. Angiogenesis in life, disease and medicine. Nature 438, 932–936 (2005).

    CAS  Google Scholar 

  3. Clegg, L. E. & Mac Gabhan, F. Systems biology of the microvasculature. Integr. Biol. 7, 498–512 (2015).

    CAS  Google Scholar 

  4. Eming, S. A. & Hubbell, J. A. Extracellular matrix in angiogenesis: dynamic structures with translational potential. Exp. Dermatol. 20, 605–613 (2011).

    Google Scholar 

  5. Krock, B. L., Skuli, N. & Simon, M. C. Hypoxia-induced angiogenesis: good and evil. Genes Cancer 2, 1117–1133 (2011).

    Google Scholar 

  6. Semenza, G. L. Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology 19, 176–182 (2004).

    CAS  Google Scholar 

  7. Herbert, S. P. & Stainier, D. Y. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat. Rev. Mol. Cell Biol. 12, 551–564 (2011).

    CAS  Google Scholar 

  8. Arroyo, A. G. & Iruela-Arispe, M. L. Extracellular matrix, inflammation, and the angiogenic response. Cardiovasc. Res. 86, 226–235 (2010).

    CAS  Google Scholar 

  9. Schultz, G. S. & Wysocki, A. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen. 17, 153–162 (2009).

    Google Scholar 

  10. Ruhrberg, C. et al. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev. 16, 2684–2698 (2002).

    CAS  Google Scholar 

  11. Vempati, P., Popel, A. S. & Mac Gabhann, F. Extracellular regulation of VEGF: isoforms, proteolysis, and vascular patterning. Cytokine Growth Factor Rev. 25, 1–19 (2014).

    CAS  Google Scholar 

  12. Mahabeleshwar, G. H., Feng, W., Reddy, K., Plow, E. F. & Byzova, T. V. Mechanisms of integrin–vascular endothelial growth factor receptor cross-activation in angiogenesis. Circ. Res. 101, 570–580 (2007).

    CAS  Google Scholar 

  13. Somanath, P. R., Ciocea, A. & Byzova, T. V. Integrin and growth factor receptor alliance in angiogenesis. Cell Biochem. Biophys. 53, 53–64 (2008).

    Google Scholar 

  14. Streuli, C. H. & Akhtar, N. Signal co-operation between integrins and other receptor systems. Biochem. J. 418, 491–506 (2009).

    CAS  Google Scholar 

  15. Wijelath, E. S. et al. Heparin-II domain of fibronectin is a vascular endothelial growth factor-binding domain: enhancement of VEGF biological activity by a singular growth factor/matrix protein synergism. Circ. Res. 99, 853–860 (2006). This study details how fibronectin mediates synergistic signalling between VEGFR2 and the integrin α5β1, and the consequences on EC behaviour.

    CAS  Google Scholar 

  16. Martino, M. M. et al. Engineering the growth factor microenvironment with fibronectin domains to promote wound and bone tissue healing. Sci. Transl. Med. 3, 100ra89 (2011).

    Google Scholar 

  17. Kim, S. H., Turnbull, J. & Guimond, S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J. Endocrinol. 209, 139–151 (2011).

    CAS  Google Scholar 

  18. Armulik, A., Abramsson, A. & Betsholtz, C. Endothelial/pericyte interactions. Circ. Res. 97, 512–523 (2005).

    CAS  Google Scholar 

  19. Gaengel, K., Genove, G., Armulik, A. & Betsholtz, C. Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler. Thromb. Vasc. Biol. 29, 630–638 (2009).

    CAS  Google Scholar 

  20. Ribatti, D., Nico, B. & Crivellato, E. The role of pericytes in angiogenesis. Int. J. Dev. Biol. 55, 261–268 (2011).

    CAS  Google Scholar 

  21. Davis, G. E. & Senger, D. R. Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ. Res. 97, 1093–1107 (2005).

    CAS  Google Scholar 

  22. Lee, S., Jilani, S. M., Nikolova, G. V., Carpizo, D. & Iruela-Arispe, M. L. Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J. Cell Biol. 169, 681–691 (2005).

    CAS  Google Scholar 

  23. Roy, R., Zhang, B. & Moses, M. A. Making the cut: protease-mediated regulation of angiogenesis. Exp. Cell Res. 312, 608–622 (2006).

    CAS  Google Scholar 

  24. van Hinsbergh, V. W. & Koolwijk, P. Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc. Res. 78, 203–212 (2008).

    CAS  Google Scholar 

  25. Ehrbar, M. et al. The role of actively released fibrin-conjugated VEGF for VEGF receptor 2 gene activation and the enhancement of angiogenesis. Biomaterials 29, 1720–1729 (2008).

    CAS  Google Scholar 

  26. Martino, M. M. & Hubbell, J. A. The 12th–14th type III repeats of fibronectin function as a highly promiscuous growth factor-binding domain. FASEB J. 24, 4711–4721 (2010).

    CAS  Google Scholar 

  27. Lin, Y.-D. et al. Instructive nanofiber scaffolds with VEGF create a microenvironment for arteriogenesis and cardiac repair. Sci. Transl. Med. 4, 146ra109 (2012).

