Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Assembly and phase transitions of colloidal crystals

Abstract

Micrometre-sized colloidal particles can be viewed as large atoms with tailorable size, shape and interactions. These building blocks can assemble into extremely rich structures and phases, in which the thermal motions of particles can be directly imaged and tracked using optical microscopy. Hence, colloidal particles are excellent model systems for studying phase transitions, especially for poorly understood kinetic and non-equilibrium microscale processes. Advances in colloid fabrication, assembly and computer simulations have opened up numerous possibilities for such research. In this Review, we describe recent progress in the study of colloidal crystals composed of tunable isotropic spheres, anisotropic particles and active particles. We focus on advances in crystallization, melting and solid–solid transitions, and highlight challenges and future perspectives in phase-transition studies within colloidal crystals.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Phase diagrams of monodispersed colloids.
Figure 2: Strategies used to assemble isotropic particles into crystals.
Figure 3: Colloidal crystals composed of anisotropic or active particles.
Figure 4: Phase-transition studies within colloidal crystals in the past two decades.
Figure 5: Phase-transition kinetics and free-energy barriers.

References

  1. Ackerson, B. J. Phase Transitions in Colloidal Suspensions (CRC, 1990).

    Google Scholar 

  2. Löwen, H. Melting, freezing and colloidal suspensions. Phys. Rep. 237, 249–324 (1994).

    Google Scholar 

  3. Murray, C. A. & Grier, D. G. Video microscopy of monodisperse colloidal systems. Annu. Rev. Phys. Chem. 47, 421–462 (1996).

    CAS  Google Scholar 

  4. Anderson, V. J. & Lekkerkerker, H. N. W. Insights into phase transition kinetics from colloid science. Nature 416, 811–815 (2002).

    CAS  Google Scholar 

  5. Frenkel, D. Materials science. Colloidal encounters: a matter of attraction. Science 314, 768– 769 (2006).

    Google Scholar 

  6. Frenkel, D. Playing tricks with designer ‘atoms’. Science 296, 65–66 (2002).

    CAS  Google Scholar 

  7. Kose, A., Ozaki, M., Takano, K., Kobayashi, Y. & Hachisu, S. Direct observation of ordered latex suspension by metallurgical microscope. J. Colloid Interface Sci. 44, 330–338 (1973).

    CAS  Google Scholar 

  8. Crocker, J. C. & Grier, D. G. Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298–310 (1996).

    CAS  Google Scholar 

  9. Binder, K. Theory of first-order phase transitions. Rep. Prog. Phys. 50, 783– 859 (1987).

    Google Scholar 

  10. Wang, Z., Wang, F., Peng, Y., Zheng, Z. & Han, Y. Imaging the homogeneous nucleation during the melting of superheated colloidal crystals. Science 338, 87–90 (2012). Homogeneous melting in 3D bulk at the single-particle level observed for the first time using colloids.

    CAS  Google Scholar 

  11. Wang, Z., Wang, F., Peng, Y. & Han, Y. Direct observation of liquid nucleus growth in homogeneous melting of colloidal crystals. Nat. Commun. 6, 6942 (2015).

    Google Scholar 

  12. Pusey, P. N. & van Megen, W. Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature 320, 340–342 (1986).

    CAS  Google Scholar 

  13. Alder, B. J. & Wainwright, T. E. Phase transition for a hard sphere system. J. Chem. Phys. 27, 1208–1209 (1957).

    CAS  Google Scholar 

  14. Manoharan, V. N. Colloidal matter: packing, geometry, and entropy. Science 349, 729–735 (2015).

    Google Scholar 

  15. Bolhuis, P. G., Frenkel, D., Mau, S. C. & Huse, D. A. Entropy difference between crystal phases. Nature 388, 235–236 (1997).

    CAS  Google Scholar 

  16. Strandburg, K. J. Two-dimensional melting. Rev. Mod. Phys. 60, 161–207 (1988).

    CAS  Google Scholar 

  17. Fortini, A. & Dijkstra, M. Phase behaviour of hard spheres confined between parallel hard plates: manipulation of colloidal crystal structures by confinement. J. Phys.: Condens. Matter 18, L371–L378 (2006).

    CAS  Google Scholar 

  18. Schmidt, M. & Löwen, H. Freezing between two and three dimensions. Phys. Rev. Lett. 76, 4552–4555 (1996).

    CAS  Google Scholar 

  19. Gottwald, D., Likos, C. N., Kahl, G. & Löwen, H. Phase behaviour of ionic microgels. Phys. Rev. Lett. 92, 068301 (2004).

    CAS  Google Scholar 

  20. Yethiraj, A. & van Blaaderen, A. A colloidal model system with an interaction tunable from hard sphere to soft and dipolar. Nature 421, 513–517 (2003).

    CAS  Google Scholar 

  21. Miller, W. L. & Cacciuto, A. Two-dimensional packing of soft particles and the soft generalized Thomson problem. Soft Matter 7, 7552–7559 (2011).

    CAS  Google Scholar 

  22. Pàmies, J. C., Cacciuto, A. & Frenkel, D. Phase diagram of Hertzian spheres. J. Chem. Phys. 131, 044514 (2009); erratum 131, 159903 (2009).

    Google Scholar 

  23. Batista, V. M. O. & Miller, M. A. Crystallization of deformable spherical colloids. Phys. Rev. Lett. 105, 088305 (2010).

    Google Scholar 

  24. Heyes, D. M. & Brańka, A. C. Interactions between microgel particles. Soft Matter 5, 2681–2685 (2009).

    CAS  Google Scholar 

  25. Leunissen, M. E. et al. Ionic colloidal crystals of oppositely charged particles. Nature 437, 235–240 (2005).

    CAS  Google Scholar 

  26. Law, A. D., Auriol, M., Smith, D., Horozov, T. S. & Buzza, D. M. A. Self-assembly of two-dimensional colloidal clusters by tuning the hydrophobicity, composition, and packing geometry. Phys. Rev. Lett. 110, 138301 (2013).

    Google Scholar 

  27. Barkan, K., Engel, M. & Lifshitz, R. Controlled self-assembly of periodic and aperiodic cluster crystals. Phys. Rev. Lett. 113, 098304 (2014).

    Google Scholar 

  28. Engel, M., Damasceno, P. F., Phillips, C. L. & Glotzer, S. C. Computational self-assembly of a one-component icosahedral quasicrystal. Nat. Mater. 14, 109–116 (2015).

    CAS  Google Scholar 

  29. Dotera, T., Oshiro, T. & Ziherl, P. Mosaic two-lengthscale quasicrystals. Nature 506, 208–211 (2014).

    CAS  Google Scholar 

  30. Yethiraj, A. Tunable colloids: control of colloidal phase transitions with tunable interactions. Soft Matter 3, 1099–1115 (2007).

    CAS  Google Scholar 

  31. Savage, J. R., Blair, D. W., Levine, A. J., Guyer, R. A. & Dinsmore, A. D. Imaging the sublimation dynamics of colloidal crystallites. Science 314, 795–798 (2006).

    CAS  Google Scholar 

  32. Rossi, L. et al. Shape-sensitive crystallization in colloidal superball fluids. Proc. Natl Acad. Sci. USA 112, 5286–5290 (2015).

    CAS  Google Scholar 

  33. Hertlein, C., Helden, L., Gambassi, A., Dietrich, S. & Bechinger, C. Direct measurement of critical Casimir forces. Nature 451, 172–175 (2008).

    CAS  Google Scholar 

  34. Faber, S. et al. Controlling colloidal phase transitions with critical Casimir forces. Nat. Commun. 4, 1584 (2013).

    Google Scholar 

  35. Edison, J. R. et al. Critical Casimir forces and colloidal phase transitions in a near-critical solvent: a simple model reveals a rich phase diagram. Phys. Rev. Lett. 114, 038301 (2015).

    Google Scholar 

  36. Gnan, N., Zaccarelli, E., & Sciortino, F. Casimir-like forces at the percolation transition. Nat. Commun. 5, 3267 (2014).

    Google Scholar 

  37. Hagen, M. H. J., Meijer, E. J., Mooij, G. C. A. M., Frenkel, D. & Lekkerkerker, H. N. W. Does C60 have a liquid phase? Nature 365, 425–426 (1993).

    CAS  Google Scholar 

  38. Royall, C. P., Williams, S. R., Ohtsuka, T. & Tanaka, H. Direct observation of a local structural mechanism for dynamic arrest. Nat. Mater. 7, 556–561 (2008).

    CAS  Google Scholar 

  39. Fasolo, M. & Sollich, P. Equilibrium phase behaviour of polydisperse hard spheres. Phys. Rev. Lett. 91, 068301 (2003).

    Google Scholar 

  40. Tong, H., Tan, P. & Xu, N. From crystals to disordered crystals: a hidden order–disorder transition. Sci. Rep. 5, 15378 (2015).

    CAS  Google Scholar 

  41. Kaya, D., Green, N. L., Maloney, C. E. & Islam, M. F. Normal modes and density of states of disordered colloidal solids. Science 329, 656–658 (2010).

    CAS  Google Scholar 

  42. Chen, K. et al. Phonons in two-dimensional soft colloidal crystals. Phys. Rev. E 88, 022315 (2013).

    Google Scholar 

  43. Yethiraj, A., Wouterse, A., Groh, B. & van Blaaderen, A. Nature of an electric-field-induced colloidal martensitic transition. Phys. Rev. Lett. 92, 058301 (2004).

    Google Scholar 

  44. Demirörs, A. F., Pillai, P. P., Kowalczyk, B. & Grzybowski, B. A. Colloidal assembly directed by virtual magnetic moulds. Nature 503, 99–103 (2013).

    Google Scholar 

  45. Roichman, Y. & Grier, D. G. Holographic assembly of quasicrystalline photonic heterostructures. Opt. Express 13, 5434–5439 (2005).

    Google Scholar 

  46. Deng, H.-D. et al. Assembling of three-dimensional crystals by optical depletion force induced by a single focused laser beam. Opt. Express 20, 9616–9623 (2012).

    CAS  Google Scholar 

  47. Vogel, N., De Viguerie, L., Jonas, U., Weiss, C. K. & Landfester, K. Wafer-scale fabrication of ordered binary colloidal monolayers with adjustable stoichiometries. Adv. Funct. Mater. 21, 3064–3073 (2011).

    CAS  Google Scholar 

  48. Neuhaus, T., Marechal, M., Schmiedeberg, M. & Löwen, H. Rhombic preordering on a square substrate. Phys. Rev. Lett. 110, 118301 (2013).

    CAS  Google Scholar 

  49. Peng, Y., Wang, Z., Alsayed, A. M., Yodh, A. G. & Han Y. Melting of colloidal crystal films. Phys. Rev. Lett. 104, 205703 (2010).

    CAS  Google Scholar 

  50. Zahn, K., Lenke, R. & Maret, G. Two-stage melting of paramagnetic colloidal crystals in two dimensions. Phys. Rev. Lett. 82, 2721–2724 (1999).

    CAS  Google Scholar 

  51. Wei, Q. H. & Wu, X. L. Grain boundary dynamics under mechanical annealing in two-dimensional colloids. Phys. Rev. E 70, 020401 (2004).

    CAS  Google Scholar 

  52. Irvine, W. T., Hollingsworth, A. D., Grier, D. G. & Chaikin, P. M. Dislocation reactions, grain boundaries, and irreversibility in two-dimensional lattices using topological tweezers. Proc. Natl Acad. Sci. USA 110, 15544–15548 (2013).

    CAS  Google Scholar 

  53. Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of Light (Princeton Univ., 2011).

    Google Scholar 

  54. Matijevic, E. Monodispersed metal (hydrous) oxides: a fascinating field of colloid science. Acc. Chem. Res. 14, 22–29 (1981).

    CAS  Google Scholar 

  55. Okubo, M., Ando, M., Yamada, A., Katsuta, Y. & Matsumoto, T. Studies on suspension and emulsion. XLVII. Anomalous composite polymer emulsion particles with voids produced by seeded emulsion polymerization. J. Polym. Sci. 19, 143–147 (1981).

    CAS  Google Scholar 

  56. Lee, K. J., Jeawon, Y. & Joerg, L. Recent advances with anisotropic particles. Curr. Opin. Colloid Interface Sci. 16, 195–202 (2011).

    CAS  Google Scholar 

  57. Marchetti, M. C. et al. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013).

    CAS  Google Scholar 

  58. Yi, G.-R., Pine, D. J. & Sacanna, S. Recent progress on patchy colloids and their self assembly. J. Phys.: Condens. Matter 25, 193101 (2013).

    Google Scholar 

  59. Sacanna, S. & Pine, D. J. Shape-anisotropic colloids: building blocks for complex assemblies. Curr. Opin. Colloid Interface Sci. 16, 96–105 (2011).

    CAS  Google Scholar 

  60. Sindoro, M., Yanai, N., Jee, A.-Y. & Granick, S. Colloidal-sized metal–organic frameworks: synthesis and applications. Acc. Chem. Res. 47, 459–469 (2013).

    Google Scholar 

  61. Crassous, J. J., Mihut, A. M., Månsson, L. K. & Schurtenberger, P. Anisotropic responsive microgels with tuneable shape and interactions. Nanoscale 7, 15971–15982 (2015).

    CAS  Google Scholar 

  62. Alsayed, A. M., Islam, M. F., Zhang, J., Collings, P. J. & Yodh, A. G. Premelting at defects within bulk colloidal crystals. Science 309, 1207–1210 (2005).

    CAS  Google Scholar 

  63. Zhang, C. et al. A general approach to DNA-programmable atom equivalents. Nat. Mater. 12, 741–746 (2013).

    CAS  Google Scholar 

  64. Feng, L., Laderman, B., Sacanna, S. & Chaikin, P. Re-entrant solidification in polymer–colloid mixtures as a consequence of competing entropic and enthalpic attractions. Nat. Mater. 14, 61–65 (2014).

    Google Scholar 

  65. Damasceno, P. F., Engel, M. & Glotzer, S. C. Predictive self-assembly of polyhedra into complex structures. Science 337, 453–457 (2012).

    CAS  Google Scholar 

  66. Gantapara, A. P., de Graaf, J., van Roij, R. & Dijkstra, M. Phase diagram and structural diversity of a family of truncated cubes: degenerate close-packed structures and vacancy-rich states. Phys. Rev. Lett. 111, 015501 (2013).

    Google Scholar 

  67. Dijkstra, M. in Advances in Chemical Physics Vol. 156 (eds Rice, S. A. & Dinner, A. R. ) 35–71 (Wiley, 2015).

    Google Scholar 

  68. Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6, 557–562 (2007). Review of the assembly of numerous anisotropic particles.

    Google Scholar 

  69. Li, F., Josephson, D. P. & Stein, A. Colloidal assembly: the road from particles to colloidal molecules and crystals. Angew. Chem. Int. Ed. Engl. 50, 360–388 (2011).

    CAS  Google Scholar 

  70. Zhang, J., Luijten, E. & Granick, S. Toward design rules of directional Janus colloidal assembly. Annu. Rev. Phys. Chem. 66, 581–600 (2015).

    CAS  Google Scholar 

  71. Bautista-Carbajal, G. & Odriozola, G. Phase diagram of two-dimensional hard ellipses. J. Chem. Phys. 140, 204502 (2014).

    Google Scholar 

  72. Bautista-Carbajal, G., Moncho-Jordá, A. & Odriozola, G. Further details on the phase diagram of hard ellipsoids of revolution. J. Chem. Phys. 138, 064501 (2013).

    Google Scholar 

  73. Zheng, Z., Wang, F. & Han, Y. Glass transitions in quasi-two-dimensional suspensions of colloidal ellipsoids. Phys. Rev. Lett. 107, 065702 (2011).

    Google Scholar 

  74. Liu, B. et al. Switching plastic crystals of colloidal rods with electric fields. Nat. Commun. 5, 3092 (2014).

    Google Scholar 

  75. Hernandez, C. J & Mason, T. G. Colloidal alphabet soup: monodisperse dispersions of shape-designed lithoparticles. J. Phys. Chem. C 111, 4477–4480 (2007).

    CAS  Google Scholar 

  76. Zhao, K., Bruinsma, R. & Mason, T. G. Entropic crystal–crystal transitions of Brownian squares. Proc. Natl Acad. Sci. USA 108, 2684–2687 (2011).

    CAS  Google Scholar 

  77. Zhao, K. & Mason, T. G. Self-organized chiral colloidal crystals of Brownian square crosses. J. Phys. Cond. Matter 26, 152101 (2014).

    Google Scholar 

  78. Zhao, K., Bruinsma, R. & Mason, T. G. Local chiral symmetry breaking in triatic liquid crystals. Nat. Commun. 3 801 (2012).

    Google Scholar 

  79. Gantapara, A. P., Qi, W. & Dijkstra, M. A novel chiral phase of achiral hard triangles and an entropy-driven demixing of enantiomers. Soft Matter 11, 8684–8691 (2015).

    CAS  Google Scholar 

  80. Rossi, L. et al. Cubic crystals from cubic colloids. Soft Matter 7, 4139–4142 (2011).

    CAS  Google Scholar 

  81. Vutukuri, H. R., Imhof, A. & van Blaaderen, A. Fabrication of polyhedral particles from spherical colloids and their self-assembly into rotator phases. Angew. Chem. Int. Ed. Engl. 53, 13830–13834 (2014).

    CAS  Google Scholar 

  82. Miszta, K. et al. Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures. Nat. Mater. 10, 872–876 (2011).

    CAS  Google Scholar 

  83. Jiang, S. et al. Janus particle synthesis and assembly. Adv. Mater. 22, 1060–1071 (2010).

    CAS  Google Scholar 

  84. Walther, A. & Muller, A. H. E. Janus particles: synthesis, self-assembly, physical properties, and applications. Chem. Rev. 113, 5194–5261 (2013).

    CAS  Google Scholar 

  85. Wang, Y., Weck, D. M. & Pine, D. J. Colloids with valence and specific directional bonding. Nature 491, 51–55 (2012).

    CAS  Google Scholar 

  86. Chen, Q., Bae, S. C. & Granick, S. Directed self-assembly of a colloidal kagome lattice. Nature 469, 381–384 (2011).

    CAS  Google Scholar 

  87. Mao, X., Chen, Q. & Granick, S. Entropy favours open colloidal lattices. Nat. Mater. 12, 217–222 (2013).

    CAS  Google Scholar 

  88. Wilber, A. W. et al. Reversible self-assembly of patchy particles into monodisperse icosahedral clusters. J. Chem. Phys. 127, 085106 (2007).

    Google Scholar 

  89. Romano, F., Sanz, E., Tartaglia, P. & Sciortino, F. Phase diagram of trivalent and pentavalent patchy particles. J. Phys.: Condens. Matter 24, 064113 (2012).

    Google Scholar 

  90. Romano, F. & Sciortino, F. Patterning symmetry in the rational design of colloidal crystals. Nat. Commun. 3, 975 (2012).

    Google Scholar 

  91. Shin, H. & Schweizer, K. S. Theory of two-dimensional self-assembly of Janus colloids: crystallization and orientational ordering. Soft Matter 10, 262–274 (2014).

    CAS  Google Scholar 

  92. Whitelam, S. & Jack, R. L. The statistical mechanics of dynamic pathways to self-assembly. Annu. Rev. Phys. Chem. 66, 143–163 (2015).

    CAS  Google Scholar 

  93. Vissers, T., Preisler, Z., Smallenburg, F., Dijkstra, M. & Sciortino, F. Predicting crystals of Janus colloids. J. Chem. Phys. 138, 164505 (2013).

    Google Scholar 

  94. Rogers, W. B & Manoharan, V. N. Programming colloidal phase transitions with DNA strand displacement. Science 347, 639–642 (2015).

    CAS  Google Scholar 

  95. Casey, M. T. et al. Driving diffusionless transformations in colloidal crystals using DNA handshaking. Nat. Commun. 3, 1209 (2012).

    Google Scholar 

  96. Auyeung, E. et al. DNA-mediated nanoparticle crystallization into Wulff polyhedra. Nature 505, 73–77 (2014).

    Google Scholar 

  97. Rogers, W. B. & Crocker, J. C. Direct measurements of DNA-mediated colloidal interactions and their quantitative modeling. Proc. Natl Acad. Sci. USA 108, 15687–15692 (2011).

    CAS  Google Scholar 

  98. Zeravcic, Z., Manoharan, V. N. & Brenner, M. P. Size limits of self-assembled colloidal structures made using specific interactions. Proc. Natl Acad. Sci. USA 111, 15918–15923 (2014).

    CAS  Google Scholar 

  99. Jacobs, W. M., Reinhardt, A. & Frenkel, D. Rational design of self-assembly pathways for complex multicomponent structures. Proc. Natl Acad. Sci. USA 112, 6313–6318 (2015).

    CAS  Google Scholar 

  100. Reinhardt, A. & Frenkel, D. Numerical evidence for nucleated self-assembly of DNA brick structures. Phys. Rev. Lett. 112, 238103 (2014).

    Google Scholar 

  101. Jones, M. R., Seeman, N. C. & Mirkin, C. A. Programmable materials and the nature of the DNA bond. Science 347, 840–842 (2015).

    CAS  Google Scholar 

  102. Mirkin, C. A. et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    CAS  Google Scholar 

  103. de Graaf, J., van Roij, R. & Dijkstra, M. Dense regular packings of irregular nonconvex particles. Phys. Rev. Lett. 107, 155501 (2011).

    Google Scholar 

  104. Senyuk, B. et al. Topological colloids. Nature 493, 200–205 (2013).

    CAS  Google Scholar 

  105. Tkalec, U., Ravnik, M., Čopar, S., Žumer, S. & Muševič, I. Reconfigurable knots and links in chiral nematic colloids. Science 333, 62–65 (2011).

    CAS  Google Scholar 

  106. Hong, Y., Velegol, D., Chaturvedi, N. & Sen, A. Biomimetic behaviour of synthetic particles: from microscopic randomness to macroscopic control. Phys. Chem. Chem. Phys. 12, 1423–1435 (2010).

    CAS  Google Scholar 

  107. Buttinoni, I. et al. Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles. Phys. Rev. Lett. 110, 238301 (2013).

    Google Scholar 

  108. Petroff, A. P., Wu, X.-L. & Libchaber, A. Fast-moving bacteria self-organize into active two-dimensional crystals of rotating cells. Phys. Rev. Lett. 114, 158102 (2015).

    Google Scholar 

  109. Yan, J., Bae, S. C. & Granick, S. Rotating crystals of magnetic Janus colloids. Soft Matter 11, 147–153 (2015).

    CAS  Google Scholar 

  110. Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J. & Chaikin, P. M. Living crystals of light-activated colloidal surfers. Science 339, 936–940 (2013). First experimental assembly of active colloidal particles into crystals.

    CAS  Google Scholar 

  111. Ginot, F. et al. Nonequilibrium equation of state in suspensions of active colloids. Phys. Rev. X 5, 011004 (2015).

    Google Scholar 

  112. Aastuen, D. J., Clark, N. A., Cotter, L. K. & Ackerson, B. J. Nucleation and growth of colloidal crystals. Phys. Rev. Lett. 57, 1733–1736 (1986).

    CAS  Google Scholar 

  113. Sear, R. P. Nucleation: theory and applications to protein solutions and colloidal suspensions. J. Phys.: Condens. Matter 19, 033101 (2007).

    Google Scholar 

  114. Samanta, A, Tuckerman, M. E., Yu, T.-Q. & Weinan, E. Microscopic mechanisms of equilibrium melting of a solid. Science 346, 729–732 (2014).

    CAS  Google Scholar 

  115. Qi, W., Peng, Y., Han, Y., Bowles, R. K. & Dijkstra, M. Non-classical nucleation in a solid-solid transition of confined hard spheres. Phys. Rev. Lett. 115, 185701 (2015).

    Google Scholar 

  116. Meng, G., Paulose, J., Nelson, D. R. & Manoharan, V. N. Elastic instability of a crystal growing on a curved surface. Science 343, 634–637 (2014).

    CAS  Google Scholar 

  117. Tan, P., Xu, N. & Xu, L. Visualizing kinetic pathways of homogeneous nucleation in colloidal crystallization. Nat. Phys. 10, 73–79 (2014).

    CAS  Google Scholar 

  118. Dixit, N. M. & Zukoski, C. F. Kinetics of crystallization in hard-sphere colloidal suspensions. Phys. Rev. E 64, 041604 (2001).

    CAS  Google Scholar 

  119. Lutsko, J. F. & Durán-Olivencia, M. A. Classical nucleation theory from a dynamical approach to nucleation. J. Chem. Phys. 138, 244908 (2013).

    Google Scholar 

  120. Peng, Y. et al. Two-step nucleation mechanism in solid–solid phase transitions. Nat. Mater. 14, 101–108 (2015). First observation of diffusive nucleation in a solid–solid transition at the single-particle level and discovery of a two-step transition with an intermediate liquid nucleus.

    CAS  Google Scholar 

  121. Yang, Y. et al. Phase transformations in binary colloidal monolayers. Soft Matter 11, 2404–2415 (2015).

    CAS  Google Scholar 

  122. Canovi, E., Werner, P. & Eckstein, M. First-order dynamical phase transitions. Phys. Rev. Lett. 113, 265702 (2014).

    Google Scholar 

  123. Del Campo, A. & Zurek, W. H. Universality of phase transition dynamics: topological defects from symmetry breaking. Int. J. Mod. Phys. A 29, 1430018 (2014).

    Google Scholar 

  124. Gasser, U. Crystallization in three- and two-dimensional colloidal suspensions. J. Phys.: Condens. Matter 21, 203101 (2009).

    CAS  Google Scholar 

  125. Palberg, T. Crystallization kinetics of colloidal model suspensions: recent achievements and new perspectives. J. Phys.: Condens. Matter 26, 333101 (2014). Comprehensive review of colloidal crystallization, which is the most intensively studied phase transition in colloids.

    Google Scholar 

  126. Gasser, U., Weeks, E. R., Schofield, A., Pusey, P. N. & Weitz, D. A. Real-space imaging of nucleation and growth in colloidal crystallization. Science 292, 258–262 (2001).

    CAS  Google Scholar 

  127. Auer, S. & Frenkel, D. Prediction of absolute crystal-nucleation rate in hard-sphere colloids. Nature 409, 1020–1023 (2001).

    CAS  Google Scholar 

  128. Kawasaki, T. & Tanaka, H. Formation of a crystal nucleus from liquid. Proc. Natl Acad. Sci. USA 107, 14036–14041 (2010).

    CAS  Google Scholar 

  129. Alexander, S. & McTague, J. Should all crystals be bcc? Landau theory of solidification and crystal nucleation. Phys. Rev. Lett. 41, 702 (1978).

    CAS  Google Scholar 

  130. Schilling, T., Schöpe, H. J., Oettel, M., Opletal, G. & Snook, I. Precursor-mediated crystallization process in suspensions of hard spheres. Phys. Rev. Lett. 105, 025701 (2010).

    CAS  Google Scholar 

  131. Wang, Y. et al. Crystallization of DNA-coated colloids. Nat. Commun. 6, 7253 (2015).

    CAS  Google Scholar 

  132. Auer, S. & Frenkel, D. Line tension controls wall-induced crystal nucleation in hard-sphere colloids. Phys. Rev. Lett. 91, 015703 (2003).

    CAS  Google Scholar 

  133. Dijkstra, M. Capillary freezing or complete wetting of hard spheres in a planar hard slit? Phys. Rev. Lett. 93, 108303 (2004).

    Google Scholar 

  134. Tóth, G. I., Tegze, G., Pusztai, T. & Gránásy, L. Heterogeneous crystal nucleation: the effect of lattice mismatch. Phys. Rev. Lett. 108, 025502 (2012).

    Google Scholar 

  135. Cacciuto, A., Auer, S. & Frenkel, D. Onset of heterogeneous crystal nucleation in colloidal suspensions. Nature 428, 404–406 (2004).

    CAS  Google Scholar 

  136. Allahyarov, E., Sandomirski, K., Egelhaaf, S. U. & Löwen, H. Crystallization seeds favour crystallization only during initial growth. Nat. Commun. 6, 7110 (2015).

    CAS  Google Scholar 

  137. Hermes, M. et al. Nucleation of colloidal crystals on configurable seed structures. Soft Matter 7, 4623–4628 (2011).

    CAS  Google Scholar 

  138. Halperin, B. I. & Nelson, D. R. Theory of two-dimensional melting. Phys. Rev. Lett. 41, 121–124 (1978).

    CAS  Google Scholar 

  139. Young, A. Melting and the vector Coulomb gas in two dimensions. Phys. Rev. B 19, 1855–1856 (1979).

    CAS  Google Scholar 

  140. Chui, S. Grain-boundary theory of melting in two dimensions. Phys. Rev. Lett. 48, 933–935 (1982).

    CAS  Google Scholar 

  141. Deutschländer, S., Dillmann, P., Maret, G. & Keim, P. Kibble–Zurek mechanism in colloidal monolayers. Proc. Natl Acad. Sci. USA 112, 6925–6930 (2015).

    Google Scholar 

  142. Irvine, W. T., Vitelli, V. & Chaikin, P. M. Pleats in crystals on curved surfaces. Nature 468, 947–951 (2010).

    CAS  Google Scholar 

  143. Zaccarelli, E. et al. Crystallization of hard-sphere glasses. Phys. Rev. Lett. 103, 135704 (2009).

    CAS  Google Scholar 

  144. Sanz, E. et al. Crystallization mechanism of hard sphere glasses. Phys. Rev. Lett. 106, 215701 (2011).

    Google Scholar 

  145. Bai, X.-M. & Li, M. Nature and extent of melting in superheated solids: liquid–solid coexistence model. Phys. Rev. B 72, 052108 (2005).

    Google Scholar 

  146. Peng, Y., Wang, Z. & Han, Y. Melting of microgel colloidal crystals. J. Phys. Conf. Ser. 319, 012010 (2011).

    Google Scholar 

  147. Dash, J. G., Rempel, A. W. & Wettlaufer, J. S. The physics of premelted ice and its geophysical consequences. Rev. Mod. Phys. 78, 695–741 (2006).

    CAS  Google Scholar 

  148. Li, B. et al. Modes of surface premelting in attractive colloidal crystals. Nature http://dx.doi.org/10.1038/nature16987 (2016).

  149. Van Der Meer, B. et al. Highly cooperative stress relaxation in two-dimensional soft colloidal crystals. Proc. Natl Acad. Sci. USA 111, 15356–15361 (2014).

    CAS  Google Scholar 

  150. Cavagna, A. Supercooled liquids for pedestrians. Phys. Rep. 476, 51–126 (2009).

    CAS  Google Scholar 

  151. Han, Y., Ha, N. Y., Alsayed, A. M. & Yodh, A. G. Melting of two-dimensional tunable-diameter colloidal crystals. Phys. Rev. E 77, 041406 (2008).

    CAS  Google Scholar 

  152. Mak, C. Large-scale simulations of the two-dimensional melting of hard disks. Phys. Rev. E 73, 065104 (2006).

    CAS  Google Scholar 

  153. Kapfer, S. C. & Krauth, W. Two-dimensional melting: from liquid–hexatic coexistence to continuous transitions. Phys. Rev. Lett. 114, 035702 (2015).

    Google Scholar 

  154. Bernard, E. P. & Krauth, W. Two-step melting in two dimensions: first-order liquid–hexatic transition. Phys. Rev. Lett. 107, 155704 (2011).

    Google Scholar 

  155. Zhu, D.-M., Pengra, D. & Dash, J. Edge melting in two-dimensional solid films. Phys. Rev. B 37, 5586 (1988).

    CAS  Google Scholar 

  156. Peng, Y., Wang, Z., Alsayed, A. M., Yodh, A. G. & Han, Y. Melting of multilayer colloidal crystals confined between two walls. Phys. Rev. E 83, 011404 (2011).

    CAS  Google Scholar 

  157. Tolédano, P. & Dmitriev, V. Reconstructive Phase Transitions: in Crystals and Quasicrystals (World Scientific, 1996).

    Google Scholar 

  158. Weiss, J. A., Oxtoby, D. W., Grier, D. G. & Murray, C. A. Martensitic transition in a confined colloidal suspension. J. Chem. Phys. 103, 1180–1190 (1995).

    CAS  Google Scholar 

  159. Bolhuis, P. & Frenkel, D. Prediction of an expanded-to-condensed transition in colloidal crystals. Phys. Rev. Lett. 72, 2211–2214 (1994).

    CAS  Google Scholar 

  160. Bai, J., Angell, C. A. & Zeng, X. C. Guest-free monolayer clathrate and its coexistence with two-dimensional high-density ice. Proc. Natl Acad. Sci. USA 107, 5718–5722 (2010).

    Google Scholar 

  161. Mohanty, P. S., Bagheri, P., Nö jd, S., Yethiraj, A. & Schurtenberger, P. Multiple path-dependent routes for phase-transition kinetics in thermoresponsive and field-responsive ultrasoft colloids. Phys. Rev. X 5, 011030 (2015).

    Google Scholar 

  162. Larsen, A. E & Grier, D. G. Melting of metastable crystallites in charge-stabilized colloidal suspensions. Phys. Rev. Lett. 76, 3862–3865 (1996).

    CAS  Google Scholar 

  163. Savage, J. R. & Dinsmore, A. D. Experimental evidence for two-step nucleation in colloidal crystallization. Phys. Rev. Lett. 102, 198302 (2009).

    CAS  Google Scholar 

  164. Thapar, V. & Escobedo, F. A. Localized orientational order chaperones the nucleation of rotator phases in hard polyhedral particles. Phys. Rev. Lett. 112, 048301 (2014).

    Google Scholar 

  165. Bialké, J., Speck, T. & Löwen, H. Crystallization in a dense suspension of self-propelled particles. Phys. Rev. Lett. 108, 168301 (2012).

    Google Scholar 

  166. Menzel, A. M. & Löwen, H. Traveling and resting crystals in active systems. Phys. Rev. Lett. 110, 055702 (2013).

    Google Scholar 

  167. Weber, C. A., Bock, C. & Frey, E. Defect-mediated phase transitions in active soft matter. Phys. Rev. Lett. 112, 168301 (2014).

    Google Scholar 

  168. Goto, Y. & Tanaka, H. Purely hydrodynamic ordering of rotating disks at a finite Reynolds number. Nat. Commun. 6, 5994 (2015).

    CAS  Google Scholar 

  169. Zöttl, A. & Stark H. Hydrodynamics determines collective motion and phase behaviour of active colloids in quasi-two-dimensional confinement. Phys. Rev. Lett. 112, 118101 (2014).

    Google Scholar 

  170. Henkel, M. & Hinrichsen, H. Non-Equilibrium Phase Transitions (Springer, 2014).

    Google Scholar 

  171. Wu, Y. L., Derks, D., van Blaaderen, A. & Imhof, A. Melting and crystallization of colloidal hard-sphere suspensions under shear. Proc. Natl Acad. Sci. USA 106, 10564–10569 (2009).

    CAS  Google Scholar 

  172. Zhang, K.-Q. & Liu, X. Y. In situ observation of colloidal monolayer nucleation driven by an alternating electric field. Nature 429, 739–743 (2004).

    CAS  Google Scholar 

  173. Nguyen, V. D., Hu, Z. & Schall, P. Single crystal growth and anisotropic crystal-fluid interfacial free energy in soft colloidal systems. Phys. Rev. E 84, 011607 (2011).

    Google Scholar 

  174. Tumbleston, J. R. et al. Continuous liquid interface production of 3D objects. Science 347, 1349–1352 (2015).

    CAS  Google Scholar 

  175. Pérez-Escudero, A., Vicente-Page, J., Hinz, R. C., Arganda, S. & de Polavieja, G. G. id-Tracker: tracking individuals in a group by automatic identification of unmarked animals. Nat. Methods 11, 743–748 (2014).

    Google Scholar 

  176. Moerner, W. E. Single-molecule spectroscopy, imaging, and photocontrol: foundations for super-resolution microscopy (Nobel lecture). Angew. Chem. Int. Ed. Engl. 54, 8067–8093 (2015).

    CAS  Google Scholar 

  177. Park, J. et al. 3D structure of individual nanocrystals in solution by electron microscopy. Science 349, 290–295 (2015).

    CAS  Google Scholar 

  178. Editorial, Method of the Year 2014. Nat. Methods 12, 1 (2015).

  179. Chen, B.-C. et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346, 125–132 (2014).

    Google Scholar 

  180. Furukawa, A. & Tanaka, H. Key role of hydrodynamic interactions in colloidal gelation. Phys. Rev. Lett. 104, 245702 (2010).

    Google Scholar 

  181. Jenkins, I. C., Casey, M. T., McGinley, J. T., Crocker, J. C. & Sinno, T. Hydrodynamics selects the pathway for displacive transformations in DNA-linked colloidal crystallites. Proc. Natl Acad. Sci. USA 111, 4803–4808 (2014).

    CAS  Google Scholar 

  182. Radu, M. & Schilling, T. Solvent hydrodynamics speed up crystal nucleation in suspensions of hard spheres. Europhys. Lett. 105, 26001–26005 (2014).

    Google Scholar 

  183. Roehm, D., Kesselheim, S. & Arnold, A. Hydrodynamic interactions slow down crystallization of soft colloids. Soft Matter 10, 5503–5509 (2014).

    CAS  Google Scholar 

  184. Henzie, J., Grünwald, M., Widmer-Cooper, A., Geissler, P. L. & Yang, P. Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. Nat. Mater. 11, 131–137 (2012).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants RGC-GRF16301514 and ANR/RGC-A-HKUST616/14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yilong Han.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, B., Zhou, D. & Han, Y. Assembly and phase transitions of colloidal crystals. Nat Rev Mater 1, 15011 (2016). https://doi.org/10.1038/natrevmats.2015.11

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2015.11

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing