Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Exocytosis-related genes and response to methylphenidate treatment in adults with ADHD

Abstract

Experimental studies have demonstrated that methylphenidate (MPH) modulates the synaptic vesicle trafficking and synaptotagmin-1 (SytI) mRNA levels. SytI is a regulatory protein of the SNARE complex, a neurotransmitter exocytosis mediator. Despite this evidence, most SNARE complex-related genes have never been evaluated in attention-deficit/hyperactivity disorder (ADHD) pharmacogenetics. This study evaluates, for we believe the first time, polymorphisms on the SNARE complex-related genes STX1A (rs2228607), VAMP2 (26bp Ins/Del) and SYT1 (rs1880867 and rs2251214) on the response to immediate-release methylphenidate (IR-MPH) in a naturalistic sample of adults with ADHD. The sample comprised 433 subjects, of which 272 (62.8%) have completed the short-term IR-MPH treatment (at least 30 days). The main outcome measure was the categorical variable of short-term response to IR-MPH based on the Swanson, Nolan and Pelham Rating Scale version 4 (SNAP-IV), and on the clinical global impression-improvement scale. Additional analyses evaluated the percentage of SNAP-IV symptom reduction for each dimension as well as short- and long- (7 years) term treatment persistence. SYT1-rs2251214 was associated with the categorical short-term response to IR-MPH (P=0.006, PFDR=0.028), and with the percentage of inattention and oppositional defiant disorder symptoms reduction (P=0.007, PFDR=0.028 and P=0.017, PFDR=0.048, respectively). SYT1-rs2251214 was also associated with short-term treatment persistence (P=0.018, PFDR=0.048), and with months of treatment (P=0.002, PFDR=0.016) in the long-term protocol. Our findings suggest that SYT1-rs2251214 presents a broad influence in IR-MPH response variability in adults with ADHD, being involved with both symptom response and treatment persistence. If such findings are replicated, SytI could represent a key element in MPH pharmacodynamics in adults with ADHD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Canadian Attention Deficit Hyperactivity Disorder Resource Alliance, (CADDRA). Canadian ADHD Practice Guidelines. 3rd edn. 2011. pp 1–148.

  2. Subcommittee on Attention-Deficit/Hyperactivity Disorder, Steering Committee on Quality Improvement and Management Wolraich M Brown L Brown RT DuPaul G et al. ADHD: clinical practice guideline for the diagnosis, evaluation, and treatment of attention-deficit/hyperactivity disorder in children and adolescents. Pediatrics 2011; 128: 1007–1022.

    Article  Google Scholar 

  3. Castle L, Aubert RE, Verbrugge RR, Khalid M, Epstein RS . Trends in medication treatment for ADHD. J Atten Disord 2007; 10: 335–342.

    Article  PubMed  Google Scholar 

  4. Briars L, Todd T . A review of pharmacological management of attention-deficit/hyperactivity disorder. J Pediatr Pharmacol Ther 2016; 21: 192–206.

    PubMed  PubMed Central  Google Scholar 

  5. Faraone SV, Spencer T, Aleardi M, Pagano C . Meta-analysis of the efficacy of methylphenidate for treating adult attention-deficit / hyperactivity disorder. J Clin Psychopharmacol 2004; 24: 24–29.

    Article  CAS  PubMed  Google Scholar 

  6. Castells X, Ramos-Quiroga JA, Rigau D, Bosch R, Nogueira M, Vidal X et al. Efficacy of methylphenidate for adults with attention-deficit hyperactivity disorder: a meta-regression analysis. CNS Drugs 2011; 25: 157–169.

    Article  CAS  PubMed  Google Scholar 

  7. Epstein T, Patsopoulos NA, Weiser M . Immediate-release methylphenidate for attention deficit hyperactivity disorder (ADHD) in adults. Cochrane Database Syst Rev. 2014; 9: CD005041.

    Google Scholar 

  8. Spencer T, Biederman J, Wilens T, Harding M, Donnell DO, Griffin S . Pharmacotherapy of attention-deficit hyperactivity disorder across the life cycle. J Am Acad Child Adolesc Psychiatry 1996; 35: 409–432.

    Article  CAS  PubMed  Google Scholar 

  9. Pliszka SR . Pharmacologic treatment of attention-deficit/hyperactivity disorder: efficacy, safety and mechanisms of action. Neuropsychol Rev 2007; 17: 61–72.

    Article  PubMed  Google Scholar 

  10. Victor MM, Grevet EH, Salgado CAI, Silva KL, Sousa NO, Karam RG et al. Reasons for pretreatment attrition and dropout from methylphenidate in adults with attention-deficit/hyperactivity disorder: the role of comorbidities. J Clin Psychopharmacol 2009; 29: 614–616.

    Article  PubMed  Google Scholar 

  11. Wilens TE, Morrison NR, Prince J . An update on the pharmacotherapy of attention-deficit/hyperactivity disorder in adults. Expert Rev Neurother 2011; 11: 1443–1465.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Contini V, Rovaris DL, Victor MM, Grevet EH, Rohde LA, Bau CHD . Pharmacogenetics of response to methylphenidate in adult patients with Attention-Deficit/Hyperactivity Disorder (ADHD): a systematic review. Eur Neuropsychopharmacol 2013; 23: 555–560.

    Article  CAS  PubMed  Google Scholar 

  13. Retz W, Retz-Junginger P . Prediction of methylphenidate treatment outcome in adults with attention-deficit/hyperactivity disorder (ADHD). Eur Arch Psychiatry Clin Neurosci 2014; 264: S35–S43.

    Article  PubMed  Google Scholar 

  14. Victor MM, Rovaris DL, Salgado CAI, Silva KL, Karam RG, Vitola ES et al. Severity but not comorbidities predicts response to methylphenidate in adults with attention-deficit/hyperactivity disorder: results from a naturalistic study. J Clin Psychopharmacol 2014; 34: 212–217.

    Article  CAS  PubMed  Google Scholar 

  15. Rovaris DL, Mota NR, da Silva BS, Girardi P, Victor MM, Grevet EH et al. Should we keep on? Looking into pharmacogenomics of ADHD in adulthood from a different perspective. Pharmacogenomics.; 2014; 15: 1365–1381.

    Article  CAS  PubMed  Google Scholar 

  16. Mick E, Biederman J, Spencer T, Faraone SV, Sklar P . Absence of association with DAT1 polymorphism and response to methylphenidate in a sample of adults with ADHD. Am J Med Genet B Neuropsychiatr Genet 2006; 141B: 890–894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kooij JS, Boonstra AM, Vermeulen SH, Heister AG, Burger H, Buitelaar JK et al. Response to methylphenidate in adults with ADHD is associated with a polymorphism in SLC6A3 (DAT1). Am J Med Genet B Neuropsychiatr Genet 2008; 147: 201–208.

    Article  Google Scholar 

  18. Contini V, Victor MM, Marques FZC, Bertuzzi GP, Salgado CAI, Silva KL et al. Response to methylphenidate is not influenced by DAT1 polymorphisms in a sample of Brazilian adult patients with ADHD. J Neural Transm 2010; 117: 269–276.

    Article  CAS  PubMed  Google Scholar 

  19. Contini V, Victor MM, Cerqueira CCS, Polina ER, Grevet EH, Salgado CAI et al. Adrenergic α2A receptor gene is not associated with methylphenidate response in adults with ADHD. Eur Arch Psychiatry Clin Neurosci 2011; 261: 205–211.

    Article  PubMed  Google Scholar 

  20. Contini V, Victor MM, Bertuzzi GP, Salgado CAI, Picon FA, Grevet EH et al. No significant association between genetic variants in 7 candidate genes and response to methylphenidate treatment in adult patients with ADHD. J Clin Psychopharmacol 2012; 32: 820–823.

    Article  CAS  PubMed  Google Scholar 

  21. Hegvik T-A, Jacobsen KK, Fredriksen M, Zayats T, Haavik J . A candidate gene investigation of methylphenidate response in adult attention-deficit/hyperactivity disorder patients: results from a naturalistic study. J Neural Transm 2016; 123: 859–865.

    Article  CAS  PubMed  Google Scholar 

  22. Berridge CW, Devilbiss DM, Andrzejewski ME, Arnsten AFT, Kelley AE, Schmeichel B et al. Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function. Biol Psychiatry 2006; 60: 1111–1120.

    Article  CAS  PubMed  Google Scholar 

  23. Hannestad J, Gallezot J-D, Planeta-Wilson B, Lin S-F, Williams WA, van Dyck CH et al. Clinically relevant doses of methylphenidate significantly occupy norepinephrine transporters in humans in vivo. Biol Psychiatry 2010; 68: 854–860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kambeitz J, Romanos M, Ettinger U . Meta-analysis of the association between dopamine transporter genotype and response to methylphenidate treatment in ADHD. Pharmacogenomics J 2014; 14: 77–84.

    Article  CAS  PubMed  Google Scholar 

  25. Bonvicini C, Faraone SV, Scassellati C . Attention-deficit hyperactivity disorder in adults: a systematic review and meta-analysis of genetic, pharmacogenetic and biochemical studies. Mol Psychiatry 2016; 21: 872–884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Volz TJ, Farnsworth SJ, Hanson GR, Fleckenstein AE . Methylphenidate-induced alterations in synaptic vesicle trafficking and activity. Ann N Y Acad Sci 2008; 1139: 285–290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zylbersztejn K, Galli T . Vesicular traffic in cell navigation. FEBS J 2011; 278: 4497–4505.

    Article  CAS  PubMed  Google Scholar 

  28. Xu J, Pang ZP, Shin O-H, Südhof TC . Synaptotagmin-1 functions as a Ca2+ sensor for spontaneous release. Nat Neurosci 2009; 12: 759–766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Südhof TC . Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron 2013; 80: 675–690.

    Article  PubMed  Google Scholar 

  30. Cupertino RB, Kappel DB, Bandeira CE, Schuch JB, da Silva BS, Müller D et al. SNARE complex in developmental psychiatry: neurotransmitter exocytosis and beyond. J Neural Transm 2016; 123: 867–883.

    Article  CAS  PubMed  Google Scholar 

  31. McGough J, McCracken J, Swanson J, Riddle M, Kollins S, Greenhill L et al. Pharmacogenetics of methylphenidate response in preschoolers with ADHD. J Am Acad Child Adolesc Psychiatry 2006; 45: 1314–1322.

    Article  PubMed  Google Scholar 

  32. Song J, Kim SW, Hong HJ, Lee MG, Lee BW, Choi TK et al. Association of SNAP-25, SLC6A2, and LPHN3 With OROS methylphenidate treatment response in attention-deficit/hyperactivity disorder. Clin Neuropharmacol 2014; 37: 136–141.

    Article  CAS  PubMed  Google Scholar 

  33. McGough JJ, McCracken JT, Loo SK, Manganiello M, Leung MC, Tietjens JR et al. A candidate gene analysis of methylphenidate response in attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2009; 48: 1155–1164.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Baker K, Gordon SL, Grozeva D, van Kogelenberg M, Roberts NY, Pike M et al. Identification of a human synaptotagmin-1 mutation that perturbs synaptic vesicle cycling. J Clin Invest 2015; 125: 1670–1678.

    PubMed  PubMed Central  Google Scholar 

  35. Peng W, Premkumar A, Mossner R, Fukuda M, Lesch KP, Simantov R et al. are differentially regulated in the brain by the recreational drug 3,4-methylenedioxymethamphetamine (MDMA). Mol Brain Res 2002; 108: 94–101.

    Article  CAS  PubMed  Google Scholar 

  36. Bartl J, Link P, Schlosser C, Gerlach M, Schmitt A, Walitza S et al. Effects of methylphenidate: the cellular point of view. Atten Deficit Hyperact Disord 2010; 2: 225–232.

    Article  Google Scholar 

  37. Karam RG, Breda V, Picon FA, Rovaris DL, Victor MM, Salgado CAI et al. Persistence and remission of ADHD during adulthood: a 7-year clinical follow-up study. Psychol Med 2015; 45: 2045–2056.

    Article  CAS  PubMed  Google Scholar 

  38. American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders,, 4th edition (DSM-IV) American Psychiatric Association: Washington DC, 1994.

  39. Grevet EH, Bau CHD, Salgado CAI, Ficher A, Victor MM, Garcia C et al. Interrater reliability for diagnosis in adults of attention deficit hyperactivity disorder and oppositional defiant disorder using K-SADS-E. Arq Neuropsiquiatr 2005; 63: 307–310.

    Article  PubMed  Google Scholar 

  40. Steele M, Jensen PS, Quinn DMP . Remission versus response as the goal of therapy in ADHD: a new standard for the field? Clin Ther 2006; 28: 1892–1908.

    Article  CAS  PubMed  Google Scholar 

  41. Lahiri DK, Nurnberger JI Jr . A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res 1991; 19: 5444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. von Kanel T, Stanke F, Weber M, Schaller A, Racine J, Kraemer R et al. Clinical and molecular characterization of the potential CF disease modifier syntaxin 1A. Eur J Hum Genet 2013; 21: 1462–1466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sánchez-Mora C, Cormand B, Ramos-Quiroga JA, Hervás A, Bosch R, Palomar G et al. Evaluation of common variants in 16 genes involved in the regulation of neurotransmitter release in ADHD. Eur Neuropsychopharmacol 2013; 23: 426–435.

    Article  PubMed  Google Scholar 

  44. Nakamura K, Anitha A, Yamada K, Tsujii M, Iwayama Y, Hattori E et al. Genetic and expression analyses reveal elevated expression of syntaxin 1A (STX1A) in high functioning autism. Int J Neuropsychopharmacol 2008; 11: 1073.

    Article  CAS  PubMed  Google Scholar 

  45. Kenar ANI, Ay Öİ, Herken H, Erdal ME . Association of VAMP-2 and syntaxin 1A genes with adult attention deficit hyperactivity disorder. Psychiatry Investig 2014; 11: 76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang D, Cheng L, Badner JA, Chen C, Chen Q, Luo W et al. Genetic control of individual differences in gene-specific methylation in human brain. Am J Hum Genet 2010; 86: 411–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Falbo V, Floridia G, Gaudi S, Zoraqi G, Taruscio D . A new polymorphism in the flanking region of human VAMP2 and hPer1 genes. Mol Cell Probes 2002; 16: 391–392.

    Article  CAS  PubMed  Google Scholar 

  48. Maldonado G, Greenland S . Simulation study of confounder-selection strategies. Am J Epidemiol 1993; 138: 923–936.

    Article  CAS  PubMed  Google Scholar 

  49. Benjamini Y, Hochberg Y, Benjaminit Y . Controlling the false discovery rate: a practical and powerful approach to multiple controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 1995; 57: 289–300.

    Google Scholar 

  50. Riddle EL, Hanson GR, Fleckenstein AE . Therapeutic doses of amphetamine and methylphenidate selectively redistribute the vesicular monoamine transporter-2. Eur J Pharmacol 2007; 571: 25–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Volz TJ, Farnsworth SJ, Hanson GR, Fleckenstein AE . Method development and validation of an in vitro model of the effects of methylphenidate on membrane-associated synaptic vesicles. J Neurosci Methods 2009; 177: 177–182.

    Article  CAS  PubMed  Google Scholar 

  52. Wang S, Li Y, Ma C . Synaptotagmin-1 C2B domain interacts simultaneously with SNAREs and membranes to promote membrane fusion. Elife 2016; 5: 1–21.

    Google Scholar 

  53. Mohrmann R, de Wit H, Connell E, Pinheiro PS, Leese C, Bruns D et al. Synaptotagmin interaction with SNAP-25 governs vesicle docking, priming, and fusion triggering. J Neurosci 2013; 33: 14417–14430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fernández-Chacón R, Königstorfer A, Gerber SH, García J, Matos MF, Stevens CF et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature 2001; 410: 41–49.

    Article  PubMed  Google Scholar 

  55. Guan L, Wang B, Chen Y, Yang L, Li J, Qian Q et al. A high-density single-nucleotide polymorphism screen of 23 candidate genes in attention deficit hyperactivity disorder: suggesting multiple susceptibility genes among Chinese Han population. Mol Psychiatry. 2009; 14: 546–554.

    Article  CAS  PubMed  Google Scholar 

  56. Denovan-Wright EM, Newton RA, Armstrong JN, Babity JM, Robertson HA . Acute administration of cocaine, but not amphetamine, increases the level of synaptotagmin IV mRNA in the dorsal striatum of rat. Brain Res Mol Brain Res. 1998; 55: 350–354.

    Article  CAS  PubMed  Google Scholar 

  57. Biederman J, Mick E, Faraone SV . Age-dependent decline of symptoms of attention deficit hyperactivity disorder: impact of remission definition and symptom type. Am J Psychiatry. 2000; 157: 816–818.

    Article  CAS  PubMed  Google Scholar 

  58. Robison RJ, Reimherr FW, Gale PD, Marchant BK, Williams ED, Soni P et al. Personality disorders in ADHD Part 2: The effect of symptoms of personality disorder on response to treatment with OROS methylphenidate in adults with ADHD. Ann Clin Psychiatry 2010; 22: 94–102.

    PubMed  Google Scholar 

  59. Olsen JL, Reimherr FW, Marchant BK, Wender PH, Robison RJ . The effect of personality disorder symptoms on response to treatment with methylphenidate transdermal system in adults with attention-deficit/hyperactivity disorder. Prim care companion CNS Disord 2012; 14: PCC.12m01344 [pii].

  60. Cupertino RB, Schuch JB, Bandeira CE, da Silva BS, Rovaris DL, Kappel DB et al. Replicated association of Synaptotagmin (SYT1 with ADHD and its broader influence in externalizing behaviors. Eur Neuropsychopharmacol. 2017; 27: 239–247.

    Article  CAS  PubMed  Google Scholar 

  61. American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders, 5th edition (DSM-5) American Psychiatric Association: Washington DC, 2013.

Download references

Acknowledgements

We thank the subjects who kindly participated in this research. This work was supported by the following funding sources: CNPq, CAPES and FAPERGS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C H D Bau.

Ethics declarations

Competing interests

EHG was on the speaker’s bureau for Novartis and Shire for the last 3 years. He also received travel awards (air tickets and hotel accommodations) for participating in two psychiatric meetings from Shire and Novartis. LAR has received grant or research support from, served as a consultant to, and served on the speakers’ bureau of Eli Lilly and Co., Janssen, Medice, Novartis and Shire. The ADHD and Juvenile Bipolar Disorder Outpatient Programs chaired by LAR have received unrestricted educational and research support from the following pharmaceutical companies: Eli Lilly and Co., Janssen, Novartis and Shire. LAR has received travel grants from Shire to take part in the 2014 APA, 2015 WFADHD and 2016 AACAP congresses. He has received royalties from Artmed Editora and Oxford University Press. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website .

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, B., Cupertino, R., Rovaris, D. et al. Exocytosis-related genes and response to methylphenidate treatment in adults with ADHD. Mol Psychiatry 23, 1446–1452 (2018). https://doi.org/10.1038/mp.2017.90

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2017.90

This article is cited by

Search

Quick links