    Google Scholar 

  28. Martino, M. M., Briquez, P. S., Ranga, A., Lutolf, M. P. & Hubbell, J. A. Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proc. Natl Acad. Sci. USA 110, 4563–4568 (2013).

    CAS  Google Scholar 

  29. Phelps, E. A., Landazuri, N., Thule, P. M., Taylor, W. R. & Garcia, A. J. Bioartificial matrices for therapeutic vascularization. Proc. Natl Acad. Sci. USA 107, 3323–3328 (2010).

    CAS  Google Scholar 

  30. Silva, E. A. & Mooney, D. J. Spatiotemporal control of vascular endothelial growth factor delivery from injectable hydrogels enhances angiogenesis. J. Thromb. Haemost. 5, 590–598 (2007).

    CAS  Google Scholar 

  31. Martino, M. M. et al. Growth factors engineered for super-affinity to the extracellular matrix enhance tissue healing. Science 343, 885–888 (2014). This study demonstrates a broadly applicable growth factor-engineering strategy to control growth factor delivery through exogenous and endogenous matrices and strongly enhance tissue repair, including angiogenesis in diabetic wounds.

    CAS  Google Scholar 

  32. Sacchi, V. et al. Long-lasting fibrin matrices ensure stable and functional angiogenesis by highly tunable, sustained delivery of recombinant VEGF164 . Proc. Natl Acad. Sci. USA 111, 6952–6957 (2014).

    CAS  Google Scholar 

  33. Yoo, S. Y. & Kwon, S. M. Angiogenesis and its therapeutic opportunities. Mediators Inflamm. 2013, 127170 (2013).

    Google Scholar 

  34. Martino, M. M. et al. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine. Front. Bioeng. Biotechnol. 3, 45 (2015).

    Google Scholar 

  35. Prabhu, V. V., Chidambaranathan, N. & Gopal, V. A. Historical review on current medication and therapies for inducing and inhibiting angiogenesis. J. Chem. Pharm. Res. 2, 526–533 (2011).

    Google Scholar 

  36. Simons, M. & Ware, J. A. Therapeutic angiogenesis in cardiovascular disease. Nat. Rev. Drug Discov. 2, 863–871 (2003).

    CAS  Google Scholar 

  37. Tongers, J., Roncalli, J. G. & Losordo, D. W. Therapeutic angiogenesis for critical limb ischemia: microvascular therapies coming of age. Circulation 118, 9–16 (2008).

    Google Scholar 

  38. Ruel, M. et al. Long-term effects of surgical angiogenic therapy with fibroblast growth factor 2 protein. J. Thorac. Cardiovasc. Surg. 124, 28–34 (2002).

    CAS  Google Scholar 

  39. Briquez, P. S., Hubbell, J. A. & Martino, M. M. Extracellular matrix-inspired growth factor delivery systems for skin wound healing. Adv. Wound Care 4, 479–489 (2015).

    Google Scholar 

  40. Rhodes, J. M. & Simons, M. The extracellular matrix and blood vessel formation: not just a scaffold. J. Cell. Mol. Med. 11, 176–205 (2007).

    CAS  Google Scholar 

  41. George, E. L., Georges-Labouesse, E. N., Patel-King, R. S., Rayburn, H. & Hynes, R. O. Defects in mesoderm, neural-tube and vascular development in mouse embryos lacking fibronectin. Development 4, 1079–1091 (1993).

    Google Scholar 

  42. Edgar, L. T., Hoying, J. B. & Weiss, J. A. In silico investigation of angiogenesis with growth and stress generation coupled to local extracellular matrix density. Ann. Biomed. Eng. 43, 1531–1542 (2015).

    Google Scholar 

  43. Bordeleau, F. et al. Tissue stiffness regulates serine/arginine-rich protein-mediated splicing of the extra domain B-fibronectin isoform in tumors. Proc. Natl Acad. Sci. USA 27, 8314–8319 (2015).

    Google Scholar 

  44. Kim, S., Harris, M. & Varner, J. A. Regulation of integrin αvβ3-mediated endothelial cell migration and angiogenesis by integrin α5β1 and protein kinase A. J. Biol. Chem. 275, 33920–33928 (2000).

    CAS  Google Scholar 

  45. Davis, G. E., Bayless, K. J. & Mavila, A. Molecular basis of endothelial cell morphogenesis in three-dimensional extracellular matrices. Anat. Rec. 268, 252–275 (2002).

    CAS  Google Scholar 

  46. Grainger, S. & Putnam, A. in Mechanical and Chemical Signaling in Angiogenesis. Studies in Mechanobiology, Tissue Engineering and Biomaterials (ed. Reinhart-King, C. ) 185–209 (Springer, 2013).

    Google Scholar 

  47. Hodivala-Dilke, K. M., Reynolds, A. R. & Reynolds, L. E. Integrins in angiogenesis: multitalented molecules in a balancing act. Cell Tissue Res. 314, 131–144 (2003).

    CAS  Google Scholar 

  48. Koch, S., Tugues, S., Li, X., Gualandi, L. & Claesson-Welsh, L. Signal transduction by vascular endothelial growth factor receptors. Biochem. J. 437, 169–183 (2011).

    CAS  Google Scholar 

  49. Olsson, A. K., Dimberg, A., Kreuger, J. & Claesson-Welsh, L. VEGF receptor signalling — in control of vascular function. Nat. Rev. Mol. Cell Biol. 7, 359–371 (2006).

    CAS  Google Scholar 

  50. Hoier, B. et al. Angiogenic response to passive movement and active exercise in individuals with peripheral arterial disease. J. Appl. Physiol. 115, 1777–1787 (2013).

    CAS  Google Scholar 

  51. Hoier, B. et al. Pro- and anti-angiogenic factors in human skeletal muscle in response to acute exercise and training. J. Physiol. 590, 595–606 (2012).

    CAS  Google Scholar 

  52. Kut, C., Mac Gabhann, F. & Popel, A. S. Where is VEGF in the body? A meta-analysis of VEGF distribution in cancer. Br. J. Cancer 97, 978–985 (2007).

    CAS  Google Scholar 

  53. Vempati, P., Popel, A. S. & Mac Gabhann, F. Formation of VEGF isoform-specific spatial distributions governing angiogenesis: computational analysis. BMC Syst. Biol. 5, 59 (2011).

    CAS  Google Scholar 

  54. Mac Gabhann, F. & Popel, A. S. Systems biology of vascular endothelial growth factors. Microcirculation 15, 715–738 (2008).

    CAS  Google Scholar 

  55. Ballmer-Hofer, K., Andersson, A. E., Ratcliffe, L. E. & Berger, P. Neuropilin-1 promotes VEGFR-2 trafficking through Rab11 vesicles thereby specifying signal output. Blood 118, 816–826 (2011).

    CAS  Google Scholar 

  56. Park, J. E., Keller, G. A. & Ferrara, N. Vascular endothelial growth-factor (VEGF) isoforms - differential deposition into the subepithelial extracellular-matrix and bioactivity of extracellular matrix-bound VEGF. Mol. Biol. Cell 4, 1317–1326 (1993).

    CAS  Google Scholar 

  57. Grunstein, J., Masbad, J. J., Hickey, R., Giordano, F. & Johnson, R. S. Isoforms of vascular endothelial growth factor act in a coordinate fashion to recruit and expand tumor vasculature. Mol. Cell. Biol. 20, 7282–7291 (2000).

    CAS  Google Scholar 

  58. Cordon-Cardo, C., Vlodavsky, I., Haimovitz-Friedman, A. H. D. & Fuks, Z. Expression of basic fibroblast growth factor in normal human tissues. Lab Invest. 6, 832–840 (1990).

    Google Scholar 

  59. Jin-No, K., Tanimizu, M., Hyodo, I., Kurimoto, F. & Yamashita, T. Plasma level of basic fibroblast growth factor increases with progression of chronic liver disease. J. Gastroenterol. 1, 119–121 (1997).

    Google Scholar 

  60. Kuwabara, K. et al. Hypoxia-mediated induction of acidic/basic fibroblast growth factor and platelet-derived growth factor in mononuclear phagocytes stimulates growth of hypoxic endothelial cells. Proc. Natl Acad. Sci. USA 92, 4606–4610 (1995).

    CAS  Google Scholar 

  61. Wang, L. et al. The effect of hypoxia on expression of basic fibroblast growth factor in pulmonary vascular pericytes. J. Tongji Med. Univ. 4, 265–267 (2000).

    Google Scholar 

  62. Presta, M. et al. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 16, 159–178 (2005).

    CAS  Google Scholar 

  63. Forsten, K. E., Fannon, M. & Nugent, M. A. Potential mechanisms for the regulation of growth factor binding by heparin. J. Theor. Biol. 205, 215–230 (2000).

    CAS  Google Scholar 

  64. Forsten-Williams, K., Chua, C. C. & Nugent, M. A. The kinetics of FGF-2 binding to heparan sulfate proteoglycans and MAP kinase signaling. J. Theor. Biol. 233, 483–499 (2005).

    CAS  Google Scholar 

  65. Delehedde, M. et al. Fibroblast growth factor-2 stimulation of p42/44MAPK phosphorylation and IκB degradation is regulated by heparan sulfate/heparin in rat mammary fibroblasts. J. Biol. Chem. 275, 33905–33910 (2000).

    CAS  Google Scholar 

  66. Andrae, J., Gallini, R. & Betsholtz, C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 22, 1276–1312 (2008).

    CAS  Google Scholar 

  67. Cenni, E. et al. Plasma levels of platelet-derived growth factor BB and transforming growth in patients with failed hip prostheses. Acta Orthopaed. 76, 61–66 (2005).

    Google Scholar 

  68. Kelly, J. L., Sanchez, A., Brown, G. S., Chesterman, C. N. & Sleigh, M. J. Accumulation of PDGF-BB and cell-binding form of PDGF-A in the extracellular matrix. J. Cell Biol. 121, 1153–1163 (1993).

    CAS  Google Scholar 

  69. Soyombo, A. A. & Dicorleto, P. E. Stable expression of human platelet-derived growth factor-B chain by bovin aortic endothelial cells — matrix association and selective proteolytic cleavage by thrombin. J. Biol. Chem. 269, 17734–17740 (1994).

    CAS  Google Scholar 

  70. Lindblom, P. et al. Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev. 17, 1835–1840 (2003).

    CAS  Google Scholar 

  71. Abramsson, A. et al. Analysis of mural cell recruitment to tumor vessels. Circulation 105, 112–117 (2002).

    CAS  Google Scholar 

  72. Carlson, T. R., Feng, Y. Z., Maisonpierre, P. C., Mrksich, M. & Morla, A. O. Direct cell adhesion to the angiopoietins mediated by integrins. J. Biol. Chem. 276, 26516–26525 (2001).

    CAS  Google Scholar 

  73. Cascone, I., Napione, L., Maniero, F., Serini, G. & Bussolino, F. Stable interaction between α5β1 integrin and Tie2 tyrosine kinase receptor regulates endothelial cell response to Ang-1. J. Cell Biol. 170, 993–1004 (2005).

    CAS  Google Scholar 

  74. Zhang, J. et al. Angiopoietin-1/Tie2 signal augments basal Notch signal controlling vascular quiescence by inducing δ-like 4 expression through AKT-mediated activation of β-catenin. J. Biol. Chem. 286, 8055–8066 (2011).

    CAS  Google Scholar 

  75. Kofler, N. M. et al. Notch signaling in developmental and tumor angiogenesis. Genes Cancer 2, 1106–1116 (2011).

    Google Scholar 

  76. Augustin, H. G., Koh, G. Y., Thurston, G. & Alitalo, K. Control of vascular morphogenesis and homeostasis through the angiopoietin–Tie system. Nat. Rev. Mol. Cell Biol. 10, 165–177 (2009).

    CAS  Google Scholar 

  77. Mosch, B., Reissenweber, B., Neuber, C. & Pietzsch, J. Eph receptors and ephrin ligands: important players in angiogenesis and tumor angiogenesis. J. Oncol. 2010, 135285–135285 (2010).

    Google Scholar 

  78. Sawamiphak, S. et al. Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature 465, 487–491 (2010).

    CAS  Google Scholar 

  79. Marston, D. J., Dickinson, S. & Nobes, C. D. Rac-dependent trans-endocytosis of ephrinBs regulates Eph–ephrin contact repulsion. Nat. Cell Biol. 5, 879–888 (2003).

    CAS  Google Scholar 

  80. Mac Gabhann, F. & Popel, A. S. Interactions of VEGF isoforms with VEGFR-1, VEGFR-2, and neuropilin in vivo: a computational model of human skeletal muscle. Am. J. Physiol. Heart Circ. Physiol. 292, H459–H474 (2007).

    CAS  Google Scholar 

  81. Filion, R. J. & Popel, A. S. Intracoronary administration of FGF-2: a computational model of myocardial deposition and retention. Am. J. Physiol. Heart Circ. Physiol. 288, H263–H279 (2005).

    CAS  Google Scholar 

  82. Fannon, M. et al. Binding inhibition of angiogenic factors by heparan sulfate proteoglycans in aqueous humor: potential mechanism for maintenance of an avascular environment. FASEB J. 17, 902–904 (2003).

    CAS  Google Scholar 

  83. Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439–442 (1996).

    CAS  Google Scholar 

  84. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439 (1996).

    CAS  Google Scholar 

  85. Stefanini, M. O., Wu, F. T., Mac Gabhann, F. & Popel, A. S. A compartment model of VEGF distribution in blood, healthy and diseased tissues. BMC Syst. Biol. 2, 77 (2008).

    Google Scholar 

  86. Anderson, S. M. et al. VEGF internalization is not required for VEGFR-2 phosphorylation in bioengineered surfaces with covalently linked VEGF. Integr. Biol. 3, 887–896 (2011).

    CAS  Google Scholar 

  87. Chen, T. T. et al. Anchorage of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells. J. Cell Biol. 188, 595–609 (2010).

    CAS  Google Scholar 

  88. Clegg, L. W. & Mac Gabhann, F. Site-specific phosphorylation of VEGFR2 is mediated by receptor trafficking: insights from a computational model. PLoS Comput. Biol. 11, e1004158 (2015). This computational study demonstrates that reduced internalization of VEGFR2 complexes formed by ECM-immobilized VEGFs can account for experimentally observed changes in VEGFR2 signalling compared with VEGFR2 complexes formed by soluble VEGFs.

    Google Scholar 

  89. Smith, J. C., Singh, J. P., Lillquist, J. S., Goon, D. S. & Stiles, C. D. Growth factors adherent to cell substrate are mitogenically active in situ. Nature 296, 154–156 (1982).

    CAS  Google Scholar 

  90. Baird, A. & Ling, N. Fibroblast growth factors are present in the extracellular-matrix produced by endothelial cells in vitro — implications for a role of heparinase-like enzymes in the neovascular response. Biochem. Biophys. Res. Commun. 142, 428–435 (1987).

    CAS  Google Scholar 

  91. Saksela, O. & Rifkin, D. B. Release of basic fibroblast growth factor–heparan sulfate complexes from endothelial cells by plasminogen activator-mediated proteolytic activity. J. Cell Biol. 110, 767–775 (1990).

    CAS  Google Scholar 

  92. Ferrara, N. Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action. Mol. Biol. Cell 21, 687–690 (2010). This paper focuses on VEGFA as a paradigm to explain how native and proteolytically processed affinities between angiogenic factors and the ECM modulate the angiogenic response.

    CAS  Google Scholar 

  93. Vempati, P., Mac Gabhann, F. & Popel, A. S. Quantifying the proteolytic release of extracellular matrix-sequestered VEGF with a computational model. PLoS ONE 5, e11860 (2010).

    Google Scholar 

  94. Miyamoto, S., Teramoto, H., Gutkind, J. S. & Yamada, K. M. Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: roles of integrin aggregation and occupancy of receptors. J. Cell Biol. 135, 1633–1642 (1996).

    CAS  Google Scholar 

  95. Sepp, N. T. et al. Basic fibroblast growth factor increases expression of the ανβ3 integrin complex on human microvascular endothelial cells. J. Invest. Dermatol. 103, 295–299 (1994).

    CAS  Google Scholar 

  96. Masson-Gadais, B., Houle, F., Laferriere, J. & Huot, J. Integrin ανβ3 requirement for VEGFR2-mediated activation of SAPK2/p38 and for Hsp90-dependent phosphorylation of focal adhesion kinase in endothelial cells activated by VEGF. Cell Stress Chaperones 8, 37–52 (2003).

    CAS  Google Scholar 

  97. Hodivala-Dilke, K. ανβ3 integrin and angiogenesis: a moody integrin in a changing environment. Curr. Opin. Cell Biol. 20, 514–519 (2008).

    CAS  Google Scholar 

  98. Somanath, P. R., Malinin, N. L. & Byzova, T. V. Cooperation between integrin ανβ3 and VEGFR2 in angiogenesis. Angiogenesis 12, 177–185 (2009).

    CAS  Google Scholar 

  99. Francis, S. E. et al. Central roles of α5β1 integrin and fibronectin in vascular development in mouse embryos and embryoid bodies. Arterioscler. Thromb. Vasc. Biol. 22, 927–933 (2002).

    CAS  Google Scholar 

  100. Tsou, R. & Isik, F. F. Integrin activation is required for VEGF and FGF receptor protein presence on human microvascular endothelial cells. Mol. Cell. Biochem. 224, 81–89 (2001).

    CAS  Google Scholar 

  101. Enenstein, J., Waleh, N. S. & Kramer, R. H. Basic FGF and TGF-β differentially modulate integrin expression of microvascular endothelial cells. Exp. Cell Res. 203, 499–503 (1992).

    CAS  Google Scholar 

  102. Klein, S. et al. Basic fibroblast growth-factor modulates integrin expression in microvascular endothelial cells. Mol. Biol. Cell 4, 973–982 (1993).

    CAS  Google Scholar 

  103. Byzova, T. V. et al. A mechanism for modulation of cellular responses to VEGF: activation of the integrins. Mol. Cell 6, 851–860 (2000).

    CAS  Google Scholar 

  104. Valdembri, D. et al. Neuropilin-1/GIPC1 signaling regulates α5β1 integrin traffic and function in endothelial cells. PLoS Biol. 7, 115–132 (2009).

    CAS  Google Scholar 

  105. Robinson, S. D. et al. ανβ3 integrin limits the contribution of neuropilin-1 to vascular endothelial growth factor-induced angiogenesis. J. Biol. Chem. 284, 33966–33981 (2009).

    CAS  Google Scholar 

  106. Baum, O., Djonov, V., Ganster, M., Widmer, M. & Baumgartner, I. Arteriolization of capillaries and FGF-2 upregulation in skeletal muscles of patients with chronic peripheral arterial disease. Microcirculation 12, 527–537 (2005).

    CAS  Google Scholar 

  107. Kikuchi, R. et al. An antiangiogenic isoform of VEGF-A contributes to impaired vascularization in peripheral artery disease. Nat. Med. 20, 1464–1471 (2014).

    CAS  Google Scholar 

  108. Ngo, D. T. M. et al. Antiangiogenic actions of vascular endothelial growth factor-A165b, an inhibitory isoform of vascular endothelial growth factor-A, in human obesity. Circulation 130, 1072–1080 (2014).

    CAS  Google Scholar 

  109. Zisch, A. H., Lutolf, M. P. & Hubbell, J. A. Biopolymeric delivery matrices for angiogenic growth factors. Cardiovasc. Pathol. 12, 295–310 (2003).

    CAS  Google Scholar 

  110. Rice, J. J. et al. Engineering the regenerative microenvironment with biomaterials. Adv. Healthcare Mater. 2, 57–71 (2013).

    CAS  Google Scholar 

  111. Hoganson, D. M. et al. The retention of extracellular matrix proteins and angiogenic and mitogenic cytokines in a decellularized porcine dermis. Biomaterials 31, 6730–6737 (2010).

    CAS  Google Scholar 

  112. Hern, D. L. & Hubbell, J. A. Incorporation of adhesion peptide into nonadhesive hydrogels useful for tissue resurfacing. J. Biomed. Mater. Res. 39, 266–276 (1998).

    CAS  Google Scholar 

  113. Seliktar, D., Zisch, A. H., Lutolf, M. P., Wrana, J. L. & Hubbell, J. A. MMP-2 sensitive, VEGF-bearing bioactive hydrogels for promotion of vascular healing. J. Biomed. Mater. Res. A 68, 704–716 (2004).

    CAS  Google Scholar 

  114. Turturro, M. V. et al. MMP-sensitive PEG diacrylate hydrogels with spatial variations in matrix properties stimulate directional vascular sprout formation. PLoS ONE 8, e58897 (2013).

    CAS  Google Scholar 

  115. Kyburz, K. A. & Anseth, K. S. Synthetic mimics of the extracellular matrix: how simple is complex enough? Ann. Biomed. Eng. 43, 489–500 (2015).

    Google Scholar 

  116. Pompe, T., Markowski, M. & Werner, C. Modulated fibronectin anchorage at polymer substrates controls angiogenesis. Tissue Eng. 10, 841–848 (2004).

    CAS  Google Scholar 

  117. Yu, J. et al. The effect of injected RGD modified alginate on angiogenesis and left ventricular function in a chronic rat infarct model. Biomaterials 30, 751–756 (2009).

    CAS  Google Scholar 

  118. Moon, J. J. et al. Biomimetic hydrogels with pro-angiogenic properties. Biomaterials 31, 3840–3847 (2010).

    CAS  Google Scholar 

  119. Salimath, A. S. et al. Dual delivery of hepatocyte and vascular endothelial growth factors via a protease-degradable hydrogel improves cardiac function in rats. PLoS ONE 7, e50980 (2012).

    CAS  Google Scholar 

  120. Kumar, V. A. et al. Highly angiogenic peptide nanofibers. ACS Nano 9, 860–868 (2015).

    CAS  Google Scholar 

  121. Phelps, E. A., Templeman, K. L., Thule, P. M. & Garcia, A. J. Engineered VEGF-releasing PEG-MAL hydrogel for pancreatic islet vascularization. Drug Deliv. Transl. Res. 5, 125–136 (2015).

    CAS  Google Scholar 

  122. Wang, W. et al. Peptide REDV-modified polysaccharide hydrogel with endothelial cell selectivity for the promotion of angiogenesis. J. Biomed. Mater. Res. A 103, 1703–1712 (2015).

    Google Scholar 

  123. Park, K. M., Lee, Y., Son, J. Y., Bae, J. W. & Park, K. D. In situ SVVYGLR peptide conjugation into injectable gelatin-poly(ethylene glycol)-tyramine hydrogel via enzyme-mediated reaction for enhancement of endothelial cell activity and neo-vascularization. Bioconjug. Chem. 23, 2042–2050 (2012).

    CAS  Google Scholar 

  124. Mochizuki, M. et al. Angiogenic activity of syndecan-binding laminin peptide AG73 (RKRLQVQLSIRT). Arch. Biochem. Biophys. 459, 249–255 (2007).

    CAS  Google Scholar 

  125. Humphries, J. D., Byron, A. & Humphries, M. J. Integrin ligands at a glance. J. Cell Sci. 119, 3901–3903 (2006).

    CAS  Google Scholar 

  126. Pankov, R. & Yamada, K. M. Fibronectin at a glance. J. Cell Sci. 115, 3861–3863 (2002).

    CAS  Google Scholar 

  127. Wijelath, E. et al. Enhancement of capillary and cellular ingrowth in ePTFE implants with a proangiogenic recombinant construct derived from fibronectin. J. Biomed. Mater. Res. A 95, 641–648 (2010).

    Google Scholar 

  128. Najjar, M. et al. Fibrin gels engineered with pro-angiogenic growth factors promote engraftment of pancreatic islets in extrahepatic sites in mice. Biotechnol. Bioeng. 112, 1916–1926 (2015).

    CAS  Google Scholar 

  129. Brady, A. C. et al. Proangiogenic hydrogels within macroporous scaffolds enhance islet engraftment in an extrahepatic site. Tissue Eng. Part A 19, 2544–2552 (2013).

    CAS  Google Scholar 

  130. Zisch, A. H. et al. Engineered fibrin matrices for functional display of cell membrane-bound growth factor-like activities: study of angiogenic signaling by ephrin-B2. Biomaterials 25, 3245–3257 (2004).

    CAS  Google Scholar 

  131. Moon, J. J., Lee, S. H. & West, J. L. Synthetic biomimetic hydrogels incorporated with ephrin-A1 for therapeutic angiogenesis. Biomacromolecules 8, 42–49 (2007).

    CAS  Google Scholar 

  132. Mahoney, M. J. & Anseth, K. S. Three-dimensional growth and function of neural tissue in degradable polyethylene glycol hydrogels. Biomaterials 27, 2265–2274 (2006).

    CAS  Google Scholar 

  133. MacArthur, J. W. Jr et al. Sustained release of engineered stromal cell-derived factor 1-α from injectable hydrogels effectively recruits endothelial progenitor cells and preserves ventricular function after myocardial infarction. Circulation 128, S79–S86 (2013).

    CAS  Google Scholar 

  134. Boontheekul, T., Kong, H. J. & Mooney, D. J. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials 26, 2455–2465 (2005).

    CAS  Google Scholar 

  135. Kim, J. et al. Synthesis and characterization of matrix metalloprotease sensitive-low molecular weight hyaluronic acid based hydrogels. J. Mater. Sci. Mater. Med. 19, 3311–3318 (2008).

    CAS  Google Scholar 

  136. Hanjaya-Putra, D. et al. Spatial control of cell-mediated degradation to regulate vasculogenesis and angiogenesis in hyaluronan hydrogels. Biomaterials 33, 6123–6131 (2012).

    CAS  Google Scholar 

  137. Song, M. et al. Regeneration of chronic myocardial infarction by injectable hydrogels containing stem cell homing factor SDF-1 and angiogenic peptide Ac-SDKP. Biomaterials 35, 2436–2445 (2014).

    CAS  Google Scholar 

  138. Nagase, H. & Fields, G. B. Human matrix metalloproteinase specificity studies using collagen sequence-based synthetic peptides. Biopolymers 40, 399–416 (1996).

    CAS  Google Scholar 

  139. Turk, B. E., Huang, L. L., Piro, E. T. & Cantley, L. C. Determination of protease cleavage site motifs using mixture-based oriented peptide libraries. Nat. Biotechnol. 19, 661–667 (2001).

    CAS  Google Scholar 

  140. Patterson, J. & Hubbell, J. A. Enhanced proteolytic degradation of molecularly engineered PEG hydrogels in response to MMP-1 and MMP-2. Biomaterials 31, 7836–7845 (2010).

    CAS  Google Scholar 

  141. Patterson, J. & Hubbell, J. A. SPARC-derived protease substrates to enhance the plasmin sensitivity of molecularly engineered PEG hydrogels. Biomaterials 32, 1301–1310 (2011).

    CAS  Google Scholar 

  142. Sun, Q. et al. Sustained release of multiple growth factors from injectable polymeric system as a novel therapeutic approach towards angiogenesis. Pharm. Res. 27, 264–271 (2010).

    CAS  Google Scholar 

  143. Shvartsman, D. et al. Sustained delivery of VEGF maintains innervation and promotes reperfusion in ischemic skeletal muscles via NGF/GDNF signaling. Mol. Ther. 22, 1243–1253 (2014).

    CAS  Google Scholar 

  144. Sun, G. et al. Functional neovascularization of biodegradable dextran hydrogels with multiple angiogenic growth factors. Biomaterials 32, 95–106 (2011).

    Google Scholar 

  145. Peattie, R. A. et al. Stimulation of in vivo angiogenesis by cytokine-loaded hyaluronic acid hydrogel implants. Biomaterials 25, 2789–2798 (2004).

    CAS  Google Scholar 

  146. Rufaihah, A. J. et al. Enhanced infarct stabilization and neovascularization mediated by VEGF-loaded PEGylated fibrinogen hydrogel in a rodent myocardial infarction model. Biomaterials 34, 8195–8202 (2013).

    CAS  Google Scholar 

  147. Kimura, Y. & Tabata, Y. Controlled release of stromal-cell-derived factor-1 from gelatin hydrogels enhances angiogenesis. J. Biomater. Sci. Polym. Ed. 21, 37–51 (2010).

    CAS  Google Scholar 

  148. Ennett, A. B., Kaigler, D. & Mooney, D. J. Temporally regulated delivery of VEGF in vitro and in vivo. J. Biomed. Mater. Res. 79, 176–184 (2006).

    Google Scholar 

  149. Macri, L., Silverstein, D. & Clark, R. A. Growth factor binding to the pericellular matrix and its importance in tissue engineering. Adv. Drug Deliv. Rev. 59, 1366–1381 (2007).

    CAS  Google Scholar 

  150. Sarrazin, S., Lamanna, W. C. & Esko, J. D. Heparan sulfate proteoglycans. Cold Spring Harb. Perspect. Biol. 3, a004952 (2011).

    Google Scholar 

  151. Pike, D. B. et al. Heparin-regulated release of growth factors in vitro and angiogenic response in vivo to implanted hyaluronan hydrogels containing VEGF and bFGF. Biomaterials 27, 5242–5251 (2006).

    CAS  Google Scholar 

  152. Nillesen, S. T. et al. Increased angiogenesis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF2 and VEGF. Biomaterials 28, 1123–1131 (2007).

    CAS  Google Scholar 

  153. Liu, Y., Cai, S., Shu, X. Z., Shelby, J. & Prestwich, G. D. Release of basic fibroblast growth factor from a crosslinked glycosaminoglycan hydrogel promotes wound healing. Wound Repair Regen. 15, 245–251 (2007).

    Google Scholar 

  154. Ruvinov, E., Leor, J. & Cohen, S. The effects of controlled HGF delivery from an affinity-binding alginate biomaterial on angiogenesis and blood perfusion in a hindlimb ischemia model. Biomaterials 31, 4573–4582 (2010).

    CAS  Google Scholar 

  155. Singh, S., Wu, B. M. & Dunn, J. C. The enhancement of VEGF-mediated angiogenesis by polycaprolactone scaffolds with surface cross-linked heparin. Biomaterials 32, 2059–2069 (2011).

    CAS  Google Scholar 

  156. Chow, L. W. et al. A bioactive self-assembled membrane to promote angiogenesis. Biomaterials 32, 1574–1582 (2011).

    CAS  Google Scholar 

  157. Awada, H. K., Johnson, N. R. & Wang, Y. Sequential delivery of angiogenic growth factors improves revascularization and heart function after myocardial infarction. J. Control. Release 207, 7–17 (2015).

    CAS  Google Scholar 

  158. Zieris, A. et al. Dual independent delivery of pro-angiogenic growth factors from starPEG–heparin hydrogels. J. Control. Release 156, 28–36 (2011).

    CAS  Google Scholar 

  159. Prokoph, S. et al. Sustained delivery of SDF-1α from heparin-based hydrogels to attract circulating pro-angiogenic cells. Biomaterials 33, 4792–4800 (2012).

    CAS  Google Scholar 

  160. Wang, C. et al. Engineering a vascular endothelial growth factor 165-binding heparan sulfate for vascular therapy. Biomaterials 35, 6776–6786 (2014).

    CAS  Google Scholar 

  161. Impellitteri, N. A., Toepke, M. W., Lan Levengood, S. K. & Murphy, W. L. Specific VEGF sequestering and release using peptide-functionalized hydrogel microspheres. Biomaterials 33, 3475–3484 (2012).

    CAS  Google Scholar 

  162. Belair, D. G., Khalil, A. S., Miller, M. J. & Murphy, W. L. Serum-dependence of affinity-mediated VEGF release from biomimetic microspheres. Biomacromolecules 15, 2038–2048 (2014).

    CAS  Google Scholar 

  163. Zisch, A. H. et al. Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. FASEB J. 17, 2260–2262 (2003).

    CAS  Google Scholar 

  164. Phelps, E. A., Headen, D. M., Taylor, W. R., Thule, P. M. & Garcia, A. J. Vasculogenic bio-synthetic hydrogel for enhancement of pancreatic islet engraftment and function in type 1 diabetes. Biomaterials 34, 4602–4611 (2013).

    CAS  Google Scholar 

  165. Ehrbar, M. et al. Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth. Circul. Res. 94, 1124–1132 (2004).

    CAS  Google Scholar 

  166. Ehrbar, M. et al. Enzymatic formation of modular cell-instructive fibrin analogs for tissue engineering. Biomaterials 28, 3856–3866 (2007).

    CAS  Google Scholar 

  167. Traub, S. et al. The promotion of endothelial cell attachment and spreading using FNIII10 fused to VEGF-A165 . Biomaterials 34, 5958–5968 (2013).

    CAS  Google Scholar 

  168. Richardson, T. P., Peters, M. C., Ennett, A. B. & Mooney, D. J. Polymeric system for dual growth factor delivery. Nat. Biotechnol. 19, 1029–1034 (2001).

    CAS  Google Scholar 

  169. Hao, X. et al. Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovasc. Res. 75, 178–185 (2007).

    CAS  Google Scholar 

  170. Brudno, Y., Ennett-Shepard, A. B., Chen, R. R., Aizenberg, M. & Mooney, D. J. Enhancing microvascular formation and vessel maturation through temporal control over multiple pro-angiogenic and pro-maturation factors. Biomaterials 34, 9201–9209 (2013). This study mimics the complexity of physiological angiogenesis by delivering multiple growth factors through biopolymer scaffolds, highlighting the importance of temporally controlled delivery in angiogenesis.

    CAS  Google Scholar 

  171. Chen, R. R., Silva, E. A., Yuen, W. W. & Mooney, D. J. Spatio-temporal VEGF and PDGF delivery patterns blood vessel formation and maturation. Pharm. Res. 24, 258–264 (2007).

    Google Scholar 

  172. Ehrbar, M., Metters, A., Zammaretti, P., Hubbell, J. A. & Zisch, A. H. Endothelial cell proliferation and progenitor maturation by fibrin-bound VEGF variants with differential susceptibilities to local cellular activity. J. Control. Release 101, 93–109 (2005).

    CAS  Google Scholar 

  173. Moriyama, M. et al. A novel synthetic derivative of human erythropoietin designed to bind to glycosaminoglycans. Drug Deliv. 19, 202–207 (2012).

    CAS  Google Scholar 

  174. Zhang, J. et al. Collagen-targeting vascular endothelial growth factor improves cardiac performance after myocardial infarction. Circulation 119, 1776–1784 (2009).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a US Department of Defense (DoD) National Defense Science & Engineering Graduate (NDSEG) Fellowship to L.E.C., by NIH R01HL101200, NIH R00HL093219, and a Sloan Research Fellowship to F.M.G., and by the grant Cytrix from the European Research Council to J.A.H.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feilim Mac Gabhann or Jeffrey A. Hubbell.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briquez, P., Clegg, L., Martino, M. et al. Design principles for therapeutic angiogenic materials. Nat Rev Mater 1, 15006 (2016). https://doi.org/10.1038/natrevmats.2015.6

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2015.6

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research