Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Structurally uniform and atomically precise carbon nanostructures

Abstract

Nanometre-sized carbon materials consisting of benzene units oriented in unique geometric patterns, hereafter named nanocarbons, conduct electricity, absorb and emit light, and exhibit interesting magnetic properties. Spherical fullerene C60, cylindrical carbon nanotubes and sheet-like graphene are representative forms of nanocarbons, and theoretical simulations have predicted several exotic 3D nanocarbon structures. At present, synthetic routes to nanocarbons mainly lead to mixtures of molecules with a range of different structures and properties, which cannot be easily separated or refined into pure forms. Some researchers believe that it is impossible to synthesize these materials in a precise manner. Obtaining ‘pure’ nanocarbons is a great challenge in the field of nanocarbon science, and the construction of structurally uniform nanocarbons, ideally as single molecules, is crucial for the development of functional materials in nanotechnology, electronics, optics and biomedical applications. This Review highlights the organic chemistry approach — more specifically, bottom-up construction with atomic precision — that is currently the most promising strategy towards this end.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of representative nanocarbons classified according to their dimensionality.
Figure 2: Synthesis of carbon nanotubes and graphene nanoribbons.
Figure 3: Organic synthesis of carbon nanotubes.
Figure 4: Characteristics of different growth-from-template strategies for synthesizing carbon nanotubes.
Figure 5: Organic synthesis of graphene nanoribbons.
Figure 6: Annulative π-extension (APEX) of polycyclic aromatic hydrocarbons.
Figure 7: Approaches to synthesize 3D nanocarbons.

Similar content being viewed by others

References

  1. Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. & Smalley, R. E. C60: buckminsterfullerene. Nature 318, 162–163 (1985).

    Article  CAS  Google Scholar 

  2. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    Article  CAS  Google Scholar 

  3. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  4. Terrones, H., Lv, R., Terrones, M. & Dresselhaus, M. S. The role of defects and doping in 2D graphene sheets and 1D nanoribbons. Rep. Prog. Phys. 75, 062501 (2012).

    Article  CAS  Google Scholar 

  5. Dresselhaus, M., Dresselhaus, G. & Avouris, P. (eds) Carbon Nanotubes: Synthesis, Properties and Applications (Springer, 2001).

    Book  Google Scholar 

  6. Bachilo, S. M. et al. Narrow (n, m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J. Am. Chem. Soc. 125, 11186–11187 (2003).

    Article  CAS  Google Scholar 

  7. Chiang, W.-H. & Sankaran, R. M. Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning NixFe1−x nanoparticles. Nat. Mater. 8, 882–886 (2009).

    Article  CAS  Google Scholar 

  8. Kato, T. & Hatakeyama, R. Direct growth of short single-walled carbon nanotubes with narrow-chirality distribution by time-programmed plasma chemical vapor deposition. ACS Nano 4, 7395–7400 (2010).

    Article  CAS  Google Scholar 

  9. Tu, X., Manohar, S., Jagota, A. & Zheng, M. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460, 250–253 (2009).

    Article  CAS  Google Scholar 

  10. Han, M. Y., Ozyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

    Article  CAS  Google Scholar 

  11. Chen, Z., Lin, Y.-M., Rooks, M. J. & Avouris, P. Graphene nano-ribbon electronics. Phys. E 40, 228–232 (2007).

    Article  CAS  Google Scholar 

  12. Kosynkin, D. V. et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009).

    Article  CAS  Google Scholar 

  13. Jiao, L., Zhang, L., Wang, X., Diankov, G. & Dai, H. Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009).

    Article  CAS  Google Scholar 

  14. Avouris, P., Chen, Z. & Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2, 605–615 (2007).

    Article  CAS  Google Scholar 

  15. Avouris, P., Freitag, M. & Perebeinos, V. Carbon-nanotube photonics and optoelectronics. Nat. Photonics 2, 341–350 (2008).

    Article  CAS  Google Scholar 

  16. Sgobba, V. & Guldi, D. M. Carbon nanotubes-electronic/electrochemical properties and application for nanoelectronics and photonics. Chem. Soc. Rev. 38, 165–184 (2009).

    Article  CAS  Google Scholar 

  17. Zhang, M. et al. Strong, transparent, multifunctional, carbon nanotube sheets. Science 309, 1215–1219 (2005).

    Article  CAS  Google Scholar 

  18. Wu, Z. et al. Transparent, conductive carbon nanotube films. Science 305, 1273–1276 (2004).

    Article  CAS  Google Scholar 

  19. Heller, D. A., Baik, S., Eurell, T. E. & Strano, M. S. Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv. Mater. 17, 2793–2799 (2005).

    Article  CAS  Google Scholar 

  20. Tu, X., Hight Walker, A. R., Khripin, C. Y. & Zheng, M. Evolution of DNA sequences toward recognition of metallic armchair carbon nanotubes. J. Am. Chem. Soc. 133, 12998–13001 (2011).

    Article  CAS  Google Scholar 

  21. Arnold, M. S., Green, A. A., Hulvat, J. F., Stupp, S. I. & Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 1, 60–65 (2006).

    Article  CAS  Google Scholar 

  22. Ghosh, S., Bachilo, S. M. & Weisman, R. B. Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nat. Nanotechnol. 5, 443–450 (2010).

    Article  CAS  Google Scholar 

  23. Liu, H., Nishide, D., Tanaka, T. & Kataura, H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat. Commun. 2, 309 (2011).

    Article  CAS  Google Scholar 

  24. Dresselhaus, M. S., Dresselhaus, G. & Saito, R. Physics of carbon nanotubes. Carbon 33, 883–891 (1995).

    Article  CAS  Google Scholar 

  25. Dai, H. Carbon nanotubes: synthesis, integration, and properties. Acc. Chem. Res. 35, 1035–1044 (2002).

    Article  CAS  Google Scholar 

  26. Coleman, J. N., Khan, U., Blau, W. J. & Gun'ko, Y. K. Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44, 1624–1652 (2006).

    Article  CAS  Google Scholar 

  27. Carlson, L. J. & Krauss, T. D. Photophysics of individual single-walled carbon nanotubes. Acc. Chem. Res. 41, 235–243 (2008).

    Article  CAS  Google Scholar 

  28. Omachi, H., Segawa, Y. & Itami, K. Synthesis of cycloparaphenylenes and related carbon nanorings: a step toward the controlled synthesis of carbon nanotubes. Acc. Chem. Res. 45, 1378–1389 (2012).

    Article  CAS  Google Scholar 

  29. Jasti, R. & Bertozzi, C. R. Progress and challenges for the bottom-up synthesis of carbon nanotubes with discrete chirality. Chem. Phys. Lett. 494, 1–7 (2010).

    Article  CAS  Google Scholar 

  30. Yamago, S., Kayahara, E. & Iwamoto, T. Organoplatinum-mediated synthesis of cyclic π-conjugated molecules: towards a new era of three-dimensional aromatic compounds. Chem. Rec. 14, 84–100 (2014).

    Article  CAS  Google Scholar 

  31. Lewis, S. E. Cycloparaphenylenes and related nanohoops. Chem. Soc. Rev. 44, 2221–2304 (2015).

    Article  CAS  Google Scholar 

  32. Bunz, U. H. F., Menning, S. & Martín, N. para-Connected cyclophenylenes and hemispherical polyarenes: building blocks for single-walled carbon nanotubes? Angew. Chem. Int. Ed. Engl. 51, 7094–7101 (2012).

    Article  CAS  Google Scholar 

  33. Baldridge, K. K. & Siegel, J. S. Corannulene-based fullerene fragments C20H10-C50H10: when does a buckybowl become a buckytube? Theor. Chem. Acc. 97, 67–71 (1997).

    Article  CAS  Google Scholar 

  34. Parekh, V. C. & Guha, P. C. Synthesis of pp'-diphenylenedimonosulphide. J. Indian Chem. Soc. 11, 95–100 (1934).

    CAS  Google Scholar 

  35. Jasti, R., Bhattacharjee, J., Neaton, J. B. & Bertozzi, C. R. Synthesis, characterization, and theory of [9]-, [12]-, and [18]cycloparaphenylene: carbon nanohoop structures. J. Am. Chem. Soc. 130, 17646–17647 (2008).

    Article  CAS  Google Scholar 

  36. Takaba, H., Omachi, H., Yamamoto, Y., Bouffard, J. & Itami, K. Selective synthesis of [12]cycloparaphenylene. Angew. Chem. Int. Ed. Engl. 48, 6112–6116 (2009).

    Article  CAS  Google Scholar 

  37. Yamago, S., Watanabe, Y. & Iwamoto, T. Synthesis of [8]cycloparaphenylene from a square-shaped tetranuclear platinum complex. Angew. Chem. Int. Ed. Engl. 49, 757–759 (2010).

    Article  CAS  Google Scholar 

  38. Fuhrmann, G., Debaerdemaeker, T. & Bauerle, P. C-C bond formation through oxidatively induced elimination of platinum complexes - a novel approach towards conjugated macrocycles. Chem. Commun. 948–949 (2003).

  39. Omachi, H., Segawa, Y. & Itami, K. Synthesis and racemization process of chiral carbon nanorings: a step toward the chemical synthesis of chiral carbon nanotubes. Org. Lett. 13, 2480–2483 (2011).

    Article  CAS  Google Scholar 

  40. Hitosugi, S., Nakanishi, W., Yamasaki, T. & Isobe, H. Bottom-up synthesis of finite models of helical (n,m)-single-wall carbon nanotubes. Nat. Commun. 2, 492 (2011).

    Article  CAS  Google Scholar 

  41. Matsuno, T., Kamata, S., Hitosugi, S. & Isobe, H. Bottom-up synthesis and structures of π-lengthened tubular macrocycles. Chem. Sci. 4, 3179–3183 (2013).

    Article  CAS  Google Scholar 

  42. Kohnke, F. H., Slawin, A. M. Z., Stoddart, J. F. & Williams, D. J. Molecular belts and collars in the making: a hexaepoxyoctacosahydro[12]cyclacene derivative. Angew. Chem. Int. Ed. Engl. 26, 892–894 (1987).

    Article  Google Scholar 

  43. Cory, R. M., McPhail, C. L., Dikmans, A. J. & Vittal, J. J. Macrocyclic cyclophane belts via double Diels–Alder cycloadditions: macroannulation of bisdienes by bisdienophiles. Synthesis of a key precursor to an [8]cyclacene. Tetrahedron Lett. 37, 1983–1986 (1996).

    Article  CAS  Google Scholar 

  44. Hitosugi, S., Yamasaki, T. & Isobe, H. Bottom-up synthesis and thread-in-bead structures of finite (n,0)-zigzag single-wall carbon nanotubes. J. Am. Chem. Soc. 134, 12442–12445 (2012).

    Article  CAS  Google Scholar 

  45. Scott, L. T. et al. A short, rigid, structurally pure carbon nanotube by stepwise chemical synthesis. J. Am. Chem. Soc. 134, 107–110 (2012).

    Article  CAS  Google Scholar 

  46. Petrukhina, M. A. & Scott, L. T. (eds) Fragments of Fullerenes and Carbon Nanotube: Designed Synthesis, Unusual Reactions, and Coordination Chemistry (Wiley, 2012).

    Google Scholar 

  47. Vögtle, F. Concluding remarks. Top. Curr. Chem. 115, 157 (1983).

    Google Scholar 

  48. Iyoda, M., Kuwatani, Y., Nishinaga, T., Takase, M. & Nishiuchi, T. in Fragments of Fullerenes and Carbon Nanotube: Designed Synthesis, Unusual Reactions, and Coordination Chemistry (eds Petrukhina, M. A. & Scott, L. T. ) Ch. 12 (Wiley, 2012).

    Google Scholar 

  49. Nakamura, E., Tahara, K., Matsuo, Y. & Sawamura, M. Synthesis, structure, and aromaticity of a hoop-shaped cyclic benzenoid [10]cyclophenacene. J. Am. Chem. Soc. 125, 2834–2835 (2003).

    Article  CAS  Google Scholar 

  50. Yagi, A., Segawa, Y. & Itami, K. Synthesis and properties of [9]cyclo-1,4-naphthylene: a π-extended carbon nanoring. J. Am. Chem. Soc. 134, 2962–2965 (2012).

    Article  CAS  Google Scholar 

  51. Ishii, Y., Matsuura, S., Segawa, Y. & Itami, K. Synthesis and dimerization of chloro[10]cycloparaphenylene: a directly connected cycloparaphenylene dimer. Org. Lett. 16, 2174–2176 (2014).

    Article  CAS  Google Scholar 

  52. Nishiuchi, T., Feng, X., Enkelmann, V., Wagner, M. & Müllen, K. Three-dimensionally arranged cyclic p-hexaphenylbenzene: toward a bottom-up synthesis of size-defined carbon nanotubes. Chem. Eur. J. 18, 16621–16625 (2012).

    Article  CAS  Google Scholar 

  53. Golling, F. E., Quernheim, M., Wagner, M., Nishiuchi, T. & Müllen, K. Concise synthesis of 3D π-extended polyphenylene cylinders. Angew. Chem. Int. Ed. Engl. 53, 1525–1528 (2014).

    Article  CAS  Google Scholar 

  54. Quernheim, M. et al. The precise synthesis of phenylene-extended cyclic hexa-peri-hexabenzocoronenes from polyarylated [n]cycloparaphenylenes by the Scholl reaction. Angew. Chem. Int. Ed. Engl. 54, 10341–10346 (2015).

    Article  CAS  Google Scholar 

  55. Yu, X. et al. Cap formation engineering: from opened C60 to single-walled carbon nanotubes. Nano Lett. 10, 3343–3349 (2010).

    Article  CAS  Google Scholar 

  56. Liu, B. et al. Nearly exclusive growth of small diameter semiconducting single-wall carbon nanotubes from organic chemistry synthetic end-cap molecules. Nano Lett. 15, 586–595 (2015).

    Article  CAS  Google Scholar 

  57. Omachi, H., Nakayama, T., Takahashi, E., Segawa, Y. & Itami, K. Initiation of carbon nanotube growth by well-defined carbon nanorings. Nat. Chem. 5, 572–576 (2013).

    Article  CAS  Google Scholar 

  58. Sanchez-Valencia, J. R. et al. Controlled synthesis of single-chirality carbon nanotubes. Nature 512, 61–64 (2014).

    Article  CAS  Google Scholar 

  59. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  60. Wu, J., Pisula, W. & Müllen, K. Graphenes as potential material for electronics. Chem. Rev. 107, 718–747 (2007).

    Article  CAS  Google Scholar 

  61. Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009).

    Article  CAS  Google Scholar 

  62. Allen, M. J., Tung, V. C. & Kaner, R. B. Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132–145 (2010).

    Article  CAS  Google Scholar 

  63. Pumera, M. Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev. 39, 4146–4157 (2010).

    Article  CAS  Google Scholar 

  64. Schwierz, F. Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010).

    Article  CAS  Google Scholar 

  65. Guo, S. & Dong, S. Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev. 40, 2644–2672 (2011).

    Article  CAS  Google Scholar 

  66. Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192–200 (2012).

    Article  CAS  Google Scholar 

  67. Yan, L. et al. Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials. Chem. Soc. Rev. 41, 97–114 (2012).

    Article  CAS  Google Scholar 

  68. Ren, W. & Cheng, H. M. The global growth of graphene. Nat. Nanotechnol. 9, 726–730 (2014).

    Article  CAS  Google Scholar 

  69. Georgakilas, V., Perman, J. A., Tucek, J. & Zboril, R. Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 115, 4744–4822 (2015).

    Article  CAS  Google Scholar 

  70. Bai, J., Zhong, X., Jiang, S., Huang, Y. & Duan, X. Graphene nanomesh. Nat. Nanotechnol. 5, 190–194 (2010).

    Article  CAS  Google Scholar 

  71. Liang, X. et al. Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography. Nano Lett. 10, 2454–2460 (2010).

    Article  CAS  Google Scholar 

  72. Safron, N. S., Brewer, A. S. & Arnold, M. S. Semiconducting two-dimensional graphene nanoconstriction arrays. Small 7, 492–498 (2011).

    Article  CAS  Google Scholar 

  73. Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    Article  CAS  Google Scholar 

  74. Peng, Z., Yan, Z., Sun, Z. & Tour, J. M. Direct growth of bilayer graphene on SiO2 substrates by carbon diffusion through nickel. ACS Nano 5, 8241–8247 (2011).

    Article  CAS  Google Scholar 

  75. Elias, D. C. et al. Control of graphene's properties by reversible hydrogenation: evidence for graphane. Science 323, 610–613 (2009).

    Article  CAS  Google Scholar 

  76. Cheng, S. H. et al. Reversible fluorination of graphene: evidence of a two-dimensional wide bandgap semiconductor. Phys. Rev. B 81, 205435 (2010).

    Article  CAS  Google Scholar 

  77. Watson, M. D., Fechtenkötter, A. & Müllen, K. Big is beautiful – “Aromaticity” revisited from the viewpoint of macromolecular and supramolecular benzene chemistry. Chem. Rev. 101, 1267–1300 (2001).

    Article  CAS  Google Scholar 

  78. Feng, X., Pisula, W. & Müllen, K. Large polycyclic aromatic hydrocarbons: synthesis and discotic organization. Pure Appl. Chem. 81, 2203–2224 (2009).

    Article  CAS  Google Scholar 

  79. Rieger, R. & Müllen, K. Forever young: polycyclic aromatic hydrocarbons as model cases for structural and optical studies. J. Phys. Org. Chem. 23, 315–325 (2010).

    CAS  Google Scholar 

  80. Chen, L., Hernandez, Y., Feng, X. & Müllen, K. From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. Angew. Chem. Int. Ed. Engl. 51, 7640–7654 (2012).

    Article  CAS  Google Scholar 

  81. Itami, K. Toward controlled synthesis of carbon nanotubes and graphenes. Pure Appl. Chem. 84, 907–916 (2012).

    Article  CAS  Google Scholar 

  82. Sun, Z., Ye, Q., Chi, C. & Wu, J. Low band gap polycyclic hydrocarbons: from closed-shell near infrared dyes and semiconductors to open-shell radicals. Chem. Soc. Rev. 41, 7857–7889 (2012).

    Article  CAS  Google Scholar 

  83. Müllen, K. Graphene as a target for polymer synthesis. Adv. Polym. Sci. 262, 61–92 (2013).

    Article  CAS  Google Scholar 

  84. Wu, D., Ge, H. J., Liu, S. H. & Yin, J. Arynes in the synthesis of polycyclic aromatic hydrocarbons. RSC Adv. 3, 22727–22738 (2013).

