Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structurally uniform and atomically precise carbon nanostructures

Abstract

Nanometre-sized carbon materials consisting of benzene units oriented in unique geometric patterns, hereafter named nanocarbons, conduct electricity, absorb and emit light, and exhibit interesting magnetic properties. Spherical fullerene C60, cylindrical carbon nanotubes and sheet-like graphene are representative forms of nanocarbons, and theoretical simulations have predicted several exotic 3D nanocarbon structures. At present, synthetic routes to nanocarbons mainly lead to mixtures of molecules with a range of different structures and properties, which cannot be easily separated or refined into pure forms. Some researchers believe that it is impossible to synthesize these materials in a precise manner. Obtaining ‘pure’ nanocarbons is a great challenge in the field of nanocarbon science, and the construction of structurally uniform nanocarbons, ideally as single molecules, is crucial for the development of functional materials in nanotechnology, electronics, optics and biomedical applications. This Review highlights the organic chemistry approach — more specifically, bottom-up construction with atomic precision — that is currently the most promising strategy towards this end.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Structures of representative nanocarbons classified according to their dimensionality.
Figure 2: Synthesis of carbon nanotubes and graphene nanoribbons.
Figure 3: Organic synthesis of carbon nanotubes.
Figure 4: Characteristics of different growth-from-template strategies for synthesizing carbon nanotubes.
Figure 5: Organic synthesis of graphene nanoribbons.
Figure 6: Annulative π-extension (APEX) of polycyclic aromatic hydrocarbons.
Figure 7: Approaches to synthesize 3D nanocarbons.

References

  1. 1

    Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. & Smalley, R. E. C60: buckminsterfullerene. Nature 318, 162–163 (1985).

    CAS  Article  Google Scholar 

  2. 2

    Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    CAS  Article  Google Scholar 

  3. 3

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Article  Google Scholar 

  4. 4

    Terrones, H., Lv, R., Terrones, M. & Dresselhaus, M. S. The role of defects and doping in 2D graphene sheets and 1D nanoribbons. Rep. Prog. Phys. 75, 062501 (2012).

    Article  CAS  Google Scholar 

  5. 5

    Dresselhaus, M., Dresselhaus, G. & Avouris, P. (eds) Carbon Nanotubes: Synthesis, Properties and Applications (Springer, 2001).

    Google Scholar 

  6. 6

    Bachilo, S. M. et al. Narrow (n, m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J. Am. Chem. Soc. 125, 11186–11187 (2003).

    CAS  Article  Google Scholar 

  7. 7

    Chiang, W.-H. & Sankaran, R. M. Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning NixFe1−x nanoparticles. Nat. Mater. 8, 882–886 (2009).

    CAS  Article  Google Scholar 

  8. 8

    Kato, T. & Hatakeyama, R. Direct growth of short single-walled carbon nanotubes with narrow-chirality distribution by time-programmed plasma chemical vapor deposition. ACS Nano 4, 7395–7400 (2010).

    CAS  Article  Google Scholar 

  9. 9

    Tu, X., Manohar, S., Jagota, A. & Zheng, M. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460, 250–253 (2009).

    CAS  Article  Google Scholar 

  10. 10

    Han, M. Y., Ozyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

    Article  CAS  Google Scholar 

  11. 11

    Chen, Z., Lin, Y.-M., Rooks, M. J. & Avouris, P. Graphene nano-ribbon electronics. Phys. E 40, 228–232 (2007).

    CAS  Article  Google Scholar 

  12. 12

    Kosynkin, D. V. et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009).

    CAS  Article  Google Scholar 

  13. 13

    Jiao, L., Zhang, L., Wang, X., Diankov, G. & Dai, H. Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Avouris, P., Chen, Z. & Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2, 605–615 (2007).

    CAS  Article  Google Scholar 

  15. 15

    Avouris, P., Freitag, M. & Perebeinos, V. Carbon-nanotube photonics and optoelectronics. Nat. Photonics 2, 341–350 (2008).

    CAS  Article  Google Scholar 

  16. 16

    Sgobba, V. & Guldi, D. M. Carbon nanotubes-electronic/electrochemical properties and application for nanoelectronics and photonics. Chem. Soc. Rev. 38, 165–184 (2009).

    CAS  Article  Google Scholar 

  17. 17

    Zhang, M. et al. Strong, transparent, multifunctional, carbon nanotube sheets. Science 309, 1215–1219 (2005).

    CAS  Article  Google Scholar 

  18. 18

    Wu, Z. et al. Transparent, conductive carbon nanotube films. Science 305, 1273–1276 (2004).

    CAS  Article  Google Scholar 

  19. 19

    Heller, D. A., Baik, S., Eurell, T. E. & Strano, M. S. Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv. Mater. 17, 2793–2799 (2005).

    CAS  Article  Google Scholar 

  20. 20

    Tu, X., Hight Walker, A. R., Khripin, C. Y. & Zheng, M. Evolution of DNA sequences toward recognition of metallic armchair carbon nanotubes. J. Am. Chem. Soc. 133, 12998–13001 (2011).

    CAS  Article  Google Scholar 

  21. 21

    Arnold, M. S., Green, A. A., Hulvat, J. F., Stupp, S. I. & Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 1, 60–65 (2006).

    CAS  Article  Google Scholar 

  22. 22

    Ghosh, S., Bachilo, S. M. & Weisman, R. B. Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nat. Nanotechnol. 5, 443–450 (2010).

    CAS  Article  Google Scholar 

  23. 23

    Liu, H., Nishide, D., Tanaka, T. & Kataura, H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat. Commun. 2, 309 (2011).

    Article  CAS  Google Scholar 

  24. 24

    Dresselhaus, M. S., Dresselhaus, G. & Saito, R. Physics of carbon nanotubes. Carbon 33, 883–891 (1995).

    CAS  Article  Google Scholar 

  25. 25

    Dai, H. Carbon nanotubes: synthesis, integration, and properties. Acc. Chem. Res. 35, 1035–1044 (2002).

    CAS  Article  Google Scholar 

  26. 26

    Coleman, J. N., Khan, U., Blau, W. J. & Gun'ko, Y. K. Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44, 1624–1652 (2006).

    CAS  Article  Google Scholar 

  27. 27

    Carlson, L. J. & Krauss, T. D. Photophysics of individual single-walled carbon nanotubes. Acc. Chem. Res. 41, 235–243 (2008).

    CAS  Article  Google Scholar 

  28. 28

    Omachi, H., Segawa, Y. & Itami, K. Synthesis of cycloparaphenylenes and related carbon nanorings: a step toward the controlled synthesis of carbon nanotubes. Acc. Chem. Res. 45, 1378–1389 (2012).

    CAS  Article  Google Scholar 

  29. 29

    Jasti, R. & Bertozzi, C. R. Progress and challenges for the bottom-up synthesis of carbon nanotubes with discrete chirality. Chem. Phys. Lett. 494, 1–7 (2010).

    CAS  Article  Google Scholar 

  30. 30

    Yamago, S., Kayahara, E. & Iwamoto, T. Organoplatinum-mediated synthesis of cyclic π-conjugated molecules: towards a new era of three-dimensional aromatic compounds. Chem. Rec. 14, 84–100 (2014).

    CAS  Article  Google Scholar 

  31. 31

    Lewis, S. E. Cycloparaphenylenes and related nanohoops. Chem. Soc. Rev. 44, 2221–2304 (2015).

    CAS  Article  Google Scholar 

  32. 32

    Bunz, U. H. F., Menning, S. & Martín, N. para-Connected cyclophenylenes and hemispherical polyarenes: building blocks for single-walled carbon nanotubes? Angew. Chem. Int. Ed. Engl. 51, 7094–7101 (2012).

    CAS  Article  Google Scholar 

  33. 33

    Baldridge, K. K. & Siegel, J. S. Corannulene-based fullerene fragments C20H10-C50H10: when does a buckybowl become a buckytube? Theor. Chem. Acc. 97, 67–71 (1997).

    CAS  Article  Google Scholar 

  34. 34

    Parekh, V. C. & Guha, P. C. Synthesis of pp'-diphenylenedimonosulphide. J. Indian Chem. Soc. 11, 95–100 (1934).

    CAS  Google Scholar 

  35. 35

    Jasti, R., Bhattacharjee, J., Neaton, J. B. & Bertozzi, C. R. Synthesis, characterization, and theory of [9]-, [12]-, and [18]cycloparaphenylene: carbon nanohoop structures. J. Am. Chem. Soc. 130, 17646–17647 (2008).

    CAS  Article  Google Scholar 

  36. 36

    Takaba, H., Omachi, H., Yamamoto, Y., Bouffard, J. & Itami, K. Selective synthesis of [12]cycloparaphenylene. Angew. Chem. Int. Ed. Engl. 48, 6112–6116 (2009).

    CAS  Article  Google Scholar 

  37. 37

    Yamago, S., Watanabe, Y. & Iwamoto, T. Synthesis of [8]cycloparaphenylene from a square-shaped tetranuclear platinum complex. Angew. Chem. Int. Ed. Engl. 49, 757–759 (2010).

    CAS  Article  Google Scholar 

  38. 38

    Fuhrmann, G., Debaerdemaeker, T. & Bauerle, P. C-C bond formation through oxidatively induced elimination of platinum complexes - a novel approach towards conjugated macrocycles. Chem. Commun. 948–949 (2003).

  39. 39

    Omachi, H., Segawa, Y. & Itami, K. Synthesis and racemization process of chiral carbon nanorings: a step toward the chemical synthesis of chiral carbon nanotubes. Org. Lett. 13, 2480–2483 (2011).

    CAS  Article  Google Scholar 

  40. 40

    Hitosugi, S., Nakanishi, W., Yamasaki, T. & Isobe, H. Bottom-up synthesis of finite models of helical (n,m)-single-wall carbon nanotubes. Nat. Commun. 2, 492 (2011).

    Article  CAS  Google Scholar 

  41. 41

    Matsuno, T., Kamata, S., Hitosugi, S. & Isobe, H. Bottom-up synthesis and structures of π-lengthened tubular macrocycles. Chem. Sci. 4, 3179–3183 (2013).

    CAS  Article  Google Scholar 

  42. 42

    Kohnke, F. H., Slawin, A. M. Z., Stoddart, J. F. & Williams, D. J. Molecular belts and collars in the making: a hexaepoxyoctacosahydro[12]cyclacene derivative. Angew. Chem. Int. Ed. Engl. 26, 892–894 (1987).

    Article  Google Scholar 

  43. 43

    Cory, R. M., McPhail, C. L., Dikmans, A. J. & Vittal, J. J. Macrocyclic cyclophane belts via double Diels–Alder cycloadditions: macroannulation of bisdienes by bisdienophiles. Synthesis of a key precursor to an [8]cyclacene. Tetrahedron Lett. 37, 1983–1986 (1996).

    CAS  Article  Google Scholar 

  44. 44

    Hitosugi, S., Yamasaki, T. & Isobe, H. Bottom-up synthesis and thread-in-bead structures of finite (n,0)-zigzag single-wall carbon nanotubes. J. Am. Chem. Soc. 134, 12442–12445 (2012).

    CAS  Article  Google Scholar 

  45. 45

    Scott, L. T. et al. A short, rigid, structurally pure carbon nanotube by stepwise chemical synthesis. J. Am. Chem. Soc. 134, 107–110 (2012).

    CAS  Article  Google Scholar 

  46. 46

    Petrukhina, M. A. & Scott, L. T. (eds) Fragments of Fullerenes and Carbon Nanotube: Designed Synthesis, Unusual Reactions, and Coordination Chemistry (Wiley, 2012).

    Google Scholar 

  47. 47

    Vögtle, F. Concluding remarks. Top. Curr. Chem. 115, 157 (1983).

    Google Scholar 

  48. 48

    Iyoda, M., Kuwatani, Y., Nishinaga, T., Takase, M. & Nishiuchi, T. in Fragments of Fullerenes and Carbon Nanotube: Designed Synthesis, Unusual Reactions, and Coordination Chemistry (eds Petrukhina, M. A. & Scott, L. T. ) Ch. 12 (Wiley, 2012).

    Google Scholar 

  49. 49

    Nakamura, E., Tahara, K., Matsuo, Y. & Sawamura, M. Synthesis, structure, and aromaticity of a hoop-shaped cyclic benzenoid [10]cyclophenacene. J. Am. Chem. Soc. 125, 2834–2835 (2003).

    CAS  Article  Google Scholar 

  50. 50

    Yagi, A., Segawa, Y. & Itami, K. Synthesis and properties of [9]cyclo-1,4-naphthylene: a π-extended carbon nanoring. J. Am. Chem. Soc. 134, 2962–2965 (2012).

    CAS  Article  Google Scholar 

  51. 51

    Ishii, Y., Matsuura, S., Segawa, Y. & Itami, K. Synthesis and dimerization of chloro[10]cycloparaphenylene: a directly connected cycloparaphenylene dimer. Org. Lett. 16, 2174–2176 (2014).

    CAS  Article  Google Scholar 

  52. 52

    Nishiuchi, T., Feng, X., Enkelmann, V., Wagner, M. & Müllen, K. Three-dimensionally arranged cyclic p-hexaphenylbenzene: toward a bottom-up synthesis of size-defined carbon nanotubes. Chem. Eur. J. 18, 16621–16625 (2012).

    CAS  Article  Google Scholar 

  53. 53

    Golling, F. E., Quernheim, M., Wagner, M., Nishiuchi, T. & Müllen, K. Concise synthesis of 3D π-extended polyphenylene cylinders. Angew. Chem. Int. Ed. Engl. 53, 1525–1528 (2014).

    CAS  Article  Google Scholar 

  54. 54

    Quernheim, M. et al. The precise synthesis of phenylene-extended cyclic hexa-peri-hexabenzocoronenes from polyarylated [n]cycloparaphenylenes by the Scholl reaction. Angew. Chem. Int. Ed. Engl. 54, 10341–10346 (2015).

    CAS  Article  Google Scholar 

  55. 55

    Yu, X. et al. Cap formation engineering: from opened C60 to single-walled carbon nanotubes. Nano Lett. 10, 3343–3349 (2010).

    CAS  Article  Google Scholar 

  56. 56

    Liu, B. et al. Nearly exclusive growth of small diameter semiconducting single-wall carbon nanotubes from organic chemistry synthetic end-cap molecules. Nano Lett. 15, 586–595 (2015).

    CAS  Article  Google Scholar 

  57. 57

    Omachi, H., Nakayama, T., Takahashi, E., Segawa, Y. & Itami, K. Initiation of carbon nanotube growth by well-defined carbon nanorings. Nat. Chem. 5, 572–576 (2013).

    CAS  Article  Google Scholar 

  58. 58

    Sanchez-Valencia, J. R. et al. Controlled synthesis of single-chirality carbon nanotubes. Nature 512, 61–64 (2014).

    CAS  Article  Google Scholar 

  59. 59

    Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    CAS  Article  Google Scholar 

  60. 60

    Wu, J., Pisula, W. & Müllen, K. Graphenes as potential material for electronics. Chem. Rev. 107, 718–747 (2007).

    CAS  Article  Google Scholar 

  61. 61

    Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009).

    CAS  Article  Google Scholar 

  62. 62

    Allen, M. J., Tung, V. C. & Kaner, R. B. Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132–145 (2010).

    CAS  Article  Google Scholar 

  63. 63

    Pumera, M. Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev. 39, 4146–4157 (2010).

    CAS  Article  Google Scholar 

  64. 64

    Schwierz, F. Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010).

    CAS  Article  Google Scholar 

  65. 65

    Guo, S. & Dong, S. Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev. 40, 2644–2672 (2011).

    CAS  Article  Google Scholar 

  66. 66

    Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192–200 (2012).

    CAS  Article  Google Scholar 

  67. 67

    Yan, L. et al. Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials. Chem. Soc. Rev. 41, 97–114 (2012).

    CAS  Article  Google Scholar 

  68. 68

    Ren, W. & Cheng, H. M. The global growth of graphene. Nat. Nanotechnol. 9, 726–730 (2014).

    CAS  Article  Google Scholar 

  69. 69

    Georgakilas, V., Perman, J. A., Tucek, J. & Zboril, R. Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 115, 4744–4822 (2015).

    CAS  Article  Google Scholar 

  70. 70

    Bai, J., Zhong, X., Jiang, S., Huang, Y. & Duan, X. Graphene nanomesh. Nat. Nanotechnol. 5, 190–194 (2010).

    CAS  Article  Google Scholar 

  71. 71

    Liang, X. et al. Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography. Nano Lett. 10, 2454–2460 (2010).

    CAS  Article  Google Scholar 

  72. 72

    Safron, N. S., Brewer, A. S. & Arnold, M. S. Semiconducting two-dimensional graphene nanoconstriction arrays. Small 7, 492–498 (2011).

    CAS  Article  Google Scholar 

  73. 73

    Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    CAS  Article  Google Scholar 

  74. 74

    Peng, Z., Yan, Z., Sun, Z. & Tour, J. M. Direct growth of bilayer graphene on SiO2 substrates by carbon diffusion through nickel. ACS Nano 5, 8241–8247 (2011).

    CAS  Article  Google Scholar 

  75. 75

    Elias, D. C. et al. Control of graphene's properties by reversible hydrogenation: evidence for graphane. Science 323, 610–613 (2009).

    CAS  Article  Google Scholar 

  76. 76

    Cheng, S. H. et al. Reversible fluorination of graphene: evidence of a two-dimensional wide bandgap semiconductor. Phys. Rev. B 81, 205435 (2010).

    Article  CAS  Google Scholar 

  77. 77

    Watson, M. D., Fechtenkötter, A. & Müllen, K. Big is beautiful – “Aromaticity” revisited from the viewpoint of macromolecular and supramolecular benzene chemistry. Chem. Rev. 101, 1267–1300 (2001).

    CAS  Article  Google Scholar 

  78. 78

    Feng, X., Pisula, W. & Müllen, K. Large polycyclic aromatic hydrocarbons: synthesis and discotic organization. Pure Appl. Chem. 81, 2203–2224 (2009).

    CAS  Article  Google Scholar 

  79. 79

    Rieger, R. & Müllen, K. Forever young: polycyclic aromatic hydrocarbons as model cases for structural and optical studies. J. Phys. Org. Chem. 23, 315–325 (2010).

    CAS  Google Scholar 

  80. 80

    Chen, L., Hernandez, Y., Feng, X. & Müllen, K. From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. Angew. Chem. Int. Ed. Engl. 51, 7640–7654 (2012).

    CAS  Article  Google Scholar 

  81. 81

    Itami, K. Toward controlled synthesis of carbon nanotubes and graphenes. Pure Appl. Chem. 84, 907–916 (2012).

    CAS  Article  Google Scholar 

  82. 82

    Sun, Z., Ye, Q., Chi, C. & Wu, J. Low band gap polycyclic hydrocarbons: from closed-shell near infrared dyes and semiconductors to open-shell radicals. Chem. Soc. Rev. 41, 7857–7889 (2012).

    CAS  Article  Google Scholar 

  83. 83

    Müllen, K. Graphene as a target for polymer synthesis. Adv. Polym. Sci. 262, 61–92 (2013).

    Article  CAS  Google Scholar 

  84. 84

    Wu, D., Ge, H. J., Liu, S. H. & Yin, J. Arynes in the synthesis of polycyclic aromatic hydrocarbons. RSC Adv. 3, 22727–22738 (2013).

    CAS  Article  Google Scholar 

  85. 85

    Müllen, K. Evolution of graphene molecules: structural and functional complexity as driving forces behind nanoscience. ACS Nano 8, 6531–6541 (2014).

    Article  CAS  Google Scholar 

  86. 86

    Ball, M. et al. Contorted polycyclic aromatics. Acc. Chem. Res. 48, 267–276 (2015).

    CAS  Article  Google Scholar 

  87. 87

    Narita, A., Feng, X. & Müllen, K. Bottom-up synthesis of chemically precise graphene nanoribbons. Chem. Rec. 15, 295–309 (2015).

    CAS  Article  Google Scholar 

  88. 88

    Narita, A., Wang, X. Y., Feng, X. & Müllen, K. New advances in nanographene chemistry. Chem. Soc. Rev. 44, 6616–6643 (2015).

    CAS  Article  Google Scholar 

  89. 89

    Yang, X. et al. Two-dimensional graphene nanoribbons. J. Am. Chem. Soc. 130, 4216–4217 (2008).

    CAS  Article  Google Scholar 

  90. 90

    Narita, A. et al. Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons. Nat. Chem. 6, 126–132 (2014).

    CAS  Article  Google Scholar 

  91. 91

    Wu, J. et al. From branched polyphenylenes to graphite ribbons. Macromolecules 36, 7082–7089 (2003).

    CAS  Article  Google Scholar 

  92. 92

    Fogel, Y. et al. Graphitic nanoribbons with dibenzo[e,l]pyrene repeat units: synthesis and self-assembly. Macromolecules 42, 6878–6884 (2009).

    CAS  Article  Google Scholar 

  93. 93

    Dossel, L., Gherghel, L., Feng, X. & Müllen, K. Graphene nanoribbons by chemists: nanometer-sized, soluble, and defect-free. Angew. Chem. Int. Ed. Engl. 50, 2540–2543 (2011).

    Article  CAS  Google Scholar 

  94. 94

    Schwab, M. G. et al. Structurally defined graphene nanoribbons with high lateral extension. J. Am. Chem. Soc. 134, 18169–18172 (2012).

    CAS  Article  Google Scholar 

  95. 95

    Kim, K. T., Jung, J. W. & Jo, W. H. Synthesis of graphene nanoribbons with various widths and its application to thin-film transistor. Carbon 63, 202–209 (2013).

    CAS  Article  Google Scholar 

  96. 96

    Kim, K. T., Lee, J. W. & Jo, W. H. Charge-transport tuning of solution-processable graphene nanoribbons by substitutional nitrogen doping. Macromol. Chem. Phys. 214, 2768–2773 (2013).

    CAS  Article  Google Scholar 

  97. 97

    Abbas, A. N. et al. Deposition, characterization, and thin-film-based chemical sensing of ultra-long chemically synthesized graphene nanoribbons. J. Am. Chem. Soc. 136, 7555–7558 (2014).

    CAS  Article  Google Scholar 

  98. 98

    El Gemayel, M. et al. Graphene nanoribbon blends with P3HT for organic electronics. Nanoscale 6, 6301–6314 (2014).

    CAS  Article  Google Scholar 

  99. 99

    Narita, A. et al. Bottom-up synthesis of liquid-phase-processable graphene nanoribbons with near-infrared absorption. ACS Nano 8, 11622–11630 (2014).

    CAS  Article  Google Scholar 

  100. 100

    Vo, T. H. et al. Large-scale solution synthesis of narrow graphene nanoribbons. Nat. Commun. 5, 3189 (2014).

    Article  CAS  Google Scholar 

  101. 101

    Vo, T. H. et al. Bottom-up solution synthesis of narrow nitrogen-doped graphene nanoribbons. Chem. Commun. 50, 4172–4174 (2014).

    CAS  Article  Google Scholar 

  102. 102

    Liu, J. et al. Toward cove-edged low band gap graphene nanoribbons. J. Am. Chem. Soc. 137, 6097–6103 (2015).

    CAS  Article  Google Scholar 

  103. 103

    Schwab, M. G. et al. Bottom-up synthesis of necklace-like graphene nanoribbons. Chem. Asian J. 10, 2134–2138 (2015).

    CAS  Article  Google Scholar 

  104. 104

    Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).

    CAS  Article  Google Scholar 

  105. 105

    Bjork, J., Stafstrom, S. & Hanke, F. Zipping up: cooperativity drives the synthesis of graphene nanoribbons. J. Am. Chem. Soc. 133, 14884–14887 (2011).

    Article  CAS  Google Scholar 

  106. 106

    Martin-Gago, J. A. Polycyclic aromatics: on-surface molecular engineering. Nat. Chem. 3, 11–12 (2011).

    CAS  Article  Google Scholar 

  107. 107

    Blankenburg, S. et al. Intraribbon heterojunction formation in ultranarrow graphene nanoribbons. ACS Nano 6, 2020–2025 (2012).

    CAS  Article  Google Scholar 

  108. 108

    Huang, H. et al. Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons. Sci. Rep. 2, 983 (2012).

    Article  CAS  Google Scholar 

  109. 109

    Koch, M., Ample, F., Joachim, C. & Grill, L. Voltage-dependent conductance of a single graphene nanoribbon. Nat. Nanotechnol. 7, 713–717 (2012).

    CAS  Article  Google Scholar 

  110. 110

    Linden, S. et al. Electronic structure of spatially aligned graphene nanoribbons on Au(788). Phys. Rev. Lett. 108, 216801 (2012).

    CAS  Article  Google Scholar 

  111. 111

    Ruffieux, P. et al. Electronic structure of atomically precise graphene nanoribbons. ACS Nano 6, 6930–6935 (2012).

    CAS  Article  Google Scholar 

  112. 112

    Bronner, C. et al. Aligning the band gap of graphene nanoribbons by monomer doping. Angew. Chem. Int. Ed. Engl. 52, 4422–4425 (2013).

    CAS  Article  Google Scholar 

  113. 113

    Chen, Y. C. et al. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano 7, 6123–6128 (2013).

    CAS  Article  Google Scholar 

  114. 114

    Talirz, L. et al. Termini of bottom-up fabricated graphene nanoribbons. J. Am. Chem. Soc. 135, 2060–2063 (2013).

    CAS  Article  Google Scholar 

  115. 115

    van der Lit, J. et al. Suppression of electron-vibron coupling in graphene nanoribbons contacted via a single atom. Nat. Commun. 4, 2023 (2013).

    Article  CAS  Google Scholar 

  116. 116

    Abdurakhmanova, N. et al. Synthesis of wide atomically precise graphene nanoribbons from para-oligophenylene based molecular precursor. Carbon 77, 1187–1190 (2014).

    CAS  Article  Google Scholar 

  117. 117

    Cai, J. et al. Graphene nanoribbon heterojunctions. Nat. Nanotechnol. 9, 896–900 (2014).

    CAS  Article  Google Scholar 

  118. 118

    Denk, R. et al. Exciton-dominated optical response of ultra-narrow graphene nanoribbons. Nat. Commun. 5, 4253 (2014).

    CAS  Article  Google Scholar 

  119. 119

    Han, P. et al. Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity. ACS Nano 8, 9181–9187 (2014).

    CAS  Article  Google Scholar 

  120. 120

    Palma, C. A. et al. Photoinduced C-C reactions on insulators toward photolithography of graphene nanoarchitectures. J. Am. Chem. Soc. 136, 4651–4658 (2014).

    CAS  Article  Google Scholar 

  121. 121

    Sakaguchi, H. et al. Width-controlled sub-nanometer graphene nanoribbon films synthesized by radical-polymerized chemical vapor deposition. Adv. Mater. 26, 4134–4138 (2014).

    CAS  Article  Google Scholar 

  122. 122

    Basagni, A. et al. Molecules-oligomers-nanowires-graphene nanoribbons: a bottom-up stepwise on-surface covalent synthesis preserving long-range order. J. Am. Chem. Soc. 137, 1802–1808 (2015).

    CAS  Article  Google Scholar 

  123. 123

    Chen, Y. C. et al. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. Nat. Nanotechnol. 10, 156–160 (2015).

    CAS  Article  Google Scholar 

  124. 124

    Cloke, R. R. et al. Site-specific substitutional boron doping of semiconducting armchair graphene nanoribbons. J. Am. Chem. Soc. 137, 8872–8875 (2015).

    CAS  Article  Google Scholar 

  125. 125

    Dienel, T. et al. Resolving atomic connectivity in graphene nanostructure junctions. Nano Lett. 15, 5185–5190 (2015).

    CAS  Article  Google Scholar 

  126. 126

    Söde, H. et al. Electronic band dispersion of graphene nanoribbons via Fourier-transformed scanning tunneling spectroscopy. Phys. Rev. B 91, 045429 (2015).

    Article  CAS  Google Scholar 

  127. 127

    Zhang, H. et al. On-surface synthesis of rylene-type graphene nanoribbons. J. Am. Chem. Soc. 137, 4022–4025 (2015).

    CAS  Article  Google Scholar 

  128. 128

    Kawai, S. et al. Atomically controlled substitutional boron-doping of graphene nanoribbons. Nat. Commun. 6, 8098 (2015).

    CAS  Article  Google Scholar 

  129. 129

    Talyzin, A. V. et al. Synthesis of graphene nanoribbons encapsulated in single-walled carbon nanotubes. Nano Lett. 11, 4352–4356 (2011).

    CAS  Article  Google Scholar 

  130. 130

    Chuvilin, A. et al. Self-assembly of a sulphur-terminated graphene nanoribbon within a single-walled carbon nanotube. Nat. Mater. 10, 687–692 (2011).

    CAS  Article  Google Scholar 

  131. 131

    Bandow, S., Takizawa, M., Hirahara, K., Yudasaka, M. & Iijima, S. Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes. Chem. Phys. Lett. 337, 48–54 (2001).

    CAS  Article  Google Scholar 

  132. 132

    Chamberlain, T. W. et al. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes. ACS Nano 6, 3943–3953 (2012).

    CAS  Article  Google Scholar 

  133. 133

    Fujihara, M. et al. Dimerization-initiated preferential formation of coronene-based graphene nanoribbons in carbon nanotubes. J. Phys. Chem. C 116, 15141–15145 (2012).

    CAS  Article  Google Scholar 

  134. 134

    Lim, H. E. et al. Growth of carbon nanotubes via twisted graphene nanoribbons. Nat. Commun. 4, 2548 (2013).

    Article  CAS  Google Scholar 

  135. 135

    Lim, H. E. et al. Fabrication and optical probing of highly extended, ultrathin graphene nanoribbons in carbon nanotubes. ACS Nano 9, 5034–5040 (2015).

    CAS  Article  Google Scholar 

  136. 136

    Fort, E. H., Donovan, P. M. & Scott, L. T. Diels–Alder reactivity of polycyclic aromatic hydrocarbon bay regions: implications for metal-free growth of single-chirality carbon nanotubes. J. Am. Chem. Soc. 131, 16006–16007 (2009).

    CAS  Article  Google Scholar 

  137. 137

    Fort, E. H. & Scott, L. T. One-step conversion of aromatic hydrocarbon bay regions into unsubstituted benzene rings: a reagent for the low-temperature, metal-free growth of single-chirality carbon nanotubes. Angew. Chem. Int. Ed. Engl. 49, 6626–6628 (2010).

    CAS  Article  Google Scholar 

  138. 138

    Fort, E. H. & Scott, L. T. Gas-phase Diels–Alder cycloaddition of benzyne to an aromatic hydrocarbon bay region: groundwork for the selective solvent-free growth of armchair carbon nanotubes. Tetrahedron Lett. 52, 2051–2053 (2011).

    CAS  Article  Google Scholar 

  139. 139

    Li, J., Jiao, C., Huang, K. W. & Wu, J. Lateral extension of π-conjugation along the bay regions of bisanthene through a Diels–Alder cycloaddition reaction. Chem. Eur. J. 17, 14672–14680 (2011).

    CAS  Article  Google Scholar 

  140. 140

    Fort, E. H., Jeffreys, M. S. & Scott, L. T. Diels–Alder cycloaddition of acetylene gas to a polycyclic aromatic hydrocarbon bay region. Chem. Commun. 48, 8102–8104 (2012).

    CAS  Article  Google Scholar 

  141. 141

    Konishi, A., Hirao, Y., Matsumoto, K., Kurata, H. & Kubo, T. Facile synthesis and lateral π-expansion of bisanthenes. Chem. Lett. 42, 592–594 (2013).

    CAS  Article  Google Scholar 

  142. 142

    Schuler, B. et al. From perylene to a 22-ring aromatic hydrocarbon in one-pot. Angew. Chem. Int. Ed. Engl. 53, 9004–9006 (2014).

    CAS  Article  Google Scholar 

  143. 143

    Ozaki, K., Kawasumi, K., Shibata, M., Ito, H. & Itami, K. One-shot K-region-selective annulative π-extension for nanographene synthesis and functionalization. Nat. Commun. 6, 6251 (2015).

    CAS  Article  Google Scholar 

  144. 144

    Mackay, A. L. & Terrones, H. Diamond from graphite. Nature 352, 762 (1991).

    Article  Google Scholar 

  145. 145

    Schwarz, H. A. Gesammelte Mathematische Abhandlungen Vols 1,2 (Springer, 1890).

    Google Scholar 

  146. 146

    Lenosky, T., Gonze, X., Teter, M. & Elser, V. Energetics of negatively curved graphitic carbon. Nature 335, 333–335 (1992).

    Article  Google Scholar 

  147. 147

    Tagami, M., Liang, Y., Naito, H., Kawazoe, Y. & Kotani, M. Negatively curved cubic carbon crystals with octahedral symmetry. Carbon 76, 266–274 (2014).

    CAS  Article  Google Scholar 

  148. 148

    Ōsawa, E., Yoshida, M. & Fujita, M. Shape and fantasy of fullerenes. MRS Bull. 19, 33–38 (1994).

    Article  Google Scholar 

  149. 149

    Christoph, H. et al. MP2 and DFT calculations on circulenes and an attempt to prepare the second lowest benzolog, [4]circulene. Chem. Eur. J. 14, 5604–5616 (2008).

    CAS  Article  Google Scholar 

  150. 150

    Kaur, N., Dharamvir, K. & Jindal, V. K. Dimerization and fusion of two C60 molecules. Chem. Phys. 344, 176–184 (2008).

    CAS  Article  Google Scholar 

  151. 151

    Takashima, A., Nishii, T. & Onoe, J. Formation process and electron-beam incident energy dependence of one-dimensional uneven peanut-shaped C60 polymer studied using in situ high-resolution infrared spectroscopy and density-functional calculations. J. Phys. D: Appl. Phys. 45, 485302 (2012).

    Article  CAS  Google Scholar 

  152. 152

    Weldon, D. N., Blau, W. J. & Zandbergen, H. W. A high resolution electron microscopy investigation of curvature in carbon nanotubes. Chem. Phys. Lett. 241, 365–372 (1995).

    CAS  Article  Google Scholar 

  153. 153

    Wei, D. & Liu, Y. The intramolecular junctions of carbon nanotubes. Adv. Mater. 20, 2815–2841 (2008).

    CAS  Article  Google Scholar 

  154. 154

    lijima, S., Ichihashi, T. & Ando, Y. Pentagons, heptagons and negative curvature in graphite microtubule growth. Nature 356, 776–778 (1992).

    Article  Google Scholar 

  155. 155

    Galli, C. & Mandolini, L. The role of ring strain on the ease of ring closure of bifunctional chain molecules. Eur. J. Org. Chem. 2000, 3117–3125 (2000).

    Article  Google Scholar 

  156. 156

    Yamamoto, K. et al. Synthesis and characterization of [7]circulene. J. Am. Chem. Soc. 105, 7171–7172 (1983).

    CAS  Article  Google Scholar 

  157. 157

    Yamamoto, K., Saitho, Y., Iwaki, D. & Ooka, T. [7.7]Circulene, a molecule shaped like a figure of eight. Angew. Chem. Int. Ed. Engl. 30, 1173–1174 (1991).

    Article  Google Scholar 

  158. 158

    Yamamoto, K. Extended systems of closed helicene. Synthesis and characterization of [7] and [7.7]circulene. Pure Appl. Chem. 65, 157–163 (1993).

    CAS  Article  Google Scholar 

  159. 159

    Rajca, A., Safronov, A., Rajca, S. & Shoemaker, R. Double helical octaphenylene. Angew. Chem. Int. Ed. Engl. 36, 488–491 (1997).

    CAS  Article  Google Scholar 

  160. 160

    Feng, C.-N., Kuo, M.-Y. & Wu, Y.-T. Synthesis, structural analysis, and properties of [8]circulenes. Angew. Chem. Int. Ed. Engl. 52, 7791–7794 (2013).

    CAS  Article  Google Scholar 

  161. 161

    Sakamoto, Y. & Suzuki, T. Tetrabenzo[8]circulene: aromatic saddles from negatively curved graphene. J. Am. Chem. Soc. 135, 14074–14077 (2013).

    CAS  Article  Google Scholar 

  162. 162

    Miller, R. W., Duncan, A. K., Schneebeli, S. T., Gray, D. L. & Whalley, A. C. Synthesis and structural data of tetrabenzo[8]circulene. Chem. Eur. J. 20, 3705–3711 (2014).

    CAS  Article  Google Scholar 

  163. 163

    Cheung, K. Y., Xu, X. & Miao, Q. Aromatic saddles containing two heptagons. J. Am. Chem. Soc. 137, 3910–3914 (2015).

    CAS  Article  Google Scholar 

  164. 164

    Kawasumi, K., Zhang, Q., Segawa, Y., Scott, L. T. & Itami, K. A grossly warped nanographene and the consequences of multiple odd-membered-ring defects. Nat. Chem. 5, 739–744 (2013).

    CAS  Article  Google Scholar 

  165. 165

    Grzybowski, M., Skonieczny, K., Butenschö n, H. & Gryko, D. T. Comparison of oxidative aromatic coupling and the Scholl reaction. Angew. Chem. Int. Ed. Engl. 52, 9900–9930 (2013).

    CAS  Article  Google Scholar 

  166. 166

    Mochida, K., Kawasumi, K., Segawa, Y. & Itami, K. Direct arylation of polycyclic aromatic hydrocarbons through palladium catalysis. J. Am. Chem. Soc. 133, 10716–10719 (2011).

    CAS  Article  Google Scholar 

  167. 167

    Eliseeva, M. N. & Scott, L. T. Pushing the Ir-catalyzed C–H polyborylation of aromatic compounds to maximum capacity by exploiting reversibility. J. Am. Chem. Soc. 134, 15169–15172 (2012).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Exploratory Research for Advanced Technology (ERATO) program from the Japan Science and Technology Agency (JST) (K.I.). The authors thank A. Miyazaki for critical comments and H. Hirukawa for graphics.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kenichiro Itami.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Segawa, Y., Ito, H. & Itami, K. Structurally uniform and atomically precise carbon nanostructures. Nat Rev Mater 1, 15002 (2016). https://doi.org/10.1038/natrevmats.2015.2

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing