Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The design of reversible hydrogels to capture extracellular matrix dynamics

Abstract

The extracellular matrix (ECM) is a dynamic environment that constantly provides physical and chemical cues to embedded cells. Much progress has been made in engineering hydrogels that can mimic the ECM, but hydrogel properties are, in general, static. To recapitulate the dynamic nature of the ECM, many reversible chemistries have been incorporated into hydrogels to regulate cell spreading, biochemical ligand presentation and matrix mechanics. For example, emerging trends include the use of molecular photoswitches or biomolecule hybridization to control polymer chain conformation, thereby enabling the modulation of the hydrogel between two states on demand. In addition, many non-covalent, dynamic chemical bonds have found increasing use as hydrogel crosslinkers or tethers for cell signalling molecules. These reversible chemistries will provide greater temporal control of adhered cell behaviour, and they allow for more advanced in vitro models and tissue-engineering scaffolds to direct cell fate.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biological extracellular matrix and synthetic strategies involving reversible chemistries.
Figure 2: Irreversible and reversible chemistries for hydrogels.
Figure 3: Light-based strategies for exchangeable ligand presentation.
Figure 4: Non-covalent strategies for exchangeable ligand presentation.
Figure 5: Crosslinking effects on bulk hydrogel properties.
Figure 6: Covalent adaptable networks.
Figure 7: Reversible control of matrix mechanics.

Similar content being viewed by others

References

  1. Nelson, C. M. & Bissell, M. J. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol. 22, 287–309 (2006).

    Article  CAS  Google Scholar 

  2. Midwood, K. S., Williams, L. V. & Schwarzbauer, J. E. Tissue repair and the dynamics of the extracellular matrix. Int. J. Biochem. Cell Biol. 36, 1031–1037 (2004).

    Article  CAS  Google Scholar 

  3. Vlodavsky, I. et al. Endothelial cell-derived basic fibroblast growth factor: synthesis and deposition into subendothelial extracellular matrix. Proc. Natl Acad. Sci. USA 84, 2292–2296 (1987).

    Article  CAS  Google Scholar 

  4. Wipff, P.-J., Rifkin, D. B., Meister, J.-J. & Hinz, B. Myofibroblast contraction activates latent TGF-β1 from the extracellular matrix. J. Cell Biol. 179, 1311–1323 (2007).

    Article  CAS  Google Scholar 

  5. Bissell, M. J., Hall, H. G. & Parry, G. How does the extracellular matrix direct gene expression? J. Theor. Biol. 99, 31–68 (1982).

    Article  CAS  Google Scholar 

  6. Blau, H. et al. Plasticity of the differentiated state. Science 230, 758–766 (1985).

    Article  CAS  Google Scholar 

  7. Slaughter, B. V., Khurshid, S. S., Fisher, O. Z., Khademhosseini, A. & Peppas, N. A. Hydrogels in regenerative medicine. Adv. Mater. 21, 3307–3329 (2009).

    Article  CAS  Google Scholar 

  8. Place, E. S., Evans, N. D. & Stevens, M. M. Complexity in biomaterials for tissue engineering. Nat. Mater. 8, 457–470 (2009).

    Article  CAS  Google Scholar 

  9. Fisher, O. Z., Khademhosseini, A., Langer, R. & Peppas, N. A. Bioinspired materials for controlling stem cell fate. Acc. Chem. Res. 43, 419–428 (2010).

    Article  CAS  Google Scholar 

  10. Burdick, J. A. & Murphy, W. L. Moving from static to dynamic complexity in hydrogel design. Nat. Commun. 3, 1269 (2012).

    Article  Google Scholar 

  11. Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684–1688 (2001).

    Article  CAS  Google Scholar 

  12. Nowak, A. P. et al. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 417, 424–428 (2002).

    Article  CAS  Google Scholar 

  13. Peppas, N. A., Hilt, J. Z., Khademhosseini, A. & Langer, R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 18, 1345–1360 (2006).

    Article  CAS  Google Scholar 

  14. Buwalda, S. J. et al. Hydrogels in a historical perspective: from simple networks to smart materials. J. Control. Release 190, 254–273 (2014).

    Article  CAS  Google Scholar 

  15. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  Google Scholar 

  16. Wang, Y.-L. & Pelham, R. J. Jr in Methods in Enzymology (ed. Richard, B. V. ) 489–496 (Academic Press, 1998).

    Google Scholar 

  17. Pelham, R. J. Jr & Wang, Y.-l. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94, 13661–13665 (1997).

    Article  CAS  Google Scholar 

  18. Dvir, T., Timko, B. P., Kohane, D. S. & Langer, R. Nanotechnological strategies for engineering complex tissues. Nat. Nano 6, 13–22 (2011).

    Article  CAS  Google Scholar 

  19. Roy, D., Cambre, J. N. & Sumerlin, B. S. Future perspectives and recent advances in stimuli-responsive materials. Prog. Polym. Sci. 35, 278–301 (2010).

    Article  CAS  Google Scholar 

  20. Zhang, J. & Peppas, N. A. Synthesis and characterization of pH- and temperature-sensitive poly(methacrylic acid)/poly(N-isopropylacrylamide) interpenetrating polymeric networks. Macromolecules 33, 102–107 (2000).

    Article  CAS  Google Scholar 

  21. Lowman, A. M., Morishita, M., Kajita, M., Nagai, T. & Peppas, N. A. Oral delivery of insulin using pH-responsive complexation gels. J. Pharm. Sci. 88, 933–937 (1999).

    Article  CAS  Google Scholar 

  22. Hoffman, A. S. Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics. J. Control. Release 6, 297–305 (1987).

    Article  CAS  Google Scholar 

  23. Cole, M. A., Voelcker, N. H., Thissen, H. & Griesser, H. J. Stimuli-responsive interfaces and systems for the control of protein–surface and cell–surface interactions. Biomaterials 30, 1827–1850 (2009).

    Article  CAS  Google Scholar 

  24. Yeo, W.-S., Yousaf, M. N. & Mrksich, M. Dynamic interfaces between cells and surfaces: electroactive substrates that sequentially release and attach cells. J. Am. Chem. Soc. 125, 14994–14995 (2003).

    Article  CAS  Google Scholar 

  25. Zrí nyi, M. Intelligent polymer gels controlled by magnetic fields. Colloid Polym. Sci. 278, 98–103 (2000).

    Article  Google Scholar 

  26. Kloxin, A. M., Kloxin, C. J., Bowman, C. N. & Anseth, K. S. Mechanical properties of cellularly responsive hydrogels and their experimental determination. Adv. Mater. 22, 3484–3494 (2010).

    Article  CAS  Google Scholar 

  27. Miyata, T., Uragami, T. & Nakamae, K. Biomolecule-sensitive hydrogels. Adv. Drug Delivery Rev. 54, 79–98 (2002).

    Article  CAS  Google Scholar 

  28. Miyata, T., Asami, N. & Uragami, T. A reversibly antigen-responsive hydrogel. Nature 399, 766–769 (1999).

    Article  CAS  Google Scholar 

  29. Miyata, T., Jikihara, A., Nakamae, K. & Hoffman, A. S. Preparation of reversibly glucose-responsive hydrogels by covalent immobilization of lectin in polymer networks having pendant glucose. J. Biomater. Sci. Polym. Ed. 15, 1085–1098 (2004).

    Article  CAS  Google Scholar 

  30. Hassan, C. M., Doyle, F. J. & Peppas, N. A. Dynamic behavior of glucose-responsive poly(methacrylic acid-g-ethylene glycol) hydrogels. Macromolecules 30, 6166–6173 (1997).

    Article  CAS  Google Scholar 

  31. Kost, J. & Langer, R. Responsive polymeric delivery systems. Adv. Drug Delivery Rev. 64 (Suppl.), 327–341 (2012).

    Article  Google Scholar 

  32. Bryant, S. J. & Anseth, K. S. Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage. J. Biomed. Mater. Res. Part A 64A, 70–79 (2003).

    Article  CAS  Google Scholar 

  33. Zustiak, S. P. & Leach, J. B. Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds with tunable degradation and mechanical properties. Biomacromolecules 11, 1348–1357 (2010).

    Article  CAS  Google Scholar 

  34. Metters, A. T., Anseth, K. S. & Bowman, C. N. Fundamental studies of a novel, biodegradable PEG-b-PLA hydrogel. Polymer 41, 3993–4004 (2000).

    Article  CAS  Google Scholar 

  35. Chung, C., Beecham, M., Mauck, R. L. & Burdick, J. A. The influence of degradation characteristics of hyaluronic acid hydrogels on in vitro neocartilage formation by mesenchymal stem cells. Biomaterials 30, 4287–4296 (2009).

    Article  CAS  Google Scholar 

  36. Lutolf, M. P. et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc. Natl Acad. Sci. USA 100, 5413–5418 (2003).

    Article  CAS  Google Scholar 

  37. Kloxin, A. M., Kasko, A. M., Salinas, C. N. & Anseth, K. S. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 59–63 (2009).

    Article  CAS  Google Scholar 

  38. Baker, B. M. & Chen, C. S. Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues. J. Cell Sci. 125, 3015–3024 (2012).

    CAS  Google Scholar 

  39. Hynes, R. O. Extracellular matrix: not just pretty fibrils. Science 326, 1216–1219 (2009).

    Article  CAS  Google Scholar 

  40. Martino, M. M. & Hubbell, J. A. The 12th–14th type III repeats of fibronectin function as a highly promiscuous growth factor-binding domain. FASEB J. 24, 4711–4721 (2010).

    CAS  Google Scholar 

  41. Droguett, R., Cabello-Verrugio, C., Riquelme, C. & Brandan, E. Extracellular proteoglycans modify TGF-β bio-availability attenuating its signaling during skeletal muscle differentiation. Matrix Biol. 25, 332–341 (2006).

    Article  CAS  Google Scholar 

  42. Baneyx, G., Baugh, L. & Vogel, V. Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension. Proc. Natl Acad. Sci. USA 99, 5139–5143 (2002).

    Article  CAS  Google Scholar 

  43. Baldwin, A. D. & Kiick, K. L. Polysaccharide-modified synthetic polymeric biomaterials. Biopolymers 94, 128–140 (2010).

    Article  CAS  Google Scholar 

  44. Lin, C.-C. & Anseth, K. S. Controlling affinity binding with peptide-functionalized poly(ethylene glycol) hydrogels. Adv. Funct. Mater. 19, 2325–2331 (2009).

    Article  CAS  Google Scholar 

  45. McCall, J. D., Lin, C.-C. & Anseth, K. S. Affinity peptides protect transforming growth factor β during encapsulation in poly(ethylene glycol) hydrogels. Biomacromolecules 12, 1051–1057 (2011).

    Article  CAS  Google Scholar 

  46. Azagarsamy, M. A. & Anseth, K. S. Bioorthogonal click chemistry: an indispensable tool to create multifaceted cell culture scaffolds. ACS macro Lett. 2, 5–9 (2013).

    Article  CAS  Google Scholar 

  47. Nimmo, C. M. & Shoichet, M. S. Regenerative biomaterials that “click”: simple, aqueous-based protocols for hydrogel synthesis, surface immobilization, and 3D patterning. Bioconjugate Chem. 22, 2199–2209 (2011).

    Article  CAS  Google Scholar 

  48. DeForest, C. A. & Anseth, K. S. Photoreversible patterning of biomolecules within click-based hydrogels. Angew. Chem. Int. Ed. Engl. 51, 1816–1819 (2012).

    Article  CAS  Google Scholar 

  49. DeForest, C. A. & Tirrell, D. A. A photoreversible protein-patterning approach for guiding stem cell fate in three-dimensional gels. Nat. Mater. 14, 523–531 (2015).

    Article  CAS  Google Scholar 

  50. Azagarsamy, M. A. & Anseth, K. S. Wavelength-controlled photocleavage for the orthogonal and sequential release of multiple proteins. Angew. Chem. Int. Ed. Engl. 52, 13803–13807 (2013).

    Article  CAS  Google Scholar 

  51. Sur, S., Matson, J. B., Webber, M. J., Newcomb, C. J. & Stupp, S. I. Photodynamic control of bioactivity in a nanofiber matrix. ACS Nano 6, 10776–10785 (2012).

    Article  CAS  Google Scholar 

  52. Lee, T. T. et al. Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials. Nat. Mater. 14, 352–360 (2015).

    Article  CAS  Google Scholar 

  53. Petersen, S. et al. Phototriggering of cell adhesion by caged cyclic RGD peptides. Angew. Chem. Int. Ed. Engl. 47, 3192–3195 (2008).

    Article  CAS  Google Scholar 

  54. Gandavarapu, N. R., Azagarsamy, M. A. & Anseth, K. S. Photo-click living strategy for controlled, reversible exchange of biochemical ligands. Adv. Mater. 26, 2521–2526 (2014).

    Article  CAS  Google Scholar 

  55. Roberts, M. C., Hanson, M. C., Massey, A. P., Karren, E. A. & Kiser, P. F. Dynamically restructuring hydrogel networks formed with reversible covalent crosslinks. Adv. Mater. 19, 2503–2507 (2007).

    Article  CAS  Google Scholar 

  56. Hahn, M. S., Miller, J. S. & West, J. L. Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Adv. Mater. 18, 2679–2684 (2006).

    Article  CAS  Google Scholar 

  57. Soman, P., Chung, P. H., Zhang, A. P. & Chen, S. Digital microfabrication of user-defined 3D microstructures in cell-laden hydrogels. Biotechnol. Bioeng. 110, 3038–3047 (2013).

    Article  CAS  Google Scholar 

  58. Wylie, R. G. et al. Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nat. Mater. 10, 799–806 (2011).

    Article  CAS  Google Scholar 

  59. Mosiewicz, K. A. et al. In situ cell manipulation through enzymatic hydrogel photopatterning. Nat. Mater. 12, 1072–1078 (2013).

    Article  CAS  Google Scholar 

  60. Auernheimer, J., Dahmen, C., Hersel, U., Bausch, A. & Kessler, H. Photoswitched cell adhesion on surfaces with RGD peptides. J. Am. Chem. Soc. 127, 16107–16110 (2005).

    Article  CAS  Google Scholar 

  61. Li, W. et al. Noninvasive and reversible cell adhesion and detachment via single-wavelength near-infrared laser mediated photoisomerization. J. Am. Chem. Soc. 137, 8199–8205 (2015).

    Article  CAS  Google Scholar 

  62. Bryant, S. J., Nuttelman, C. R. & Anseth, K. S. Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J. Biomater. Sci. Polym. Ed. 11, 439–457 (2000).

    Article  CAS  Google Scholar 

  63. Liu, B., Liu, Y., Riesberg, J. J. & Shen, W. Dynamic presentation of immobilized ligands regulated through biomolecular recognition. J. Am. Chem. Soc. 132, 13630–13632 (2010).

    Article  CAS  Google Scholar 

  64. Zhang, Z., Chen, N., Li, S., Battig, M. R. & Wang, Y. Programmable hydrogels for controlled cell catch and release using hybridized aptamers and complementary sequences. J. Am. Chem. Soc. 134, 15716–15719 (2012).

    Article  CAS  Google Scholar 

  65. Li, S., Gaddes, E. R., Chen, N. & Wang, Y. Molecular encryption and reconfiguration for remodeling of dynamic hydrogels. Angew. Chem. Int. Ed. Engl. 54, 5957–5961 (2015).

    Article  CAS  Google Scholar 

  66. Zhang, Z., Li, S., Chen, N., Yang, C. & Wang, Y. Programmable display of DNA–protein chimeras for controlling cell–hydrogel interactions via reversible intermolecular hybridization. Biomacromolecules 14, 1174–1180 (2013).

    Article  CAS  Google Scholar 

  67. Yang, J. et al. A near-infrared light-controlled system for reversible presentation of bioactive ligands using polypeptide-engineered functionalized gold nanorods. Chem. Commun. 51, 2569–2572 (2015).

    Article  CAS  Google Scholar 

  68. Huebsch, N. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 9, 518–526 (2010).

    Article  CAS  Google Scholar 

  69. Boekhoven, J., Rubert Pé rez, C. M., Sur, S., Worthy, A. & Stupp, S. I. Dynamic display of bioactivity through host–guest chemistry. Angew. Chem. Int. Ed. Engl. 52, 12077–12080 (2013).

    Article  CAS  Google Scholar 

  70. Neirynck, P. et al. Carborane-β-cyclodextrin complexes as a supramolecular connector for bioactive surfaces. J. Mater. Chem. B 3, 539–545 (2015).

    Article  CAS  Google Scholar 

  71. Cabanas-Danés, J. et al. A supramolecular host–guest carrier system for growth factors employing VHH fragments. J. Am. Chem. Soc. 136, 12675–12681 (2014).

    Article  Google Scholar 

  72. Brinkmann, J. et al. About supramolecular systems for dynamically probing cells. Chem. Soc. Rev. 43, 4449–4469 (2014).

    Article  CAS  Google Scholar 

  73. Seo, J.-H. et al. Inducing rapid cellular response on RGD-binding threaded macromolecular surfaces. J. Am. Chem. Soc. 135, 5513–5516 (2013).

    Article  CAS  Google Scholar 

  74. Kakinoki, S. et al. Mobility of the Arg–Gly–Asp ligand on the outermost surface of biomaterials suppresses integrin-mediated mechanotransduction and subsequent cell functions. Acta Biomater. 13, 42–51 (2015).

    Article  CAS  Google Scholar 

  75. Seo, J.-H., Kakinoki, S., Yamaoka, T. & Yui, N. Directing stem cell differentiation by changing the molecular mobility of supramolecular surfaces. Adv. Healthcare Mater. 4, 215–222 (2015).

    Article  CAS  Google Scholar 

  76. Pierschbacher, M. D. & Ruoslahti, E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309, 30–33 (1984).

    Article  CAS  Google Scholar 

  77. Hynes, R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11–25 (1992).

    Article  CAS  Google Scholar 

  78. Hautanen, A., Gailit, J., Mann, D. M. & Ruoslahti, E. Effects of modifications of the RGD sequence and its context on recognition by the fibronectin receptor. J. Biol. Chem. 264, 1437–1442 (1989).

    Article  CAS  Google Scholar 

  79. Ruoslahti, E. RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol. 12, 697–715 (1996).

    Article  CAS  Google Scholar 

  80. Foley, T. L. & Burkart, M. D. Site-specific protein modification: advances and applications. Curr. Opin. Chem. Biol. 11, 12–19 (2007).

    Article  CAS  Google Scholar 

  81. West, J. L. & Hubbell, J. A. Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules 32, 241–244 (1999).

    Article  CAS  Google Scholar 

  82. Kraehenbuehl, T. P. et al. Three-dimensional extracellular matrix-directed cardioprogenitor differentiation: systematic modulation of a synthetic cell-responsive PEG-hydrogel. Biomaterials 29, 2757–2766 (2008).

    Article  CAS  Google Scholar 

  83. Kyburz, K. A. & Anseth, K. S. Three-dimensional hMSC motility within peptide-functionalized PEG-based hydrogels of varying adhesivity and crosslinking density. Acta Biomater. 9, 6381–6392 (2013).

    Article  CAS  Google Scholar 

  84. Patterson, J. & Hubbell, J. A. Enhanced proteolytic degradation of molecularly engineered PEG hydrogels in response to MMP-1 and MMP-2. Biomaterials 31, 7836–7845 (2010).

    Article  CAS  Google Scholar 

  85. Cameron, A. R., Frith, J. E. & Cooper-White, J. J. The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. Biomaterials 32, 5979–5993 (2011).

    Article  CAS  Google Scholar 

  86. Chaudhuri, O. et al. Substrate stress relaxation regulates cell spreading. Nat. Commun. 6, 6364 (2015).

    Article  Google Scholar 

  87. Wang, H. & Heilshorn, S. C. Adaptable hydrogel networks with reversible linkages for tissue engineering. Adv. Mater. 27, 3717–3736 (2015).

    Article  CAS  Google Scholar 

  88. Bowman, C. N. & Kloxin, C. J. Covalent adaptable networks: reversible bond structures incorporated in polymer networks. Angew. Chem. Int. Ed. Engl. 51, 4272–4274 (2012).

    Article  CAS  Google Scholar 

  89. McKinnon, D. D., Domaille, D. W., Cha, J. N. & Anseth, K. S. Bis-aliphatic hydrazone-linked hydrogels form most rapidly at physiological pH: identifying the origin of hydrogel properties with small molecule kinetic studies. Chem. Mater. 26, 2382–2387 (2014).

    Article  CAS  Google Scholar 

  90. McKinnon, D. D., Domaille, D. W., Cha, J. N. & Anseth, K. S. Hydrogels: biophysically defined and cytocompatible covalently adaptable networks as viscoelastic 3D cell culture systems. Adv. Mater. 26, 865–872 (2014).

    Article  CAS  Google Scholar 

  91. McKinnon, D. D. et al. Measuring cellular forces using bis-aliphatic hydrazone crosslinked stress-relaxing hydrogels. Soft Matter 10, 9230–9236 (2014).

    Article  CAS  Google Scholar 

  92. Yan, S. et al. Injectable in situ self-cross-linking hydrogels based on poly(L-glutamic acid) and alginate for cartilage tissue engineering. Biomacromolecules 15, 4495–4508 (2014).

    Article  CAS  Google Scholar 

  93. Dahlmann, J. et al. Fully defined in situ cross-linkable alginate and hyaluronic acid hydrogels for myocardial tissue engineering. Biomaterials 34, 940–951 (2013).

    Article  CAS  Google Scholar 

  94. Gurski, L. A., Jha, A. K., Zhang, C., Jia, X. & Farach-Carson, M. C. Hyaluronic acid-based hydrogels as 3D matrices for in vitro evaluation of chemotherapeutic drugs using poorly adherent prostate cancer cells. Biomaterials 30, 6076–6085 (2009).

    Article  CAS  Google Scholar 

  95. Yang, B. et al. Facilely prepared inexpensive and biocompatible self-healing hydrogel: a new injectable cell therapy carrier. Polym. Chem. 3, 3235–3238 (2012).

    Article  CAS  Google Scholar 

  96. Tan, H., Chu, C. R., Payne, K. A. & Marra, K. G. Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30, 2499–2506 (2009).

    Article  CAS  Google Scholar 

  97. Weng, L., Romanov, A., Rooney, J. & Chen, W. Non-cytotoxic, in situ gelable hydrogels composed of N-carboxyethyl chitosan and oxidized dextran. Biomaterials 29, 3905–3913 (2008).

    Article  CAS  Google Scholar 

  98. Zhao, X., Huebsch, N., Mooney, D. J. & Suo, Z. Stress-relaxation behavior in gels with ionic and covalent crosslinks. J. Appl. Phys. 107, 063509 (2010).

    Article  Google Scholar 

  99. Rodell, C. B., Wade, R. J., Purcell, B. P., Dusaj, N. N. & Burdick, J. A. Selective proteolytic degradation of guest–host assembled, injectable hyaluronic acid hydrogels. ACS biomater. Sci. Eng. 1, 277–286 (2015).

    Article  CAS  Google Scholar 

  100. Liao, X., Chen, G. & Jiang, M. Hydrogels locked by molecular recognition aiming at responsiveness and functionality. Polym. Chem. 4, 1733–1745 (2013).

    Article  CAS  Google Scholar 

  101. Park, K. M. et al. In situ supramolecular assembly and modular modification of hyaluronic acid hydrogels for 3D cellular engineering. ACS Nano 6, 2960–2968 (2012).

    Article  CAS  Google Scholar 

  102. Dankers, P. Y. W., Harmsen, M. C., Brouwer, L. A., Van Luyn, M. J. A. & Meijer, E. W. A modular and supramolecular approach to bioactive scaffolds for tissue engineering. Nat. Mater. 4, 568–574 (2005).

    Article  CAS  Google Scholar 

  103. Wong Po Foo, C. T. S., Lee, J. S., Mulyasasmita, W., Parisi-Amon, A. & Heilshorn, S. C. Two-component protein-engineered physical hydrogels for cell encapsulation. Proc. Natl Acad. Sci. USA 106, 22067–22072 (2009).

    Article  Google Scholar 

  104. Cai, L., Dewi, R. E. & Heilshorn, S. C. Injectable hydrogels with in situ double network formation enhance retention of transplanted stem cells. Adv. Funct. Mater. 25, 1344–1351 (2015).

    Article  CAS  Google Scholar 

  105. Sathaye, S. et al. Engineering complementary hydrophobic interactions to control β-hairpin peptide self-assembly, network branching, and hydrogel properties. Biomacromolecules 15, 3891–3900 (2014).

    Article  CAS  Google Scholar 

  106. Glassman, M. J., Chan, J. & Olsen, B. D. Reinforcement of shear thinning protein hydrogels by responsive block copolymer self-assembly. Adv. Funct. Mater. 23, 1182–1193 (2013).

    Article  CAS  Google Scholar 

  107. Lee, K. Y. & Mooney, D. J. Alginate: properties and biomedical applications. Prog. Polym. Sci. 37, 106–126 (2012).

    Article  CAS  Google Scholar 

  108. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).

    Article  CAS  Google Scholar 

  109. Kilian, K. A., Bugarija, B., Lahn, B. T. & Mrksich, M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl Acad. Sci. USA 107, 4872–4877 (2010).

    Article  CAS  Google Scholar 

  110. Ito, F. et al. Reversible hydrogel formation driven by protein–peptide-specific interaction and chondrocyte entrapment. Biomaterials 31, 58–66 (2010).

    Article  CAS  Google Scholar 

  111. Lu, H. D., Charati, M. B., Kim, I. L. & Burdick, J. A. Injectable shear-thinning hydrogels engineered with a self-assembling dock-and-lock mechanism. Biomaterials 33, 2145–2153 (2012).

    Article  CAS  Google Scholar 

  112. Shen, W., Kornfield, J. A. & Tirrell, D. A. Dynamic properties of artificial protein hydrogels assembled through aggregation of leucine zipper peptide domains. Macromolecules 40, 689–692 (2007).

    Article  CAS  Google Scholar 

  113. Um, S. H. et al. Enzyme-catalysed assembly of DNA hydrogel. Nat. Mater. 5, 797–801 (2006).

    Article  CAS  Google Scholar 

  114. Lampe, K. J., Antaris, A. L. & Heilshorn, S. C. Design of three-dimensional engineered protein hydrogels for tailored control of neurite growth. Acta Biomater. 9, 5590–5599 (2013).

    Article  CAS  Google Scholar 

  115. Rodell, C. B., Kaminski, A. L. & Burdick, J. A. Rational design of network properties in guest–host assembled and shear-thinning hyaluronic acid hydrogels. Biomacromolecules 14, 4125–4134 (2013).

    Article  CAS  Google Scholar 

  116. Parisi-Amon, A., Mulyasasmita, W., Chung, C. & Heilshorn, S. C. Protein-engineered injectable hydrogel to improve retention of transplanted adipose-derived stem cells. Adv. Healthcare Mater. 2, 428–432 (2013).

    Article  CAS  Google Scholar 

  117. Haines-Butterick, L. et al. Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells. Proc. Natl Acad. Sci. USA 104, 7791–7796 (2007).

    Article  CAS  Google Scholar 

  118. Zhang, J. et al. Physically associated synthetic hydrogels with long-term covalent stabilization for cell culture and stem cell transplantation. Adv. Mater. 23, 5098–5103 (2011).

    Article  CAS  Google Scholar 

  119. Rodell, C. B. et al. Shear-thinning supramolecular hydrogels with secondary autonomous covalent crosslinking to modulate viscoelastic properties in vivo. Adv. Funct. Mater. 25, 636–644 (2015).

    Article  CAS  Google Scholar 

  120. Newcomb, C. J. et al. Cell death versus cell survival instructed by supramolecular cohesion of nanostructures. Nat. Commun. 5, 3321 (2014).

    Article  Google Scholar 

  121. Baker, B. M. et al. Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments. Nat. Mater. 14, 1262–1268 (2015).

    Article  CAS  Google Scholar 

  122. Yang, C., Tibbitt, M. W., Basta, L. & Anseth, K. S. Mechanical memory and dosing influence stem cell fate. Nat. Mater. 13, 645–652 (2014).

    Article  CAS  Google Scholar 

  123. Balestrini, J. L., Chaudhry, S., Sarrazy, V., Koehler, A. & Hinz, B. The mechanical memory of lung myofibroblasts. Integr. Biol. 4, 410–421 (2012).

    Article  CAS  Google Scholar 

  124. Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).

    Article  CAS  Google Scholar 

  125. Liu, Z. et al. Spatiotemporally controllable and cytocompatible approach builds 3D cell culture matrix by photo-uncaged-thiol michael addition reaction. Adv. Mater. 26, 3912–3917 (2014).

    Article  CAS  Google Scholar 

  126. Guvendiren, M. & Burdick, J. A. Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nat. Commun. 3, 792 (2012).

    Article  Google Scholar 

  127. He, M., Li, J., Tan, S., Wang, R. & Zhang, Y. Photodegradable supramolecular hydrogels with fluorescence turn-on reporter for photomodulation of cellular microenvironments. J. Am. Chem. Soc. 135, 18718–18721 (2013).

    Article  CAS  Google Scholar 

  128. Jiang, F. X., Yurke, B., Schloss, R. S., Firestein, B. L. & Langrana, N. A. The relationship between fibroblast growth and the dynamic stiffnesses of a DNA crosslinked hydrogel. Biomaterials 31, 1199–1212 (2010).

    Article  CAS  Google Scholar 

  129. Jiang, F. X., Yurke, B., Schloss, R. S., Firestein, B. L. & Langrana, N. A. Effect of dynamic stiffness of the substrates on neurite outgrowth by using a DNA-crosslinked hydrogel. Tissue Eng. Part A 16, 1873–1889 (2010).

    Article  CAS  Google Scholar 

  130. Peng, L. et al. Macroscopic volume change of dynamic hydrogels induced by reversible DNA hybridization. J. Am. Chem. Soc. 134, 12302–12307 (2012).

    Article  CAS  Google Scholar 

  131. Lin, D. C., Yurke, B. & Langrana, N. A. Inducing reversible stiffness changes in DNA-crosslinked gels. J. Mater. Res. 20, 1456–1464 (2005).

    Article  CAS  Google Scholar 

  132. Lin, D. C., Yurke, B. & Langrana, N. A. Mechanical properties of a reversible, DNA-crosslinked polyacrylamide hydrogel. J. Biomech. Eng. 126, 104–110 (2004).

    Article  Google Scholar 

  133. Murphy, W. L. Emerging area: biomaterials that mimic and exploit protein motion. Soft Matter 7, 3679–3688 (2011).

    Article  CAS  Google Scholar 

  134. Ehrick, J. D. et al. Genetically engineered protein in hydrogels tailors stimuli-responsive characteristics. Nat. Mater. 4, 298–302 (2005).

    Article  CAS  Google Scholar 

  135. Murphy, W. L., Dillmore, W. S., Modica, J. & Mrksich, M. Dynamic hydrogels: translating a protein conformational change into macroscopic motion. Angew. Chem. Int. Ed. Engl. 46, 3066–3069 (2007).

    Article  CAS  Google Scholar 

  136. Yuan, W., Yang, J., Kopečková, P. & Kopeček, J. Smart hydrogels containing adenylate kinase: translating substrate recognition into macroscopic motion. J. Am. Chem. Soc. 130, 15760–15761 (2008).

    Article  CAS  Google Scholar 

  137. Tang, S., Glassman, M. J., Li, S., Socrate, S. & Olsen, B. D. Oxidatively responsive chain extension to entangle engineered protein hydrogels. Macromolecules 47, 791–799 (2014).

    Article  CAS  Google Scholar 

  138. Kong, N., Peng, Q. & Li, H. Rationally designed dynamic protein hydrogels with reversibly tunable mechanical properties. Adv. Funct. Mater. 24, 7310–7317 (2014).

    Article  CAS  Google Scholar 

  139. Rosales, A. M., Mabry, K. M., Nehls, E. M. & Anseth, K. S. Photoresponsive elastic properties of azobenzene-containing poly(ethylene-glycol)-based hydrogels. Biomacromolecules 16, 798–806 (2015).

    Article  CAS  Google Scholar 

  140. Tamesue, S., Takashima, Y., Yamaguchi, H., Shinkai, S. & Harada, A. Photoswitchable supramolecular hydrogels formed by cyclodextrins and azobenzene polymers. Angew. Chem. Int. Ed. Engl. 49, 7461–7464 (2010).

    Article  CAS  Google Scholar 

  141. Gillette, B. M., Jensen, J. A., Wang, M., Tchao, J. & Sia, S. K. Dynamic hydrogels: switching of 3D microenvironments using two-component naturally derived extracellular matrices. Adv. Mater. 22, 686–691 (2010).

    Article  CAS  Google Scholar 

  142. Stowers, R. S., Allen, S. C. & Suggs, L. J. Dynamic phototuning of 3D hydrogel stiffness. Proc. Natl Acad. Sci. USA 112, 1953–1958 (2015).

    Article  CAS  Google Scholar 

  143. Seiffert, S. & Weitz, D. A. Microfluidic fabrication of smart microgels from macromolecular precursors. Polymer 51, 5883–5889 (2010).

    Article  CAS  Google Scholar 

  144. Shah, R. K., Kim, J.-W., Agresti, J. J., Weitz, D. A. & Chu, L.-Y. Fabrication of monodisperse thermosensitive microgels and gel capsules in microfluidic devices. Soft Matter 4, 2303–2309 (2008).

    Article  CAS  Google Scholar 

  145. Das, M., Zhang, H. & Kumacheva, E. Microgels: old materials with new applications. Annu. Rev. Mater. Res. 36, 117–142 (2006).

    Article  CAS  Google Scholar 

  146. Panda, P. et al. Stop-flow lithography to generate cell-laden microgel particles. Lab. Chip 8, 1056–1061 (2008).

    Article  CAS  Google Scholar 

  147. Xu, S. et al. Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angew. Chem. Int. Ed. Engl. 44, 724–728 (2005).

    Article  CAS  Google Scholar 

  148. Shen, Q. et al. Specific capture and release of circulating tumor cells using aptamer-modified nanosubstrates. Adv. Mater. 25, 2368–2373 (2013).

    Article  CAS  Google Scholar 

  149. Deng, Y. et al. An integrated microfluidic chip system for single-cell secretion profiling of rare circulating tumor cells. Sci. Rep. 4, 7499 (2014).

    Article  CAS  Google Scholar 

  150. Zhao, W. et al. Bioinspired multivalent DNA network for capture and release of cells. Proc. Natl Acad. Sci. USA 109, 19626–19631 (2012).

    Article  CAS  Google Scholar 

  151. Liu, H. et al. Dual-responsive surfaces modified with phenylboronic acid-containing polymer brush to reversibly capture and release cancer cells. J. Am. Chem. Soc. 135, 7603–7609 (2013).

    Article  CAS  Google Scholar 

  152. Ouyang, J. et al. Morphology controlled poly(aminophenylboronic acid) nanostructures as smart substrates for enhanced capture and release of circulating tumor cells. Adv. Funct. Mater. 25, 6122–6130 (2015).

    Article  CAS  Google Scholar 

  153. Pan, G. et al. Dynamic introduction of cell adhesive factor via reversible multicovalent phenylboronic acid/cis-diol polymeric complexes. J. Am. Chem. Soc. 136, 6203–6206 (2014).

    Article  CAS  Google Scholar 

  154. Li, W., Wang, J., Ren, J. & Qu, X. 3D graphene oxide–polymer hydrogel: near-infrared light-triggered active scaffold for reversible cell capture and on-demand release. Adv. Mater. 25, 6737–6743 (2013).

    Article  CAS  Google Scholar 

  155. Hyun, J., Lee, W.-K., Nath, N., Chilkoti, A. & Zauscher, S. Capture and release of proteins on the nanoscale by stimuli-responsive elastin-like polypeptide “switches”. J. Am. Chem. Soc. 126, 7330–7335 (2004).

    Article  CAS  Google Scholar 

  156. Mabry, K. M., Lawrence, R. L. & Anseth, K. S. Dynamic stiffening of poly(ethylene glycol)-based hydrogels to direct valvular interstitial cell phenotype in a three-dimensional environment. Biomaterials 49, 47–56 (2015).

    Article  CAS  Google Scholar 

  157. Tsien, R. Y. Constructing and exploiting the fluorescent protein paintbox (Nobel lecture). Angew. Chem. Int. Ed. Engl. 48, 5612–5626 (2009).

    Article  CAS  Google Scholar 

  158. Dean, K. M. & Palmer, A. E. Advances in fluorescence labeling strategies for dynamic cellular imaging. Nat. Chem. Biol. 10, 512–523 (2014).

    Article  CAS  Google Scholar 

  159. Legant, W. R. et al. Measurement of mechanical tractions exerted by cells in three-dimensional matrices. Nat. Meth 7, 969–971 (2010).

    Article  CAS  Google Scholar 

  160. Schultz, K. M. & Anseth, K. S. Monitoring degradation of matrix metalloproteinases-cleavable PEG hydrogels via multiple particle tracking microrheology. Soft Matter 9, 1570–1579 (2013).

    Article  CAS  Google Scholar 

  161. Bloom, R. J., George, J. P., Celedon, A., Sun, S. X. & Wirtz, D. Mapping local matrix remodeling induced by a migrating tumor cell using three-dimensional multiple-particle tracking. Biophys. J. 95, 4077–4088 (2008).

    Article  CAS  Google Scholar 

  162. Watt, F. M. & Huck, W. T. S. Role of the extracellular matrix in regulating stem cell fate. Nat. Rev. Mol. Cell Biol. 14, 467–473 (2013).

    Article  CAS  Google Scholar 

  163. Grashoff, C. et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–266 (2010).

    Article  CAS  Google Scholar 

  164. Manduca, A. et al. Magnetic resonance elastography: non-invasive mapping of tissue elasticity. Med. Image Anal. 5, 237–254 (2001).

    Article  CAS  Google Scholar 

  165. Othman, S. F., Xu, H., Royston, T. J. & Magin, R. L. Microscopic magnetic resonance elastography (μMRE). Magn. Reson. Med. 54, 605–615 (2005).

    Article  Google Scholar 

  166. Othman, S. F., Xu, H. & Mao, J. J. Future role of MR elastography in tissue engineering and regenerative medicine. J. Tissue Eng. Regener. Med. 9, 481–487 (2015).

    Article  CAS  Google Scholar 

  167. Ranga, A. & Lutolf, M. P. High-throughput approaches for the analysis of extrinsic regulators of stem cell fate. Curr. Opin. Cell Biol. 24, 236–244 (2012).

    Article  CAS  Google Scholar 

  168. Zanella, F., Lorens, J. B. & Link, W. High content screening: seeing is believing. Trends Biotechnol. 28, 237–245 (2010).

    Article  CAS  Google Scholar 

  169. Megason, S. G. & Fraser, S. E. Imaging in systems biology. Cell 130, 784–795 (2007).

    Article  CAS  Google Scholar 

  170. Chen, W. L. K., Likhitpanichkul, M., Ho, A. & Simmons, C. A. Integration of statistical modeling and high-content microscopy to systematically investigate cell–substrate interactions. Biomaterials 31, 2489–2497 (2010).

    Article  CAS  Google Scholar 

  171. Highley, C. B., Rodell, C. B. & Burdick, J. A. Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv. Mater. 27, 5075–5079 (2015).

    Article  CAS  Google Scholar 

  172. Kolesky, D. B. et al. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 26, 3124–3130 (2014).

    Article  CAS  Google Scholar 

  173. Culver, J. C. et al. Three-dimensional biomimetic patterning in hydrogels to guide cellular organization. Adv. Mater. 24, 2344–2348 (2012).

    Article  CAS  Google Scholar 

  174. Tumbleston, J. R. et al. Continuous liquid interface production of 3D objects. Science 347, 1349–1352 (2015).

    Article  CAS  Google Scholar 

  175. Appel, E. A., del Barrio, J., Loh, X. J. & Scherman, O. A. Supramolecular polymeric hydrogels. Chem. Soc. Rev. 41, 6195–6214 (2012).

    Article  CAS  Google Scholar 

  176. Cheng, E. et al. A pH-triggered, fast-responding DNA hydrogel. Angew. Chem. Int. Ed. Engl. 48, 7660–7663 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

K.S.A. acknowledges support from the Howard Hughes Medical Institute and grants from the National Science Foundation (DMR 1408955) and the National Institutes of Health (R01 DE016523). A.M.R. gratefully acknowledges a postdoctoral fellowship from the National Heart, Lung, and Blood Institute of the US National Institutes of Health (Award Number F32HL121986) and a Postdoctoral Enrichment Program Award from the Burroughs Wellcome Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristi S. Anseth.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosales, A., Anseth, K. The design of reversible hydrogels to capture extracellular matrix dynamics. Nat Rev Mater 1, 15012 (2016). https://doi.org/10.1038/natrevmats.2015.12

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2015.12

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research