    Article  CAS  Google Scholar 

  85. Müllen, K. Evolution of graphene molecules: structural and functional complexity as driving forces behind nanoscience. ACS Nano 8, 6531–6541 (2014).

    Article  CAS  Google Scholar 

  86. Ball, M. et al. Contorted polycyclic aromatics. Acc. Chem. Res. 48, 267–276 (2015).

    Article  CAS  Google Scholar 

  87. Narita, A., Feng, X. & Müllen, K. Bottom-up synthesis of chemically precise graphene nanoribbons. Chem. Rec. 15, 295–309 (2015).

    Article  CAS  Google Scholar 

  88. Narita, A., Wang, X. Y., Feng, X. & Müllen, K. New advances in nanographene chemistry. Chem. Soc. Rev. 44, 6616–6643 (2015).

    Article  CAS  Google Scholar 

  89. Yang, X. et al. Two-dimensional graphene nanoribbons. J. Am. Chem. Soc. 130, 4216–4217 (2008).

    Article  CAS  Google Scholar 

  90. Narita, A. et al. Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons. Nat. Chem. 6, 126–132 (2014).

    Article  CAS  Google Scholar 

  91. Wu, J. et al. From branched polyphenylenes to graphite ribbons. Macromolecules 36, 7082–7089 (2003).

    Article  CAS  Google Scholar 

  92. Fogel, Y. et al. Graphitic nanoribbons with dibenzo[e,l]pyrene repeat units: synthesis and self-assembly. Macromolecules 42, 6878–6884 (2009).

    Article  CAS  Google Scholar 

  93. Dossel, L., Gherghel, L., Feng, X. & Müllen, K. Graphene nanoribbons by chemists: nanometer-sized, soluble, and defect-free. Angew. Chem. Int. Ed. Engl. 50, 2540–2543 (2011).

    Article  CAS  Google Scholar 

  94. Schwab, M. G. et al. Structurally defined graphene nanoribbons with high lateral extension. J. Am. Chem. Soc. 134, 18169–18172 (2012).

    Article  CAS  Google Scholar 

  95. Kim, K. T., Jung, J. W. & Jo, W. H. Synthesis of graphene nanoribbons with various widths and its application to thin-film transistor. Carbon 63, 202–209 (2013).

    Article  CAS  Google Scholar 

  96. Kim, K. T., Lee, J. W. & Jo, W. H. Charge-transport tuning of solution-processable graphene nanoribbons by substitutional nitrogen doping. Macromol. Chem. Phys. 214, 2768–2773 (2013).

    Article  CAS  Google Scholar 

  97. Abbas, A. N. et al. Deposition, characterization, and thin-film-based chemical sensing of ultra-long chemically synthesized graphene nanoribbons. J. Am. Chem. Soc. 136, 7555–7558 (2014).

    Article  CAS  Google Scholar 

  98. El Gemayel, M. et al. Graphene nanoribbon blends with P3HT for organic electronics. Nanoscale 6, 6301–6314 (2014).

    Article  CAS  Google Scholar 

  99. Narita, A. et al. Bottom-up synthesis of liquid-phase-processable graphene nanoribbons with near-infrared absorption. ACS Nano 8, 11622–11630 (2014).

    Article  CAS  Google Scholar 

  100. Vo, T. H. et al. Large-scale solution synthesis of narrow graphene nanoribbons. Nat. Commun. 5, 3189 (2014).

    Article  CAS  Google Scholar 

  101. Vo, T. H. et al. Bottom-up solution synthesis of narrow nitrogen-doped graphene nanoribbons. Chem. Commun. 50, 4172–4174 (2014).

    Article  CAS  Google Scholar 

  102. Liu, J. et al. Toward cove-edged low band gap graphene nanoribbons. J. Am. Chem. Soc. 137, 6097–6103 (2015).

    Article  CAS  Google Scholar 

  103. Schwab, M. G. et al. Bottom-up synthesis of necklace-like graphene nanoribbons. Chem. Asian J. 10, 2134–2138 (2015).

    Article  CAS  Google Scholar 

  104. Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).

    Article  CAS  Google Scholar 

  105. Bjork, J., Stafstrom, S. & Hanke, F. Zipping up: cooperativity drives the synthesis of graphene nanoribbons. J. Am. Chem. Soc. 133, 14884–14887 (2011).

    Article  CAS  Google Scholar 

  106. Martin-Gago, J. A. Polycyclic aromatics: on-surface molecular engineering. Nat. Chem. 3, 11–12 (2011).

    Article  CAS  Google Scholar 

  107. Blankenburg, S. et al. Intraribbon heterojunction formation in ultranarrow graphene nanoribbons. ACS Nano 6, 2020–2025 (2012).

    Article  CAS  Google Scholar 

  108. Huang, H. et al. Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons. Sci. Rep. 2, 983 (2012).

    Article  CAS  Google Scholar 

  109. Koch, M., Ample, F., Joachim, C. & Grill, L. Voltage-dependent conductance of a single graphene nanoribbon. Nat. Nanotechnol. 7, 713–717 (2012).

    Article  CAS  Google Scholar 

  110. Linden, S. et al. Electronic structure of spatially aligned graphene nanoribbons on Au(788). Phys. Rev. Lett. 108, 216801 (2012).

    Article  CAS  Google Scholar 

  111. Ruffieux, P. et al. Electronic structure of atomically precise graphene nanoribbons. ACS Nano 6, 6930–6935 (2012).

    Article  CAS  Google Scholar 

  112. Bronner, C. et al. Aligning the band gap of graphene nanoribbons by monomer doping. Angew. Chem. Int. Ed. Engl. 52, 4422–4425 (2013).

    Article  CAS  Google Scholar 

  113. Chen, Y. C. et al. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano 7, 6123–6128 (2013).

    Article  CAS  Google Scholar 

  114. Talirz, L. et al. Termini of bottom-up fabricated graphene nanoribbons. J. Am. Chem. Soc. 135, 2060–2063 (2013).

    Article  CAS  Google Scholar 

  115. van der Lit, J. et al. Suppression of electron-vibron coupling in graphene nanoribbons contacted via a single atom. Nat. Commun. 4, 2023 (2013).

    Article  CAS  Google Scholar 

  116. Abdurakhmanova, N. et al. Synthesis of wide atomically precise graphene nanoribbons from para-oligophenylene based molecular precursor. Carbon 77, 1187–1190 (2014).

    Article  CAS  Google Scholar 

  117. Cai, J. et al. Graphene nanoribbon heterojunctions. Nat. Nanotechnol. 9, 896–900 (2014).

    Article  CAS  Google Scholar 

  118. Denk, R. et al. Exciton-dominated optical response of ultra-narrow graphene nanoribbons. Nat. Commun. 5, 4253 (2014).

    Article  CAS  Google Scholar 

  119. Han, P. et al. Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity. ACS Nano 8, 9181–9187 (2014).

    Article  CAS  Google Scholar 

  120. Palma, C. A. et al. Photoinduced C-C reactions on insulators toward photolithography of graphene nanoarchitectures. J. Am. Chem. Soc. 136, 4651–4658 (2014).

    Article  CAS  Google Scholar 

  121. Sakaguchi, H. et al. Width-controlled sub-nanometer graphene nanoribbon films synthesized by radical-polymerized chemical vapor deposition. Adv. Mater. 26, 4134–4138 (2014).

    Article  CAS  Google Scholar 

  122. Basagni, A. et al. Molecules-oligomers-nanowires-graphene nanoribbons: a bottom-up stepwise on-surface covalent synthesis preserving long-range order. J. Am. Chem. Soc. 137, 1802–1808 (2015).

    Article  CAS  Google Scholar 

  123. Chen, Y. C. et al. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. Nat. Nanotechnol. 10, 156–160 (2015).

    Article  CAS  Google Scholar 

  124. Cloke, R. R. et al. Site-specific substitutional boron doping of semiconducting armchair graphene nanoribbons. J. Am. Chem. Soc. 137, 8872–8875 (2015).

    Article  CAS  Google Scholar 

  125. Dienel, T. et al. Resolving atomic connectivity in graphene nanostructure junctions. Nano Lett. 15, 5185–5190 (2015).

    Article  CAS  Google Scholar 

  126. Söde, H. et al. Electronic band dispersion of graphene nanoribbons via Fourier-transformed scanning tunneling spectroscopy. Phys. Rev. B 91, 045429 (2015).

    Article  CAS  Google Scholar 

  127. Zhang, H. et al. On-surface synthesis of rylene-type graphene nanoribbons. J. Am. Chem. Soc. 137, 4022–4025 (2015).

    Article  CAS  Google Scholar 

  128. Kawai, S. et al. Atomically controlled substitutional boron-doping of graphene nanoribbons. Nat. Commun. 6, 8098 (2015).

    Article  CAS  Google Scholar 

  129. Talyzin, A. V. et al. Synthesis of graphene nanoribbons encapsulated in single-walled carbon nanotubes. Nano Lett. 11, 4352–4356 (2011).

    Article  CAS  Google Scholar 

  130. Chuvilin, A. et al. Self-assembly of a sulphur-terminated graphene nanoribbon within a single-walled carbon nanotube. Nat. Mater. 10, 687–692 (2011).

    Article  CAS  Google Scholar 

  131. Bandow, S., Takizawa, M., Hirahara, K., Yudasaka, M. & Iijima, S. Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes. Chem. Phys. Lett. 337, 48–54 (2001).

    Article  CAS  Google Scholar 

  132. Chamberlain, T. W. et al. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes. ACS Nano 6, 3943–3953 (2012).

    Article  CAS  Google Scholar 

  133. Fujihara, M. et al. Dimerization-initiated preferential formation of coronene-based graphene nanoribbons in carbon nanotubes. J. Phys. Chem. C 116, 15141–15145 (2012).

    Article  CAS  Google Scholar 

  134. Lim, H. E. et al. Growth of carbon nanotubes via twisted graphene nanoribbons. Nat. Commun. 4, 2548 (2013).

    Article  CAS  Google Scholar 

  135. Lim, H. E. et al. Fabrication and optical probing of highly extended, ultrathin graphene nanoribbons in carbon nanotubes. ACS Nano 9, 5034–5040 (2015).

    Article  CAS  Google Scholar 

  136. Fort, E. H., Donovan, P. M. & Scott, L. T. Diels–Alder reactivity of polycyclic aromatic hydrocarbon bay regions: implications for metal-free growth of single-chirality carbon nanotubes. J. Am. Chem. Soc. 131, 16006–16007 (2009).

    Article  CAS  Google Scholar 

  137. Fort, E. H. & Scott, L. T. One-step conversion of aromatic hydrocarbon bay regions into unsubstituted benzene rings: a reagent for the low-temperature, metal-free growth of single-chirality carbon nanotubes. Angew. Chem. Int. Ed. Engl. 49, 6626–6628 (2010).

    Article  CAS  Google Scholar 

  138. Fort, E. H. & Scott, L. T. Gas-phase Diels–Alder cycloaddition of benzyne to an aromatic hydrocarbon bay region: groundwork for the selective solvent-free growth of armchair carbon nanotubes. Tetrahedron Lett. 52, 2051–2053 (2011).

    Article  CAS  Google Scholar 

  139. Li, J., Jiao, C., Huang, K. W. & Wu, J. Lateral extension of π-conjugation along the bay regions of bisanthene through a Diels–Alder cycloaddition reaction. Chem. Eur. J. 17, 14672–14680 (2011).

    Article  CAS  Google Scholar 

  140. Fort, E. H., Jeffreys, M. S. & Scott, L. T. Diels–Alder cycloaddition of acetylene gas to a polycyclic aromatic hydrocarbon bay region. Chem. Commun. 48, 8102–8104 (2012).

    Article  CAS  Google Scholar 

  141. Konishi, A., Hirao, Y., Matsumoto, K., Kurata, H. & Kubo, T. Facile synthesis and lateral π-expansion of bisanthenes. Chem. Lett. 42, 592–594 (2013).

    Article  CAS  Google Scholar 

  142. Schuler, B. et al. From perylene to a 22-ring aromatic hydrocarbon in one-pot. Angew. Chem. Int. Ed. Engl. 53, 9004–9006 (2014).

    Article  CAS  Google Scholar 

  143. Ozaki, K., Kawasumi, K., Shibata, M., Ito, H. & Itami, K. One-shot K-region-selective annulative π-extension for nanographene synthesis and functionalization. Nat. Commun. 6, 6251 (2015).

    Article  CAS  Google Scholar 

  144. Mackay, A. L. & Terrones, H. Diamond from graphite. Nature 352, 762 (1991).

    Article  Google Scholar 

  145. Schwarz, H. A. Gesammelte Mathematische Abhandlungen Vols 1,2 (Springer, 1890).

    Book  Google Scholar 

  146. Lenosky, T., Gonze, X., Teter, M. & Elser, V. Energetics of negatively curved graphitic carbon. Nature 335, 333–335 (1992).

    Article  Google Scholar 

  147. Tagami, M., Liang, Y., Naito, H., Kawazoe, Y. & Kotani, M. Negatively curved cubic carbon crystals with octahedral symmetry. Carbon 76, 266–274 (2014).

    Article  CAS  Google Scholar 

  148. Ōsawa, E., Yoshida, M. & Fujita, M. Shape and fantasy of fullerenes. MRS Bull. 19, 33–38 (1994).

    Article  Google Scholar 

  149. Christoph, H. et al. MP2 and DFT calculations on circulenes and an attempt to prepare the second lowest benzolog, [4]circulene. Chem. Eur. J. 14, 5604–5616 (2008).

    Article  CAS  Google Scholar 

  150. Kaur, N., Dharamvir, K. & Jindal, V. K. Dimerization and fusion of two C60 molecules. Chem. Phys. 344, 176–184 (2008).

    Article  CAS  Google Scholar 

  151. Takashima, A., Nishii, T. & Onoe, J. Formation process and electron-beam incident energy dependence of one-dimensional uneven peanut-shaped C60 polymer studied using in situ high-resolution infrared spectroscopy and density-functional calculations. J. Phys. D: Appl. Phys. 45, 485302 (2012).

    Article  CAS  Google Scholar 

  152. Weldon, D. N., Blau, W. J. & Zandbergen, H. W. A high resolution electron microscopy investigation of curvature in carbon nanotubes. Chem. Phys. Lett. 241, 365–372 (1995).

    Article  CAS  Google Scholar 

  153. Wei, D. & Liu, Y. The intramolecular junctions of carbon nanotubes. Adv. Mater. 20, 2815–2841 (2008).

    Article  CAS  Google Scholar 

  154. lijima, S., Ichihashi, T. & Ando, Y. Pentagons, heptagons and negative curvature in graphite microtubule growth. Nature 356, 776–778 (1992).

    Article  Google Scholar 

  155. Galli, C. & Mandolini, L. The role of ring strain on the ease of ring closure of bifunctional chain molecules. Eur. J. Org. Chem. 2000, 3117–3125 (2000).

    Article  Google Scholar 

  156. Yamamoto, K. et al. Synthesis and characterization of [7]circulene. J. Am. Chem. Soc. 105, 7171–7172 (1983).

    Article  CAS  Google Scholar 

  157. Yamamoto, K., Saitho, Y., Iwaki, D. & Ooka, T. [7.7]Circulene, a molecule shaped like a figure of eight. Angew. Chem. Int. Ed. Engl. 30, 1173–1174 (1991).

    Article  Google Scholar 

  158. Yamamoto, K. Extended systems of closed helicene. Synthesis and characterization of [7] and [7.7]circulene. Pure Appl. Chem. 65, 157–163 (1993).

    Article  CAS  Google Scholar 

  159. Rajca, A., Safronov, A., Rajca, S. & Shoemaker, R. Double helical octaphenylene. Angew. Chem. Int. Ed. Engl. 36, 488–491 (1997).

    Article  CAS  Google Scholar 

  160. Feng, C.-N., Kuo, M.-Y. & Wu, Y.-T. Synthesis, structural analysis, and properties of [8]circulenes. Angew. Chem. Int. Ed. Engl. 52, 7791–7794 (2013).

    Article  CAS  Google Scholar 

  161. Sakamoto, Y. & Suzuki, T. Tetrabenzo[8]circulene: aromatic saddles from negatively curved graphene. J. Am. Chem. Soc. 135, 14074–14077 (2013).

    Article  CAS  Google Scholar 

  162. Miller, R. W., Duncan, A. K., Schneebeli, S. T., Gray, D. L. & Whalley, A. C. Synthesis and structural data of tetrabenzo[8]circulene. Chem. Eur. J. 20, 3705–3711 (2014).

    Article  CAS  Google Scholar 

  163. Cheung, K. Y., Xu, X. & Miao, Q. Aromatic saddles containing two heptagons. J. Am. Chem. Soc. 137, 3910–3914 (2015).

    Article  CAS  Google Scholar 

  164. Kawasumi, K., Zhang, Q., Segawa, Y., Scott, L. T. & Itami, K. A grossly warped nanographene and the consequences of multiple odd-membered-ring defects. Nat. Chem. 5, 739–744 (2013).

    Article  CAS  Google Scholar 

  165. Grzybowski, M., Skonieczny, K., Butenschö n, H. & Gryko, D. T. Comparison of oxidative aromatic coupling and the Scholl reaction. Angew. Chem. Int. Ed. Engl. 52, 9900–9930 (2013).

    Article  CAS  Google Scholar 

  166. Mochida, K., Kawasumi, K., Segawa, Y. & Itami, K. Direct arylation of polycyclic aromatic hydrocarbons through palladium catalysis. J. Am. Chem. Soc. 133, 10716–10719 (2011).

    Article  CAS  Google Scholar 

  167. Eliseeva, M. N. & Scott, L. T. Pushing the Ir-catalyzed C–H polyborylation of aromatic compounds to maximum capacity by exploiting reversibility. J. Am. Chem. Soc. 134, 15169–15172 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Exploratory Research for Advanced Technology (ERATO) program from the Japan Science and Technology Agency (JST) (K.I.). The authors thank A. Miyazaki for critical comments and H. Hirukawa for graphics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichiro Itami.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Segawa, Y., Ito, H. & Itami, K. Structurally uniform and atomically precise carbon nanostructures. Nat Rev Mater 1, 15002 (2016). https://doi.org/10.1038/natrevmats.2015.2

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2015.2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing