Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ionic liquids and their solid-state analogues as materials for energy generation and storage

Abstract

Salts that are liquid at room temperature, now commonly called ionic liquids, have been known for more than 100 years; however, their unique properties have only come to light in the past two decades. In this Review, we examine recent work in which the properties of ionic liquids have enabled important advances to be made in sustainable energy generation and storage. We discuss the use of ionic liquids as media for synthesis of electromaterials, for example, in the preparation of doped carbons, conducting polymers and intercalation electrode materials. Focusing on their intrinsic ionic conductivity, we examine recent reports of ionic liquids used as electrolytes in emerging high-energy-density and low-cost batteries, including Li-ion, Li–O2, Li–S, Na-ion and Al-ion batteries. Similar developments in electrolyte applications in dye-sensitized solar cells, thermo-electrochemical cells, double-layer capacitors and CO2 reduction are also discussed.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Ionothermal synthesis of hybrid IL–Co(OH)2 capacitor materials.
Figure 2: High rate cycling of lithium.
Figure 3: OIPC-based dye-sensitized solar cells.
Figure 4: Reaction pathways for the electrochemical reduction of CO2 at a lead electrode in acetonitrile.
Figure 5: Photo-driven water oxidation in butylammonium protic ILs.
Figure 6: Wastewater-driven microbial fuel cell.

References

  1. Smiglak, M. et al. Ionic liquids for energy, materials, and medicine. Chem. Commun. 50, 9228–9250 (2014).

    CAS  Google Scholar 

  2. MacFarlane, D. R. et al. Energy applications of ionic liquids. Energy Environ. Sci. 7, 232–250 (2014).

    CAS  Google Scholar 

  3. Ohno, H. Electrochemical Aspects of Ionic Liquids 2nd edn (Wiley, 2011).

    Google Scholar 

  4. Pringle, J. M., Forsyth, M. & MacFarlane, D. R. in Electrodeposition from Ionic Liquids (eds Endres, F., Abbott, A & MacFarlane, D. R. ) 167–211 (Wiley-VCH, 2008).

    Google Scholar 

  5. Endres, F., MacFarlane, D. R. & Abbott, A. P. Electrodepositon from Ionic Liquids 1st edn (2008).

    Google Scholar 

  6. Sandoval, A. P., Feliu, J. M., Torresi, R. M. & Suarez-Herrera, M. F. Electrochemical properties of poly(3,4-ethylenedioxythiophene) grown on Pt(111) in imidazolium ionic liquids. RSC Adv. 4, 3383–3391 (2014).

    CAS  Google Scholar 

  7. Dobbelin, M., Marcilla, R., Pozo-Gonzalo, C. & Mecerreyes, D. Innovative materials and applications based on poly(3,4-ethylenedioxythiophene) and ionic liquids. J. Mater. Chem. 20, 7613–7622 (2010).

    Google Scholar 

  8. Abdelhamid, M. E., Snook, G. A. & O'Mullane, A. P. Electropolymerisation of catalytically active PEDOT from an ionic liquid on a flexible carbon cloth using a sandwich cell configuration. ChemPlusChem 80, 74–82 (2015).

    CAS  Google Scholar 

  9. Astratine, L., Magner, E., Cassidy, J. & Betts, A. Electrodeposition and characterisation of copolymers based on pyrrole and 3,4-ethylenedioxythiophene in BMIM BF4 using a microcell configuration. Electrochim. Acta 115, 440–448 (2014).

    CAS  Google Scholar 

  10. Wang, Z. P. et al. Poly(thieno[3,4-b]-1,4-oxathiane): medium effect on electropolymerization and electrochromic performance. Langmuir 30, 15581–15589 (2014).

    CAS  Google Scholar 

  11. Kannan, B., Williams, D. E., Laslau, C. & Travas-Sejdic, J. The electrochemical growth of highly conductive single PEDOT (conducting polymer):BMIPF6 (ionic liquid) nanowires. J. Mater. Chem. 22, 18132–18135 (2012).

    CAS  Google Scholar 

  12. Carstens, T., Prowald, A., El Abedin, S. Z. & Endres, F. Electrochemical synthesis of PEDOT and PPP macroporous films and nanowire architectures from ionic liquids. J. Solid State Electrochem. 16, 3479–3485 (2012).

    CAS  Google Scholar 

  13. Lagoutte, S. et al. Poly(3-methylthiophene)/vertically aligned multi-walled carbon nanotubes: electrochemical synthesis, characterizations and electrochemical storage properties in ionic liquids. Electrochim. Acta 130, 754–765 (2014).

    CAS  Google Scholar 

  14. Descroix, S., Hallais, G., Lagrost, C. & Pinson, J. Regular poly(para-phenylene) films bound to gold surfaces through the electrochemical reduction of diazonium salts followed by electropolymerization in an ionic liquid. Electrochim. Acta 106, 172–180 (2013).

    CAS  Google Scholar 

  15. Wallace, G. G., Moulton, S. E., Kapsa, R. M. I. & Higgins, M. J. Organic Bionics (Wiley-VCH, 2012).

    Google Scholar 

  16. Du, Z. J., Luo, X., Weaver, C. L. & Cui, X. T. Poly(3,4-ethylenedioxythiophene)-ionic liquid coating improves neural recording and stimulation functionality of MEAs. J. Mater. Chem. C 3, 6515–6524 (2015).

    CAS  Google Scholar 

  17. Fellinger, T. P., Thomas, A., Yuan, J. Y. & Antonietti, M. 25th anniversary article: ‘Cooking carbon with salt’: carbon materials and carbonaceous frameworks from ionic liquids and poly(ionic liquid)s. Adv. Mater. 25, 5838–5854 (2013).

    CAS  Google Scholar 

  18. Lee, J. S., Wang, X. Q., Luo, H. M., Baker, G. A. & Dai, S. Facile ionothermal synthesis of microporous and mesoporous carbons from task specific ionic liquids. J. Am. Chem. Soc. 131, 4596–4597 (2009).

    CAS  Google Scholar 

  19. Zhang, S. G., Dokko, K. & Watanabe, M. Carbon materialization of ionic liquids: from solvents to materials. Mater. Horiz. 2, 168–197 (2015).

    CAS  Google Scholar 

  20. Paraknowitsch, J. P., Zhang, J., Su, D., Thomas, A. & Antonietti, M. Ionic liquids as precursors for nitrogen-doped graphitic carbon. Adv. Mater. 22, 87–92 (2010).

    CAS  Google Scholar 

  21. Fulvio, P. F. et al. A new family of fluidic precursors for the self-templated synthesis of hierarchical nanoporous carbons. Chem. Commun. 49, 7289–7291 (2013).

    CAS  Google Scholar 

  22. Fellinger, T. P., Hasche, F., Strasser, P. & Antonietti, M. Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide. J. Am. Chem. Soc. 134, 4072–4075 (2012).

    CAS  Google Scholar 

  23. Fechler, N., Fellinger, T. P. & Antonietti, M. ‘Salt templating’: a simple and sustainable pathway toward highly porous functional carbons from ionic liquids. Adv. Mater. 25, 75–79 (2013).

    CAS  Google Scholar 

  24. Zhang, S., Miran, M. S., Ikoma, A., Dokko, K. & Watanabe, M. Protic ionic liquids and salts as versatile carbon precursors. J. Am. Chem. Soc. 136, 1690–1693 (2014).

    CAS  Google Scholar 

  25. Zhang, S., Dokko, K. & Watanabe, M. Direct synthesis of nitrogen-doped carbon materials from protic ionic liquids and protic salts: structural and physicochemical correlations between precursor and carbon. Chem. Mater. 26, 2915–2926 (2014).

    CAS  Google Scholar 

  26. Zhang, S. G., Tsuzuki, S., Ueno, K., Dokko, K. & Watanabe, M. Upper limit of nitrogen content in carbon materials. Angew. Chem. Int. Ed. Engl. 54, 1302–1306 (2015).

    CAS  Google Scholar 

  27. Yang, W., Fellinger, T. P. & Antonietti, M. Efficient metal-free oxygen reduction in alkaline medium on high-surface-area mesoporous nitrogen-doped carbons made from ionic liquids and nucleobases. J. Am. Chem. Soc. 133, 206–209 (2011).

    CAS  Google Scholar 

  28. Elumeeva, K., Fechler, N., Fellinger, T. P. & Antonietti, M. Metal-free ionic liquid-derived electrocatalyst for high-performance oxygen reduction in acidic and alkaline electrolytes. Mater. Horiz. 1, 588–594 (2014).

    CAS  Google Scholar 

  29. Gong, K. P., Du, F., Xia, Z. H., Durstock, M. & Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009).

    CAS  Google Scholar 

  30. Cooper, E. R. et al. Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues. Nature 430, 1012–1016 (2004).

    CAS  Google Scholar 

  31. Barpanda, P., Djellab, K., Recham, N., Armand, M. & Tarascon, J. M. Direct and modified ionothermal synthesis of LiMnPO4 with tunable morphology for rechargeable Li-ion batteries. J. Mater. Chem. 21, 10143–10152 (2011).

    CAS  Google Scholar 

  32. Duan, X., Ma, J., Lian, J. & Zheng, W. The art of using ionic liquids in the synthesis of inorganic nanomaterials. CrystEngComm 16, 2550–2559 (2014).

    CAS  Google Scholar 

  33. Eshetu, G. G., Armand, M., Scrosati, B. & Passerini, S. Energy storage materials synthesized from ionic liquids. Angew. Chem. Int. Ed. Engl. 53, 13342–13359 (2014).

    Google Scholar 

  34. Liu, P. I. et al. Microwave-assisted ionothermal synthesis of nanostructured anatase titanium dioxide/activated carbon composite as electrode material for capacitive deionization. Electrochim. Acta 96, 173–179 (2013).

    CAS  Google Scholar 

  35. Teng, F. et al. Synergism of ionic liquid and surfactant molecules in the growth of LiFePO4 nanorods and the electrochemical performances. J. Power Sources 202, 384–388 (2012).

    CAS  Google Scholar 

  36. Xiao, Z. H., Cui, Q. Q., Li, X. L., Wang, H. L. & Zhou, Q. Ionothermal synthesis for Mg-doped LiMn1.5Ni0.5O4 spinel with structural stability and high-rate performance. Ionics 21, 1261–1267 (2015).

    CAS  Google Scholar 

  37. Duan, X. C. et al. Ionic liquid-modulated preparation of hexagonal tungsten trioxide mesocrystals for lithium-ion batteries. Nanoscale 7, 2230–2234 (2015).

    CAS  Google Scholar 

  38. Li, C. L., Yin, C. L., Mu, X. K. & Maier, J. Top-down synthesis of open framework fluoride for lithium and sodium batteries. Chem. Mater. 25, 962–969 (2013).

    CAS  Google Scholar 

  39. Jana, M. K., Rajendra, H. B., Bhattacharyya, A. J. & Biswas, K. Green ionothermal synthesis of hierarchical nanostructures of SnS2 and their Li-ion storage properties. CrystEngComm 16, 3994–4000 (2014).

    CAS  Google Scholar 

  40. Mali, S. S., Betty, C. A., Bhosale, P. N., Patil, P. S. & Hong, C. K. From nanocorals to nanorods to nanoflowers nanoarchitecture for efficient dye-sensitized solar cells at relatively low film thickness: all hydrothermal process. Sci. Rep. 4, 5451 (2014).

    CAS  Google Scholar 

  41. Chatel, G. & MacFarlane, D. R. Ionic liquids and ultrasound in combination: synergies and challenges. Chem. Soc. Rev. 43, 8132–8149 (2014).

    CAS  Google Scholar 

  42. Choi, B. G. et al. Enhanced pseudocapacitance of ionic liquid/cobalt hydroxide nanohybrids. ACS Nano 7, 2453–2460 (2013).

    CAS  Google Scholar 

  43. Lahiri, A., Olschewski, M., Carstens, T., Abedin, S. Z. & Endres, F. Electrodeposition of crystalline gallium-doped germanium and Six Ge1−x from an ionic liquid at room temperature. ChemElectroChem 2, 571–577 (2015).

    CAS  Google Scholar 

  44. Izgorodin, A., Izgorodina, E. & MacFarlane, D. R. Low overpotential water oxidation to hydrogen peroxide on a MnOx catalyst. Energy Environ. Sci. 5, 9496–9501 (2012).

    CAS  Google Scholar 

  45. Zhou, F. et al. Enhanced photo-electrochemical water oxidation on MnOx in buffered organic/inorganic electrolytes. J. Mater. Chem. A 3, 16642–16652 (2015).

    CAS  Google Scholar 

  46. Asnavandi, M., Suryanto, B. H. R. & Zhao, C. Controlled electrodeposition of nanostructured Pd thin films from protic ionic liquids for electrocatalytic oxygen reduction reactions. RSC Adv. 5, 74017–74023 (2015).

    CAS  Google Scholar 

  47. Shrestha, S. & Biddinger, E. J. Palladium electrodeposition in 1-butyl-1-methylpyrrolidinium dicyanamide ionic liquid. Electrochim. Acta 174, 254–263 (2015).

    CAS  Google Scholar 

  48. Murugesan, S. et al. Room temperature electrodeposition of molybdenum sulfide for catalytic and photoluminescence applications. ACS Nano 7, 8199–8205 (2013).

    CAS  Google Scholar 

  49. Serrà, A., Gómez, E. & Vallés, E. Novel electrodeposition media to synthesize CoNi-Pt Core@Shell stable mesoporous nanorods with very high active surface for methanol electro-oxidation. Electrochim. Acta 174, 630–639 (2015).

    Google Scholar 

  50. Kalhoff, J., Eshetu, G. G., Bresser, D. & Passerini, S. Safer electrolytes for lithium-ion batteries: state of the art and perspectives. ChemSusChem 8, 2154–2175 (2015).

    CAS  Google Scholar 

  51. Ponrouch, A. et al. Towards high energy density sodium ion batteries through electrolyte optimization. Energy Environ. Sci. 6, 2361–2369 (2013).

    CAS  Google Scholar 

  52. Scheers, J., Fantini, S. & Johansson, P. A review of electrolytes for lithium–sulphur batteries. J. Power Sources 255, 204–218 (2014).

    CAS  Google Scholar 

  53. Rosenman, A. et al. Review on Li–sulfur battery systems: an integral perspective. Adv. Energy Mater. 5, 1500212 (2015).

    Google Scholar 

  54. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J. M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).

    CAS  Google Scholar 

  55. Shao, Y. Y. et al. Making Li–air batteries rechargeable: material challenges. Adv. Funct. Mater. 23, 987–1004 (2013).

    CAS  Google Scholar 

  56. Kar, M., Simons, T. J., Forsyth, M. & MacFarlane, D. R. Ionic liquid electrolytes as a platform for rechargeable metal–air batteries: a perspective. Phys. Chem. Chem. Phys. 16, 18658–18674 (2014).

    CAS  Google Scholar 

  57. Elia, G. A. et al. An advanced lithium–air battery exploiting an ionic liquid-based electrolyte. Nano Lett. 14, 6572–6577 (2014).

    CAS  Google Scholar 

  58. Wu, F. et al. Ionic liquid electrolytes with protective lithium difluoro(oxalate)borate for high voltage lithium-ion batteries. Nano Energy 13, 546–553 (2015).

    CAS  Google Scholar 

  59. Wongittharom, N. et al. Ionic liquid electrolytes for high-voltage rechargeable Li/LiNi0.5Mn1.5O4 cells. J. Mater. Chem. A 2, 3613–3620 (2014).

    CAS  Google Scholar 

  60. Di Lecce, D., Brutti, S., Panero, S. & Hassoun, J. A new Sn-C/LiFe0.1Co0.9PO4 full lithium-ion cell with ionic liquid-based electrolyte. Mater. Lett. 139, 329–332 (2015).

    CAS  Google Scholar 

  61. Girard, G. M. A. et al. Electrochemical and physicochemical properties of small phosphonium cation ionic liquid electrolytes with high lithium salt content. Phys. Chem. Chem. Phys. 17, 8706–8713 (2015).

    CAS  Google Scholar 

  62. Tsunashima, K., Sakai, Y. & Matsumiya, M. Physical and electrochemical properties of phosphonium ionic liquids derived from trimethylphosphine. Electrochem. Commun. 39, 30–33 (2014).

    CAS  Google Scholar 

  63. Scarbath-Evers, L. K., Hunt, P. A., Kirchner, B., MacFarlane, D. R. & Zahn, S. Molecular features contributing to the lower viscosity of phosphonium ionic liquids compared to their ammonium analogues. Phys. Chem. Chem. Phys. 17, 20205–20216 (2015).

    CAS  Google Scholar 

  64. Yoon, H. et al. Lithium electrochemistry and cycling behaviour of ionic liquids using cyano based anions. Energy Environ. Sci. 6, 979–986 (2013).

    CAS  Google Scholar 

  65. Singh, R. P., Martin, J. L. & Poshusta, J. C. Synthesis of bis(fluorosulfonyl)imide. US Patent 8377406 (2013).

  66. Lahiri, A., Schubert, T. J. S., Iliev, B. & Endres, F. LiTFSI in 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)amide: a possible electrolyte for ionic liquid based lithium ion batteries. Phys. Chem. Chem. Phys. 17, 11161–11164 (2015).

    CAS  Google Scholar 

  67. Matsui, Y. et al. Charge–discharge characteristics of a LiNi1/3Mn1/3Co1/3O2 cathode in FSI-based ionic liquids. Electrochemistry 80, 808–811 (2012).

    CAS  Google Scholar 

  68. Yoon, H., Howlett, P. C., Best, A. S., Forsyth, M. & MacFarlane, D. R. Fast charge/discharge of Li metal batteries using an ionic liquid electrolyte. J. Electrochem. Soc. 160, A1629–A1637 (2013).

    CAS  Google Scholar 

  69. Yoon, H., Best, A. S., Forsyth, M., MacFarlane, D. R. & Howlett, P. C. Physical properties of high Li-ion content N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide based ionic liquid electrolytes. Phys. Chem. Chem. Phys. 17, 4656–4663 (2015).

    CAS  Google Scholar 

  70. Grande, L., Paillard, E., Kim, G. T., Monaco, S. & Passerini, S. Ionic liquid electrolytes for Li–air batteries: lithium metal cycling. Int. J. Mol. Sci. 15, 8122–8137 (2014).

    CAS  Google Scholar 

  71. Jang, I.-C., Ida, S. & Ishihara, T. Lithium depletion and the rechargeability of Li–O2 batteries in ether and carbonate electrolytes. ChemElectroChem 2, 1380–1384 (2015).

    CAS  Google Scholar 

  72. Piper, D. M. et al. Stable silicon–ionic liquid interface for next-generation lithium-ion batteries. Nat. Commun. 6, 6230 (2015).

    CAS  Google Scholar 

  73. Barghamadi, M. et al. Lithium–sulfur batteries — the solution is in the electrolyte, but is the electrolyte a solution? Energy Environ. Sci. 7, 3902–3920 (2014).

    CAS  Google Scholar 

  74. Zhang, S., Ueno, K., Dokko, K. & Watanabe, M. Recent advances in electrolytes for lithium–sulfur batteries. Adv. Energy Mater. 5, 1500117 (2015).

    Google Scholar 

  75. Park, J.-W., Ueno, K., Tachikawa, N., Dokko, K. & Watanabe, M. Ionic liquid electrolytes for lithium–sulfur batteries. J. Phys. Chem. C 117, 20531–20541 (2013).

    CAS  Google Scholar 

  76. Xiong, S. Z., Xie, K., Blomberg, E., Jacobsson, P. & Matic, A. Analysis of the solid electrolyte interphase formed with an ionic liquid electrolyte for lithium–sulfur batteries. J. Power Sources 252, 150–155 (2014).

    CAS  Google Scholar 

  77. Ueno, K. et al. Glyme–lithium salt equimolar molten mixtures: concentrated solutions or solvate ionic liquids? J. Phys. Chem. B 116, 11323–11331 (2012).

    CAS  Google Scholar 

  78. Li, F. J., Zhang, T., Yamada, Y., Yamada, A. & Zhou, H. S. Enhanced cycling performance of Li–O2 batteries by the optimized electrolyte concentration of LiTFSA in Glymes. Adv. Energy Mater. 3, 532–538 (2013).

    CAS  Google Scholar 

  79. Suo, L. M., Hu, Y. S., Li, H., Armand, M. & Chen, L. Q. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013).

    Google Scholar 

  80. Qian, J. F. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    CAS  Google Scholar 

  81. Lu, Y. Y., Korf, K., Kambe, Y., Tu, Z. Y. & Archer, L. A. Ionic-liquid–nanoparticle hybrid electrolytes: applications in lithium metal batteries. Angew. Chem. Int. Ed. Engl. 53, 488–492 (2014).

    CAS  Google Scholar 

  82. Guyomard-Lack, A. et al. Hybrid silica–polymer ionogel solid electrolyte with tunable properties. Adv. Energy Mater. 4, 1301570 (2014).

    Google Scholar 

  83. Jin, L. et al. An organic ionic plastic crystal electrolyte for rate capability and stability of ambient temperature lithium batteries. Energy Environ. Sci. 7, 3352–3361 (2014).

    CAS  Google Scholar 

  84. Howlett, P. C. et al. Thin and flexible solid-state organic ionic plastic crystal-polymer nanofibre composite electrolytes for device applications. Phys. Chem. Chem. Phys. 15, 13784–13789 (2013).

    CAS  Google Scholar 

  85. Iranipour, N. et al. Ionic transport through a composite structure of N-ethyl-N-methylpyrrolidinium tetrafluoroborate organic ionic plastic crystals reinforced with polymer nanofibres. J. Mater. Chem. A 3, 6038–6052 (2015).

    CAS  Google Scholar 

  86. Goodenough, J. B. Evolution of strategies for modern rechargeable batteries. Acc. Chem. Res. 46, 1053–1061 (2013).

    CAS  Google Scholar 

  87. Slater, M. D., Kim, D., Lee, E. & Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 23, 947–958 (2013).

    CAS  Google Scholar 

  88. Fukunaga, A. et al. Intermediate-temperature ionic liquid NaFSA-KFSA and its application to sodium secondary batteries. J. Power Sources 209, 52–56 (2012).

    CAS  Google Scholar 

  89. Mohd, N. S. A., Gunzelmann, D., Sun, J., MacFarlane, D. R. & Forsyth, M. Ion conduction and phase morphology in sulfonate copolymer ionomers based on ionic liquid-sodium cation mixtures. J. Mater. Chem. A 2, 365–374 (2014).

    Google Scholar 

  90. Noor, S. A. M., Yoon, H., Forsyth, M. & MacFarlane, D. R. Gelled ionic liquid sodium ion conductors for sodium batteries. Electrochim. Acta 169, 376–381 (2015).

    Google Scholar 

  91. Yoon, H. et al. Physicochemical properties of N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide for sodium metal battery applications. Phys. Chem. Chem. Phys. 16, 12350–12355 (2014).

    CAS  Google Scholar 

  92. Chagas, L. G., Buchholz, D., Wu, L. M., Vortmann, B. & Passerini, S. Unexpected performance of layered sodium-ion cathode material in ionic liquid-based electrolyte. J. Power Sources 247, 377–383 (2014).

    CAS  Google Scholar 

  93. Ding, C. et al. Na[FSA]-[C3C1pyrr][FSA] ionic liquids as electrolytes for sodium secondary batteries: Effects of Na ion concentration and operation temperature. J. Power Sources 269, 124–128 (2014).

    CAS  Google Scholar 

  94. Wang, C.-H. et al. Rechargeable Na/Na0.44MnO2 cells with ionic liquid electrolytes containing various sodium solutes. J. Power Sources 274, 1016–1023 (2015).

    CAS  Google Scholar 

  95. Wongittharom, N., Wang, C. H., Wang, Y. C., Yang, C. H. & Chang, J. K. Ionic liquid electrolytes with various sodium solutes for rechargeable Na/NaFePO4 batteries operated at elevated temperatures. ACS Appl. Mater. Interfaces 6, 17564–17570 (2014).

    CAS  Google Scholar 

  96. Monti, D., Jonsson, E., Palacin, M. R. & Johansson, P. Ionic liquid based electrolytes for sodium-ion batteries: Na+ solvation and ionic conductivity. J. Power Sources 245, 630–636 (2014).

    CAS  Google Scholar 

  97. Chen, F. F., Pringle, J. M. & Forsyth, M. Insights into the transport of alkali metal ions doped into a plastic crystal electrolyte. Chem. Mater. 27, 2666–2672 (2015).

    CAS  Google Scholar 

  98. Poetz, S. et al. Evaluation of decomposition products of EMImCl·1.5AlCl3 during aluminium electrodeposition with different analytical methods. RSC Adv. 4, 6685–6690 (2014).

    CAS  Google Scholar 

  99. Wilkes, J. S., Levisky, J. A., Wilson, R. A. & Hussey, C. L. Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy, and synthesis. Inorg. Chem. 21, 1263–1264 (1982).

    CAS  Google Scholar 

  100. Lin, M. C. et al. An ultrafast rechargeable aluminium-ion battery. Nature 520, 325–328 (2015).

    Google Scholar 

  101. Fang, Y. et al. An AlCl3 based ionic liquid with a neutral substituted pyridine ligand for electrochemical deposition of aluminum. Electrochim. Acta 160, 82–88 (2015).

    CAS  Google Scholar 

  102. Kakibe, T., Hishii, J. Y., Yoshimoto, N., Egashira, M. & Morita, M. Binary ionic liquid electrolytes containing organo-magnesium complex for rechargeable magnesium batteries. J. Power Sources 203, 195–200 (2012).

    CAS  Google Scholar 

  103. Khoo, T. et al. Discharge behaviour and interfacial properties of a magnesium battery incorporating trihexyl(tetradecyl)phosphonium based ionic liquid electrolytes. Electrochim. Acta 87, 701–708 (2013).

    CAS  Google Scholar 

  104. Mohtadi, R., Matsui, M., Arthur, T. S. & Hwang, S. J. Magnesium borohydride: from hydrogen storage to magnesium battery. Angew. Chem. Int. Ed. Engl. 51, 9780–9783 (2012).

    CAS  Google Scholar 

  105. Shao, Y. et al. Coordination chemistry in magnesium battery electrolytes: how ligands affect their performance. Sci. Rep. 3, 3130 (2013).

    Google Scholar 

  106. Kar, M. et al. Stable zinc cycling in novel alkoxy-ammonium based ionic liquid electrolytes. Electrochim. Acta 188, 461–471 (2016).

    CAS  Google Scholar 

  107. Forsyth, M., Howlett, P. C., Tan, S. K., MacFarlane, D. R. & Birbilis, N. An ionic liquid surface treatment for corrosion protection of magnesium alloy AZ31. Electrochem. Solid State Lett. 9, B52–B55 (2006).

    CAS  Google Scholar 

  108. Simons, T. J., Torriero, A. A. J., Howlett, P. C., MacFarlane, D. R. & Forsyth, M. High current density, efficient cycling of Zn2+ in 1-ethyl-3-methylimidazolium dicyanamide ionic liquid: the effect of Zn2+ salt and water concentration. Electrochem. Commun. 18, 119–122 (2012).

    CAS  Google Scholar 

  109. Simons, T. J., Pearson, A. K., Pas, S. J. & MacFarlane, D. R. The electrochemical cycling and electrodeposition of lead from 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ionic liquid. Electrochim. Acta 174, 712–720 (2015).

    CAS  Google Scholar 

  110. Simons, T. J., MacFarlane, D. R., Forsyth, M. & Howlett, P. C. Zn electrochemistry in 1-ethyl-3-methylimidazolium and N-butyl-N-methylpyrrolidinium dicyanamides: promising new rechargeable Zn battery electrolytes. ChemElectroChem 1, 1688–1697 (2014).

    CAS  Google Scholar 

  111. Kar, M., Winther-Jensen, B., Forsyth, M. & MacFarlane, D. R. Chelating ionic liquids for reversible zinc electrochemistry. Phys. Chem. Chem. Phys. 15, 7191–7197 (2013).

    CAS  Google Scholar 

  112. Kar, M., Winther-Jensen, B., Forsyth, M. & MacFarlane, D. R. Exploring zinc coordination in novel zinc battery electrolytes. Phys. Chem. Chem. Phys. 16, 10816–10822 (2014).

    CAS  Google Scholar 

  113. Friesen, C. A., Wolfe, D. & Johnson, P. B. Metal–air cell with ion exchange material. World Patent WO2012174558A1 (2012).

  114. Friesen, C. A. & Hayes, J. Electrochemical cell, and particularly a cell with electrodeposited fuel. US Patent 8546028 (2013).

  115. Mathew, S. et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 6, 242–247 (2014).

    CAS  Google Scholar 

  116. Bai, Y., Zhang, J., Wang, Y., Zhang, M. & Wang, P. Lithium-modulated conduction band edge shifts and charge-transfer dynamics in dye-sensitized solar cells based on a dicyanamide ionic liquid. Langmuir 27, 4749–4755 (2011).

    CAS  Google Scholar 

  117. Lau, G. P. S., Tsao, H. N., Zakeeruddin, S. M., Grätzel, M. & Dyson, P. J. Highly stable dye-sensitized solar cells based on novel 1,2,3-triazolium ionic liquids. ACS Appl. Mater. Interfaces 6, 13571–13577 (2014).

    CAS  Google Scholar 

  118. Armel, V. et al. Ionic liquid electrolyte porphyrin dye sensitised solar cells. Chem. Commun. 46, 3146–3148 (2010).

    CAS  Google Scholar 

  119. Yella, A. et al. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334, 629–634 (2011).

    CAS  Google Scholar 

  120. Xu, D., Zhang, H., Chen, X. & Yan, F. Imidazolium functionalized cobalt tris(bipyridyl) complex redox shuttles for high efficiency ionic liquid electrolyte dye-sensitized solar cells. J. Mater. Chem. A 1, 11933–11941 (2013).

    CAS  Google Scholar 

  121. Chu, T.-C. et al. Ionic liquid with a dual-redox couple for efficient dye-sensitized solar cells. ChemSusChem 7, 146–153 (2014).

    CAS  Google Scholar 

  122. Zhao, J. et al. Solvent-free ionic liquid/poly(ionic liquid) electrolytes for quasi-solid-state dye-sensitized solar cells. J. Mater. Chem. 21, 7326–7330 (2011).

    CAS  Google Scholar 

  123. Zhang, Y. et al. Performance enhancement for quasi-solid-state dye-sensitized solar cells by using acid-oxidized carbon nanotube-based gel electrolytes. Electrochim. Acta 61, 185–190 (2012).

    CAS  Google Scholar 

  124. Lu, S. et al. Water-resistant, solid-state, dye-sensitized solar cells based on hydrophobic organic ionic plastic crystal electrolytes. Adv. Mater. 26, 1266–1271 (2014).

    Google Scholar 

  125. Armel, V., Forsyth, M., MacFarlane, D. R. & Pringle, J. M. Organic ionic plastic crystal electrolytes; a new class of electrolyte for high efficiency solid state dye-sensitized solar cells. Energy Environ. Sci. 4, 2234–2239 (2011).

    CAS  Google Scholar 

  126. Pringle, J. M. Recent progress in the development and use of organic ionic plastic crystal electrolytes. Phys. Chem. Chem. Phys. 15, 1339–1351 (2013).

    CAS  Google Scholar 

  127. Abraham, T. J., MacFarlane, D. R. & Pringle, J. M. High Seebeck coefficient redox ionic liquid electrolytes for thermal energy harvesting. Energy Environ. Sci. 6, 2639–2645 (2013).

    CAS  Google Scholar 

  128. Jiao, N., Abraham, T. J., MacFarlane, D. R. & Pringle, J. M. Ionic liquid electrolytes for thermal energy harvesting using a cobalt redox couple. J. Electrochem. Soc. 161, D3061–D3065 (2014).

    CAS  Google Scholar 

  129. Abraham, T. J., MacFarlane, D. R. & Pringle, J. M. Seebeck coefficients in ionic liquids–prospects for thermo-electrochemical cells. Chem. Commun. 47, 6260–6262 (2011).

    CAS  Google Scholar 

  130. Koerver, R., MacFarlane, D. R. & Pringle, J. M. Evaluation of electrochemical methods for determination of the Seebeck coefficient of redox electrolytes. Electrochim. Acta 184, 186–192 (2015).

    CAS  Google Scholar 

  131. Abraham, T. J., Tachikawa, N., MacFarlane, D. R. & Pringle, J. M. Investigation of the kinetic and mass transport limitations in thermoelectrochemical cells with different electrode materials. Phys. Chem. Chem. Phys. 16, 2527–2532 (2014).

    CAS  Google Scholar 

  132. Lazar, M. A., Al-Masri, D., MacFarlane, D. R. & Pringle, J. M. Enhanced thermal energy harvesting performance of a cobalt redox couple in ionic liquid–solvent mixtures. Phys. Chem. Chem. Phys. http://dx.doi.org/10.1039/C5CP04305K (2015).

  133. Arbizzani, C. et al. Safe, high-energy supercapacitors based on solvent-free ionic liquid electrolytes. J. Power Sources 185, 1575–1579 (2008).

    CAS  Google Scholar 

  134. Bé guin, F., Presser, V., Balducci, A. & Frackowiak, E. Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 26, 2219–2251 (2014).

    Google Scholar 

  135. Brandt, A. & Balducci, A. Theoretical and practical energy limitations of organic and ionic liquid-based electrolytes for high voltage electrochemical double layer capacitors. J. Power Sources 250, 343–351 (2014).

    CAS  Google Scholar 

  136. Ruch, P. W., Cericola, D., Foelske, A., Kötz, R. & Wokaun, A. A comparison of the aging of electrochemical double layer capacitors with acetonitrile and propylene carbonate-based electrolytes at elevated voltages. Electrochim. Acta 55, 2352–2357 (2010).

    CAS  Google Scholar 

  137. Uesugi, E., Goto, H., Eguchi, R., Fujiwara, A. & Kubozono, Y. Electric double-layer capacitance between an ionic liquid and few-layer graphene. Sci. Rep. 3, 1595 (2013).

    Google Scholar 

  138. Yang, X., Cheng, C., Wang, Y., Qiu, L. & Li, D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341, 534–537 (2013).

    CAS  Google Scholar 

  139. Coadou, E. et al. Comparative study on performances of trimethyl-sulfonium and trimethyl-ammonium based ionic liquids in molecular solvents as electrolyte for electrochemical double layer capacitors. J. Phys. Chem. C 117, 10315–10325 (2013).

    CAS  Google Scholar 

  140. Pohlmann, S. et al. Azepanium-based ionic liquids as green electrolytes for high voltage supercapacitors. J. Power Sources 273, 931–936 (2015).

    CAS  Google Scholar 

  141. Pohlmann, S. & Balducci, A. A new conducting salt for high voltage propylene carbonate-based electrochemical double layer capacitors. Electrochim. Acta 110, 221–227 (2013).

    CAS  Google Scholar 

  142. Wolff, C., Jeong, S., Paillard, E., Balducci, A. & Passerini, S. High power, solvent-free electrochemical double layer capacitors based on pyrrolidinium dicyanamide ionic liquids. J. Power Sources 293, 65–70 (2015).

    CAS  Google Scholar 

  143. Faunce, T. et al. Artificial photosynthesis as a frontier technology for energy sustainability. Energy Environ. Sci. 6, 1074–1076 (2013).

    Google Scholar 

  144. Faunce, T. A. et al. Energy and environment policy case for a global project on artificial photosynthesis. Energy Environ. Sci. 6, 695–698 (2013).

    Google Scholar 

  145. Cokoja, M., Bruckmeier, C., Rieger, B., Herrmann, W. A. & Kuhn, F. E. Transformation of carbon dioxide with homogeneous transition-metal catalysts: a molecular solution to a global challenge? Angew. Chem. Int. Ed. Engl. 50, 8510–8537 (2011).

    CAS  Google Scholar 

  146. Ramdin, M., de Loos, T. W. & Vlugt, T. J. H. State-of-the-art of CO2 capture with ionic liquids. Ind. Eng. Chem. Res. 51, 8149–8177 (2012).

    CAS  Google Scholar 

  147. Sun, L., Ramesha, G. K., Kamat, P. V. & Brennecke, J. F. Switching the reaction course of electrochemical CO2 reduction with ionic liquids. Langmuir 30, 6302–6308 (2014).

    CAS  Google Scholar 

  148. Rosen, B. A. et al. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 334, 643–644 (2011).

    CAS  Google Scholar 

  149. Rosen, B. A. et al. In situ spectroscopic examination of a low overpotential pathway for carbon dioxide conversion to carbon monoxide. J. Phys. Chem. C 116, 15307–15312 (2012).

    CAS  Google Scholar 

  150. Watkins, J. D. & Bocarsly, A. B. Direct reduction of carbon dioxide to formate in high-gas-capacity ionic liquids at post-transition-metal electrodes. ChemSusChem 7, 284–290 (2014).

    CAS  Google Scholar 

  151. Cheek, G. T., Roeper, D. F., Pearson, W. & O’Grady, W. E. Electrochemical studies of imidazolium carboxylate adducts in a room-temperature ionic liquid. ECS Trans. 64, 161–169 (2014).

    CAS  Google Scholar 

  152. Bernardini, G., Wedd, A. G., Zhao, C. & Bond, A. M. Electrochemical probing of the photoreduction of molybdenum and tungsten Dawson-type polyoxometalates in molecular and ionic liquid media using water as an electron donor. Dalton Trans. 41, 9944–9954 (2012).

    CAS  Google Scholar 

  153. McDonnell-Worth, C. & MacFarlane, D. R. Ion effects in water oxidation to hydrogen peroxide. RSC Adv. 4, 30551–30557 (2014).

    CAS  Google Scholar 

  154. Zhao, S.-F., Horne, M., Bond, A. M. & Zhang, J. Electrocarboxylation of acetophenone in ionic liquids: the influence of proton availability on product distribution. Green Chem. 16, 2242–2251 (2014).

    CAS  Google Scholar 

  155. Zhang, S. et al. Ionic liquid-based green processes for energy production. Chem. Soc. Rev. 43, 7838–7869 (2014).

    CAS  Google Scholar 

  156. Yasuda, T. & Watanabe, M. Protic ionic liquids: fuel cell applications. MRS Bull. 38, 560–566 (2013).

    CAS  Google Scholar 

  157. Shironita, S., Karasuda, K., Sato, M. & Umeda, M. Feasibility investigation of methanol generation by CO2 reduction using Pt/C-based membrane electrode assembly for a reversible fuel cell. J. Power Sources 228, 68–74 (2013).

    CAS  Google Scholar 

  158. Miran, M. S., Yasuda, T., Susan, M. A. B. H., Dokko, K. & Watanabe, M. Binary protic ionic liquid mixtures as a proton conductor: high fuel cell reaction activity and facile proton transport. J. Phys. Chem. C 118, 27631–27639 (2014).

    CAS  Google Scholar 

  159. Díaz, M., Ortiz, A. & Ortiz, I. Progress in the use of ionic liquids as electrolyte membranes in fuel cells. J. Membrane Sci. 469, 379–396 (2014).

    Google Scholar 

  160. Ye, Y.-S., Rick, J. & Hwang, B.-J. Ionic liquid polymer electrolytes. J. Mater. Chem. A 1, 2719–2743 (2013).

    CAS  Google Scholar 

  161. Luo, J. et al. 1,2,4-Triazolium perfluorobutanesulfonate as an archetypal pure protic organic ionic plastic crystal electrolyte for all-solid-state fuel cells. Energy Environ. Sci. 8, 1276–1291 (2015).

    CAS  Google Scholar 

  162. Hernández-Fernández, F. J. et al. Recent progress and perspectives in microbial fuel cells for bioenergy generation and wastewater treatment. Fuel Process. Technol. 138, 284–297 (2015).

    Google Scholar 

  163. Hernández-Fernández, F. J. et al. New application of supported ionic liquids membranes as proton exchange membranes in microbial fuel cell for waste water treatment. Chem. Eng. J. 279, 115–119 (2015).

    Google Scholar 

  164. Fujita, K. et al. Solubility and stability of cytochrome c in hydrated ionic liquids: effect of oxo acid residues and kosmotropicity. Biomacromolecules 8, 2080–2086 (2007).

    CAS  Google Scholar 

  165. Fujita, K., Nikawa, Y. & Ohno, H. Cold crystallisation behaviour of water molecules in ionic liquids as a screening method to evaluate biocompatibility of the hydrated ionic liquids. Chem. Commun. 49, 3257–3259 (2013).

    CAS  Google Scholar 

  166. Fujita, K., Murata, K., Masuda, M., Nakamura, N. & Ohno, H. Ionic liquids designed for advanced applications in bioelectrochemistry. RSC Adv. 2, 4018–4030 (2012).

    CAS  Google Scholar 

  167. Ohno, H., Fujita, K. & Kohno, Y. Is seven the minimum number of water molecules per ion pair for assured biological activity in ionic liquid–water mixtures? Phys. Chem. Chem. Phys. 17, 14454–14460 (2015).

    CAS  Google Scholar 

  168. Tamura, K., Nakamura, N. & Ohno, H. Cytochrome c dissolved in 1-allyl-3-methylimidazolium chloride type ionic liquid undergoes a quasi-reversible redox reaction up to 140 °C. Biotechnol. Bioeng. 109, 729–735 (2012).

    CAS  Google Scholar 

  169. Fujita, K., Nakamura, N., Igarashi, K., Samejima, M. & Ohno, H. Biocatalytic oxidation of cellobiose in an hydrated ionic liquid. Green Chem. 11, 351–354 (2009).

    CAS  Google Scholar 

Download references

Acknowledgements

D.R.M. and M.F. thank the Australian Research Council for support from the Australian Laureate Fellowship programme and J.M.P. and P.C.H. for support from the Discovery Projects program and the Australian Centre for Electromaterials Science. This work was supported in part by the National Natural of Science Foundation of China (Grant Nos 21371101, 21421001), 111 Project (B12015) and MOE Innovation Team (IRT 13022) of China. H.O. acknowledges the financial support of the Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (KAKENHI, No. 26248049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas R. MacFarlane.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

MacFarlane, D., Forsyth, M., Howlett, P. et al. Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nat Rev Mater 1, 15005 (2016). https://doi.org/10.1038/natrevmats.2015.5

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2015.5

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing