Article | Published:

A hippocampus to prefrontal cortex neural pathway inhibits food motivation through glucagon-like peptide-1 signaling

Molecular Psychiatryvolume 23pages15551565 (2018) | Download Citation

Subjects

Abstract

The hippocampus and the medial prefrontal cortex (mPFC) are traditionally associated with regulating memory and executive function, respectively. The contribution of these brain regions to food intake control, however, is poorly understood. The present study identifies a novel neural pathway through which monosynaptic glutamatergic ventral hippocampal field CA1 (vCA1) to mPFC connectivity inhibits food-motivated behaviors through vCA1 glucagon-like peptide-1 receptor (GLP-1R). Results demonstrate that vCA1-targeted RNA interference-mediated GLP-1R knockdown increases motivated operant responding for palatable food. Chemogenetic disconnection of monosynaptic glutamatergic vCA1 to mPFC projections using designer receptors exclusively activated by designer drugs (DREADDs)-mediated synaptic silencing ablates the food intake and body weight reduction following vCA1 GLP-1R activation. Neuropharmacological experiments further reveal that vCA1 GLP-1R activation reduces food intake and inhibits impulsive operant responding for palatable food via downstream communication to mPFC NMDA receptors. Overall these findings identify a novel neural pathway regulating higher-order cognitive aspects of feeding behavior.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Cenquizca LA, Swanson LW. Spatial organization of direct hippocampal field CA1 axonal projections to the rest of the cerebral cortex. Brain Res Rev 2007; 56: 1–26.

  2. 2

    Little JP, Carter AG. Subcellular synaptic connectivity of layer 2 pyramidal neurons in the medial prefrontal cortex. J Neurosci 2012; 32: 12808–12819.

  3. 3

    Wang Q, Jin J, Maren S. Renewal of extinguished fear activates ventral hippocampal neurons projecting to the prelimbic and infralimbic cortices in rats. Neurobiol Learn Mem 2016; 134: 38–43.

  4. 4

    Blot K, Kimura S, Bai J, Kemp A, Manahan-Vaughan D, Giros B et al. Modulation of hippocampus-prefrontal cortex synaptic transmission and disruption of executive cognitive functions by MK-801. Cereb Cortex 2015; 25: 1348–1361.

  5. 5

    Carreno FR, Donegan JJ, Boley AM, Shah A, DeGuzman M, Frazer A et al. Activation of a ventral hippocampus-medial prefrontal cortex pathway is both necessary and sufficient for an antidepressant response to ketamine. Mol Psychiatry 2016; 21: 1298–1308.

  6. 6

    Beeman CL, Bauer PS, Pierson JL, Quinn JJ. Hippocampus and medial prefrontal cortex contributions to trace and contextual fear memory expression over time. Learn Mem 2013; 20: 336–343.

  7. 7

    Valdes JL, Maldonado P, Recabarren M, Fuentes R, Torrealba F. The infralimbic cortical area commands the behavioral and vegetative arousal during appetitive behavior in the rat. Eur J Neurosci 2006; 23: 1352–1364.

  8. 8

    Parent MB, Darling JN, Henderson YO. Remembering to eat: hippocampal regulation of meal onset. Am J Physiol Regul, Integr Comp Physiol 2014; 306: R701–R713.

  9. 9

    Horst NK, Laubach M. Reward-related activity in the medial prefrontal cortex is driven by consumption. Front Neurosci 2013; 7: 56.

  10. 10

    Baldo BA, Spencer RC, Sadeghian K, Mena JD. GABA-mediated inactivation of medial prefrontal and agranular insular cortex in the rat: contrasting effects on hunger- and palatability-driven feeding. Neuropsychopharmacology 2016; 41: 960–970.

  11. 11

    Ahn S, Phillips AG. Dopaminergic correlates of sensory-specific satiety in the medial prefrontal cortex and nucleus accumbens of the rat. J Neurosci 1999; 19: RC29.

  12. 12

    Petrovich GD, Holland PC, Gallagher M. Amygdalar and prefrontal pathways to the lateral hypothalamus are activated by a learned cue that stimulates eating. J Neurosci 2005; 25: 8295–8302.

  13. 13

    Cole S, Hobin MP, Petrovich GD. Appetitive associative learning recruits a distinct network with cortical, striatal, and hypothalamic regions. Neuroscience 2015; 286: 187–202.

  14. 14

    Kanoski SE, Grill HJ. Hippocampus contributions to food intake control: mnemonic,neuroanatomical, and endocrine mechanisms. Biol Psychiatry 2017; 81: 748–756.

  15. 15

    Mena JD, Sadeghian K, Baldo BA. Induction of hyperphagia and carbohydrate intake by mu-opioid receptor stimulation in circumscribed regions of frontal cortex. J Neurosci 2011; 31: 3249–3260.

  16. 16

    Land BB, Narayanan NS, Liu RJ, Gianessi CA, Brayton CE, Grimaldi DM et al. Medial prefrontal D1 dopamine neurons control food intake. Nat Neurosci 2014; 17: 248–253.

  17. 17

    Nair SG, Navarre BM, Cifani C, Pickens CL, Bossert JM, Shaham Y. Role of dorsal medial prefrontal cortex dopamine D1-family receptors in relapse to high-fat food seeking induced by the anxiogenic drug yohimbine. Neuropsychopharmacology 2011; 36: 497–510.

  18. 18

    Petrovich GD, Ross CA, Holland PC, Gallagher M. Medial prefrontal cortex is necessary for an appetitive contextual conditioned stimulus to promote eating in sated rats. J Neurosci 2007; 27: 6436–6441.

  19. 19

    Warthen DM, Lambeth PS, Ottolini M, Shi Y, Barker BS, Gaykema RP et al. Activation of pyramidal neurons in mouse medial prefrontal cortex enhances food-seeking behavior while reducing impulsivity in the absence of an effect on food intake. Front Behav Neurosci 2016; 10: 63.

  20. 20

    Sokolowski JD, Salamone JD. Effects of dopamine depletions in the medial prefrontal cortex on DRL performance and motor activity in the rat. Brain Res 1994; 642: 20–28.

  21. 21

    Selleck RA, Lake C, Estrada V, Riederer J, Andrzejewski M, Sadeghian K et al. Endogenous opioid signaling in the medial prefrontal cortex is required for the expression of hunger-induced impulsive action. Neuropsychopharmacology 2015; 40: 2464–2474.

  22. 22

    Waterson MJ, Horvath TL. Neuronal regulation of energy homeostasis: beyond the hypothalamus and feeding. Cell Metab 2015; 22: 962–970.

  23. 23

    Moran TH. Gut peptides in the control of food intake. Int J Obes 2009; 33: S7–10.

  24. 24

    Grill HJ, Hayes MR. Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance. Cell Metab 2012; 16: 296–309.

  25. 25

    Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev 2007; 87: 1409–1439.

  26. 26

    Kanoski SE, Fortin SM, Arnold M, Grill HJ, Hayes MR. Peripheral and central GLP-1 receptor populations mediate the anorectic effects of peripherally administered GLP-1 receptor agonists, liraglutide and exendin-4. Endocrinology 2011; 152: 3103–3112.

  27. 27

    Ruttimann EB, Arnold M, Hillebrand JJ, Geary N, Langhans W. Intrameal hepatic portal and intraperitoneal infusions of glucagon-like peptide-1 reduce spontaneous meal size in the rat via different mechanisms. Endocrinology 2009; 150: 1174–1181.

  28. 28

    Williams DL, Baskin DG, Schwartz MW. Evidence that intestinal glucagon-like peptide-1 plays a physiological role in satiety. Endocrinology 2009; 150: 1680–1687.

  29. 29

    Kanoski SE, Hayes MR, Skibicka KP. GLP-1 and weight loss: unraveling the diverse neural circuitry. Am J Physiol Regul, Integr Comp Physiol 2016; 310: R885–R895.

  30. 30

    Reiner DJ, Mietlicki-Baase EG, McGrath LE, Zimmer DJ, Bence KK, Sousa GL et al. Astrocytes regulate GLP-1 receptor-mediated effects on energy balance. J Neurosci 2016; 36: 3531–3540.

  31. 31

    Narayanaswami V, Dwoskin LP. Obesity: current and potential pharmacotherapeutics and targets. Pharmacol Ther 2016; 170: 116–147.

  32. 32

    Nuffer WA, Trujillo JM. Liraglutide: a new option for the treatment of obesity. Pharmacotherapy 2015; 35: 926–934.

  33. 33

    Schick RR, Zimmermann JP, vorm Walde T, Schusdziarra V. Peptides that regulate food intake: glucagon-like peptide 1-(7-36) amide acts at lateral and medial hypothalamic sites to suppress feeding in rats. Am J Physiol Regul Integr Comp Physiol 2003; 284: R1427–R1435.

  34. 34

    Vrang N, Hansen M, Larsen PJ, Tang-Christensen M. Characterization of brainstem preproglucagon projections to the paraventricular and dorsomedial hypothalamicnuclei. Brain Res 2007; 1149: 118–126.

  35. 35

    Alhadeff AL, Grill HJ. Hindbrain nucleus tractus solitarius glucagon-like peptide-1 receptor signaling reduces appetitive and motivational aspects of feeding. Am J Physiol Regul, Integr Comp Physiol 2014; 307: R465–R470.

  36. 36

    Kreisler AD, Rinaman L. Hindbrain glucagon-like peptide-1 neurons track intake volume and contribute to injection stress-induced hypophagia in meal-entrained rats. Am J Physiol Regul, Integr Comp Physiol 2016; 310: R906–R916.

  37. 37

    Dossat AM, Lilly N, Kay K, Williams DL. Glucagon-like peptide 1 receptors in nucleus accumbens affect food intake. J Neurosci 2011; 31: 14453–14457.

  38. 38

    Alhadeff AL, Rupprecht LE, Hayes MR. GLP-1 neurons in the nucleus of the solitary tract project directly to the ventral tegmental area and nucleus accumbens to control for food intake. Endocrinology 2012; 153: 647–658.

  39. 39

    Dickson SL, Shirazi RH, Hansson C, Bergquist F, Nissbrandt H, Skibicka KP. The glucagon-like peptide 1 (GLP-1) analogue, exendin-4, decreases the rewarding value of food: a new role for mesolimbic GLP-1 receptors. J Neurosci 2012; 32: 4812–4820.

  40. 40

    Mietlicki-Baase EG, Ortinski PI, Reiner DJ, Sinon CG, McCutcheon JE, Pierce RC et al. Glucagon-like peptide-1 receptor activation in the nucleus accumbens core suppresses feeding by increasing glutamatergic AMPA/kainate signaling. J Neurosci 2014; 34: 6985–6992.

  41. 41

    Terrill SJ, Jackson CM, Greene HE, Lilly N, Maske CB, Vallejo S et al. Role of lateral septum glucagon-like peptide 1 receptors in food intake. Am J Physiol Regul, Integr Comp Physiol 2016; 311: R124–R132.

  42. 42

    Richard JE, Anderberg RH, Goteson A, Gribble FM, Reimann F, Skibicka KP. Activation of the GLP-1 receptors in the nucleus of the solitary tract reduces food reward behavior and targets the mesolimbic system. PLoS ONE 2015; 10: e0119034.

  43. 43

    Merchenthaler I, Lane M, Shughrue P. Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervoussystem. J Comp Neurol 1999; 403: 261–280.

  44. 44

    Cork SC, Richards JE, Holt MK, Gribble FM, Reimann F, Trapp S. Distribution and characterisation of Glucagon-like peptide-1 receptor expressing cells in the mouse brain. Mol Metab 2015; 4: 718–731.

  45. 45

    Hsu TM, Hahn JD, Konanur VR, Lam A, Kanoski SE. Hippocampal GLP-1 receptors influence food intake, meal size, and effort-based responding for food through volume transmission. Neuropsychopharmacology 2015; 40: 327–337.

  46. 46

    Schmidt HD, Mietlicki-Baase EG, Ige KY, Maurer JJ, Reiner DJ, Zimmer DJ et al. Glucagon-like peptide-1 receptor activation in the ventral tegmental area decreases the reinforcing efficacy of cocaine. Neuropsychopharmacology 2016; 41: 1917–1928.

  47. 47

    Alhadeff AL, Mergler BD, Zimmer DJ, Turner CA, Reiner DJ, Schmidt HD et al. Endogenous glucagon-like peptide-1 receptor signaling in the nucleus tractus solitarius is required for food intake control. Neuropsychopharmacology 2016.

  48. 48

    Kanoski SE, Zhao S, Guarnieri DJ, DiLeone RJ, Yan J, De Jonghe BC et al. Endogenous leptin receptor signaling in the medial nucleus tractus solitarius affects meal size and potentiates intestinal satiation signals. Am J Physiol Endocrinol Metab 2012; 303: E496–E503.

  49. 49

    Chamberlin NL, Du B, de Lacalle S, Saper CB. Recombinant adeno-associated virus vector: use for transgene expression and anterograde tract tracing in the CNS. Brain Res 1998; 793: 169–175.

  50. 50

    Harris JA, Oh SW, Zeng H. Adeno-associated viral vectors for anterograde axonal tracing with fluorescent proteins in nontransgenic and cre driver mice. Curr Protoc Neurosci 2012; Chapter 1: 1–18.

  51. 51

    Allen Mouse Brain Connectivity Atlas. Allen Institute for Brain Science, 2016 (alleninstitute.org).

  52. 52

    Hahn JD, Swanson LW. Distinct patterns of neuronal inputs and outputs of the juxtaparaventricular and suprafornical regions of the lateral hypothalamic area in the male rat. Brain Res Rev 2010; 64: 14–103.

  53. 53

    Mahler SV, Vazey EM, Beckley JT, Keistler CR, McGlinchey EM, Kaufling J et al. Designer receptors show role for ventral pallidum input to ventral tegmental area in cocaine seeking. Nat Neurosci 2014; 17: 577–585.

  54. 54

    Stachniak TJ, Ghosh A, Sternson SM. Chemogenetic synaptic silencing of neural circuits localizes a hypothalamus→midbrain pathway for feeding behavior. Neuron 2014; 82: 797–808.

  55. 55

    Simon NW, Beas BS, Montgomery KS, Haberman RP, Bizon JL, Setlow B. Prefrontal cortical-striatal dopamine receptor mRNA expression predicts distinct forms of impulsivity. Eur J NeuroscI 2013; 37: 1779–1788.

  56. 56

    van Gestel MA, van Erp S, Sanders LE, Brans MA, Luijendijk MC, Merkestein M et al. shRNA-induced saturation of the microRNA pathway in the rat brain. Gene Ther 2014; 21: 205–211.

  57. 57

    Min DK, Tuor UI, Chelikani PK. Gastric distention induced functional magnetic resonance signal changes in the rodent brain. Neuroscience 2011; 179: 151–158.

  58. 58

    Furmaga H, Carreno FR, Frazer A. Vagal nerve stimulation rapidly activates brain-derived neurotrophic factor receptor TrkB in rat brain. PLoS ONE 2012; 7: e34844.

  59. 59

    Scott KA, Moran TH. The GLP-1 agonist exendin-4 reduces food intake in nonhuman primates through changes in meal size. Am J Physiol Regul Integr Comp Physiol 2007; 293: R983–R987.

  60. 60

    Bello NT, Kemm MH, Ofeldt EM, Moran TH. Dose combinations of exendin-4 and salmon calcitonin produce additive and synergistic reductions in food intake in nonhuman primates. Am J Physiol Regul, integr Comp Physiol 2010; 299: R945–R952.

  61. 61

    Dossat AM, Diaz R, Gallo L, Panagos A, Kay K, Williams DL. Nucleus accumbens GLP-1 receptors influence meal size and palatability. Am J Physiol Endocrinol Metab 2013; 304: E1314–E1320.

  62. 62

    Mietlicki-Baase EG, Ortinski PI, Rupprecht LE, Olivos DR, Alhadeff AL, Pierce RC et al. The food intake-suppressive effects of glucagon-like peptide-1 receptor signaling in the ventral tegmental area are mediated by AMPA/kainate receptors. Am J Physiol Endocrinol Metab 2013; 305: E1367–E1374.

  63. 63

    Gu G, Roland B, Tomaselli K, Dolman CS, Lowe C, Heilig JS. Glucagon-like peptide-1 in the rat brain: distribution of expression and functional implication. J Comp Neurol 2013; 521: 2235–2261.

  64. 64

    Kastin AJ, Akerstrom V, Pan W. Interactions of glucagon-like peptide-1 (GLP-1) with the blood-brain barrier. J Mol Neurosci 2002; 18: 7–14.

  65. 65

    MacLaren DA, Browne RW, Shaw JK, Krishnan Radhakrishnan S, Khare P, Espana RA et al. Clozapine N-oxide administration produces behavioral effects in long-evans rats: implications for designing DREADD experiments. eNeuro 2016; 3: e0219-16.

  66. 66

    Ishikawa A, Nakamura S. Ventral hippocampal neurons project axons simultaneously to the medial prefrontal cortex and amygdala in the rat. J Neurophysiol 2006; 96: 2134–2138.

  67. 67

    Petrovich GD, Setlow B, Holland PC, Gallagher M. Amygdalo-hypothalamic circuit allows learned cues to override satiety and promote eating. J Neurosci 2002; 22: 8748–8753.

  68. 68

    Hsu TM, Hahn JD, Konanur VR, Noble EE, Suarez AN, Thai J et al. Hippocampus ghrelin signaling mediates appetite through lateral hypothalamic orexin pathways. eLife 2015; 4: e11190.

  69. 69

    Sweeney P, Yang Y. An excitatory ventral hippocampus to lateral septum circuit that suppresses feeding. Nat Commun 2015; 6: 10188.

  70. 70

    Jay TM, Thierry AM, Wiklund L, Glowinski J. Excitatory amino acid pathway from the hippocampus to the prefrontal cortex. Contribution of AMPA receptors in hippocampo-prefrontal cortex transmission. Eur J Neurosci 1992; 4: 1285–1295.

  71. 71

    Jay TM, Burette F, Laroche S. NMDA receptor-dependent long-term potentiation in the hippocampal afferent fibre system to the prefrontal cortex in the rat. Eur J Neurosci 1995; 7: 247–250.

  72. 72

    Walker AG, Wenthur CJ, Xiang Z, Rook JM, Emmitte KA, Niswender CM et al. Metabotropic glutamate receptor 3 activation is required for long-term depression in medial prefrontal cortex and fear extinction. Proc Natl Acad Sci USA 2015; 112: 1196–1201.

  73. 73

    Sun H, Neugebauer V. mGluR1, but not mGluR5, activates feed-forward inhibition in the medial prefrontal cortex to impair decision making. J Neurophysiol 2011; 106: 960–973.

  74. 74

    Fontanez-Nuin DE, Santini E, Quirk GJ, Porter JT. Memory for fear extinction requires mGluR5-mediated activation of infralimbic neurons. Cereb Cortex 2011; 21: 727–735.

  75. 75

    Wischhof L, Hollensteiner KJ, Koch M. Impulsive behaviour in rats induced by intracortical DOI infusions is antagonized by co-administration of an mGlu2/3 receptor agonist. Behav Pharmacol 2011; 22: 805–813.

  76. 76

    Macedo CE, Angst MJ, Gobaille S, Schleef C, Guignard B, Guiberteau T et al. Prefrontal dopamine release and sensory-specific satiety altered in rats with neonatal ventral hippocampal lesions. Behav Brain Res 2012; 231: 97–104.

  77. 77

    Maniscalco JW, Zheng H, Gordon PJ, Rinaman L. Negative energy balance blocks neural and behavioral responses to acute stress by "silencing" central glucagon-like peptide 1 signaling in rats. J Neurosci 2015; 35: 10701–10714.

  78. 78

    Bannerman DM, Rawlins JN, McHugh SB, Deacon RM, Yee BK, Bast T et al. Regional dissociations within the hippocampus—memory and anxiety. Neurosci Biobehav Rev 2004; 28: 273–283.

  79. 79

    Maniscalco JW, Rinaman L. Interoceptive modulation of neuroendocrine, emotional, and hypophagic responses to stress. Physiol Behav 2017.

  80. 80

    Winstanley CA, Theobald DE, Dalley JW, Cardinal RN, Robbins TW. Double dissociation between serotonergic and dopaminergic modulation of medial prefrontal and orbitofrontal cortex during a test of impulsive choice. Cereb Cortex 2006; 16: 106–114.

Download references

Acknowledgments

We thank the following individuals for notable contributions to this work: Dr Alan G. Watts, Dr Larry W. Swanson, Brian Zingg, Sandhya Prathap, Emily Nakamoto, Lilly Taing, Hrant Gevorgian, Joanna Liang, Ryan Usui, Mehul Trivedi, Agustina Kim, Allison Apfel, Kaitlin Sontag, Anish Reddy, and Natalie Demirjian. This study was supported by the National Institute of Health grants: DK104897 (SEK), DK096139 (MRH), DK107333 (TMH) and pilot grant funding from the USC Diabetes and Obesity Research Institute (SEK). We report no biomedical financial interests or potential conflicts of interest.

Author information

Affiliations

  1. Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA

    • T M Hsu
    • , E E Noble
    • , C M Liu
    • , A M Cortella
    • , A N Suarez
    •  & S E Kanoski
  2. Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA

    • T M Hsu
    • , C M Liu
    •  & S E Kanoski
  3. Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL, USA

    • V R Konanur
  4. Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

    • D J Reiner
    •  & M R Hayes
  5. Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA

    • J D Hahn

Authors

  1. Search for T M Hsu in:

  2. Search for E E Noble in:

  3. Search for C M Liu in:

  4. Search for A M Cortella in:

  5. Search for V R Konanur in:

  6. Search for A N Suarez in:

  7. Search for D J Reiner in:

  8. Search for J D Hahn in:

  9. Search for M R Hayes in:

  10. Search for S E Kanoski in:

Conflict of Interest

The authors declare no conflict of interest.

Corresponding author

Correspondence to S E Kanoski.

Electronic supplementary material

About this article

Publication history

Received

Revised

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/mp.2017.91

Further reading