Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A novel 5HT3 receptor–IGF1 mechanism distinct from SSRI-induced antidepressant effects

Abstract

Depression is a common mental disorder affecting around 350 million people worldwide. Although selective serotonin reuptake inhibitors (SSRIs) are the most widely used antidepressants, a significant proportion of depressed patients do not achieve remission with SSRIs. In this study, we show that a serotonin type 3 receptor (5HT3R) agonist induces antidepressant effects as well as hippocampal neurogenesis independent of fluoxetine (a commonly used SSRI). Notably, our histological analysis reveals that 5HT3R and insulin-like growth factor 1 (IGF1) are expressed in the same neurons in the subgranular zone of the hippocampal dentate gyrus. Furthermore, our in vivo microdialysis analysis shows that 5HT3R regulates hippocampal extracellular IGF1 levels, and we also show that 5HT3R-dependent hippocampal neurogenesis is mediated by increased IGF1 levels. Altogether, our findings suggest a novel 5HT3R–IGF1 mechanism that is distinct from fluoxetine-induced responses and that provides a new therapeutic target for depression, especially bringing significant benefits for SSRI-resistant depressed patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Fact sheets of WHO media centre: mental disorders. World Health Organization (reviewed in April 2016). Available at www.who.int/mediacentre/factsheets/fs396/en.

  2. Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L et al. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry 2006; 163: 28–40.

    Article  PubMed  Google Scholar 

  3. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA et al. Neurogenesis in the adult human hippocampus. Nat Med 1998; 4: 1313–1317.

    Article  CAS  PubMed  Google Scholar 

  4. Zhao C, Deng W, Gage FH . Mechanisms and functional implications of adult neurogenesis. Cell 2008; 132: 645–660.

    Article  CAS  PubMed  Google Scholar 

  5. Jacobs BL, van Praag H, Gage FH . Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol Psychiatry 2000; 5: 262–269.

    Article  CAS  PubMed  Google Scholar 

  6. Sahay A, Hen R . Adult hippocampal neurogenesis in depression. Nat Neurosci 2007; 10: 1110–1115.

    Article  CAS  PubMed  Google Scholar 

  7. Samuels BA, Hen R . Neurogenesis and affective disorders. Eur J Neurosci 2011; 33: 1152–1159.

    Article  PubMed  Google Scholar 

  8. Malberg JE, Eisch AJ, Nestler EJ, Duman RS . Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 2000; 20: 9104–9119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003; 301: 805–809.

    Article  CAS  PubMed  Google Scholar 

  10. Airan RD, Meltzer LA, Loy M, Gong Y, Chen H, Deisseroth K . High-speed imaging reveals neurophysiological links to behavior in an animal model of depression. Science 2007; 317: 819–823.

    Article  CAS  PubMed  Google Scholar 

  11. Samuels BA, Anacker C, Hu A, Levinstein MR, Pickenhagen A, Tsetsenis T et al. 5-HT1A receptors on mature dentate gyrus granule cells are critical for the antidepressant response. Nat Neurosci 2015; 18: 1606–1616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Morales M, Bloom FE . The 5-HT3 receptor is present in different subpopulations of GABAergic neurons in the rat telencephalon. J Neurosci 1997; 17: 3157–3167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Staubli U, Xu FB . Effects of 5-HT3 receptor antagonism on hippocampal theta rhythm, memory, and LTP induction in the freely moving rat. J Neurosci 1995; 15: 2445–2452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kondo M, Nakamura Y, Ishida Y, Yamada T, Shimada S . The 5-HT3 A receptor is essential for fear extinction. Learn Mem 2014; 21: 1–4.

    CAS  PubMed Central  Google Scholar 

  15. Cotman CW, Berchtold NC, Christie LA . Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci 2007; 30: 464–472.

    Article  CAS  PubMed  Google Scholar 

  16. van Praag H, Kempermann G, Gage FH . Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 1999; 2: 266–270.

    Article  CAS  PubMed  Google Scholar 

  17. Kondo M, Nakamura Y, Ishida Y, Shimada S . The 5-HT3 receptor is essential for exercise-induced hippocampal neurogenesis and antidepressant effects. Mol Psychiatry 2015; 20: 1428–1437.

    Article  CAS  PubMed  Google Scholar 

  18. Zeitz KP, Guy N, Malmberg AB, Dirajlal S, Martin WJ, Sun L et al. The 5-HT3 subtype of serotonin receptor contributes to nociceptive processing via a novel subset of myelinated and unmyelinated nociceptors. J Neurosci 2002; 22: 1010–1019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chittajallu R, Craig MT, McFarland A, Yuan X, Gerfen S, Tricoire L et al. Dual origins of functionally distinct O-LM interneurons revealed by differential 5-HT3AR expression. Nat Neurosci 2013; 16: 1598–1607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee S, Hjerling-Leffler J, Zagha E, Fishell G, Rudy B . The Largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors. J Neurosci 2010; 30: 16796–16808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vucurovic K, Gallopin T, Ferezou I, Rancillac A, Chameau P, van Hooft JA et al. Serotonin 3A receptor subtype as an early and protracted marker of cortical interneuron subpopulations. Cereb Cortex 2010; 20: 2333–2347.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Koyama Y, Kondo M, Shimada S . Building a 5-HT3A receptor expression map in the mouse brain. Sci Rep 2017; 7: 42884.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bachy A, Heaulme M, Giudice A, Michaud JC, Lefevre IA, Souilhac J et al. SR 57227 A: a potent and selective agonist at central and peripheral 5-HT3 receptors in vitro and in vivo. Eur J Pharmacol 1993; 237: 299–309.

    Article  CAS  PubMed  Google Scholar 

  24. Koran LM, Cain JW, Dominguez RA, Rush AJ, Thiemann S . Are fluoxetine plasma levels related to outcome in obsessive-compulsive disorder? Am J Psychiatry 1996; 153: 1450–1454.

    Article  CAS  PubMed  Google Scholar 

  25. Dulawa SC, Holick KA, Gundersen B, Hen R . Effects of chronic fluoxetine in animal models of anxiety and depression. Neuropsychopharmacology 2004; 29: 1321–1330.

    Article  CAS  PubMed  Google Scholar 

  26. Tanti A, Westphal WP, Girault V, Brizard B, Devers S, Lequisquet AM et al. Region-dependent and stage-specific effects of stress, environmental enrichment, and antidepressant treatment on hippocampal neurogenesis. Hippocampus 2013; 23: 797–811.

    Article  CAS  PubMed  Google Scholar 

  27. Kondo M, Takei Y, Hirokawa N . Motor protein KIF1A is essential for hippocampal synaptogenesis and learning enhancement in an enriched environment. Neuron 2012; 73: 743–757.

    Article  CAS  PubMed  Google Scholar 

  28. Franklin KBJ, Paxinos G . The Mouse Brain in Stereotaxic Coordinates, 3rd edn. Academic Press: New York, 2007.

    Google Scholar 

  29. Koyama Y, Hattori T, Shimizu S, Taniguchi M, Yamada K, Takamura H et al. DBZ (DISC1-binding zinc finger protein)-deficient mice display abnormalities in basket cells in the somatosensory cortices. J Chem Neuroanat 2013; 53: 1–10.

    Article  CAS  PubMed  Google Scholar 

  30. Takeda S, Sato N, Ikimura K, Nishino H, Rakugi H, Morishita R . Novel microdialysis method to assess neuropeptides and large molecules in free-moving mouse. Neuroscience 2011; 186: 110–119.

    Article  CAS  PubMed  Google Scholar 

  31. Poncelet M, Perio A, Simiand J, Gout G, Soubrie P, Fur GL . Antidepressant-like effects of SR 57227 A, a 5-HT3 receptor agonist, in rodents. J Neural Transm Gen Sect 1995; 102: 83–90.

    Article  CAS  PubMed  Google Scholar 

  32. Jiang W, Zhang Y, Xiao L, Cleemput JV, Ji SP, Bai G et al. Cannabinoids promotes embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects. J Clin Invest 2005; 115: 3104–3116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li Y, Luikart BW, Birnbaum S, Chen J, Kwon CH, Kernie SG et al. TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment. Neuron 2008; 59: 399–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. van Praag H, Schinder AF, Christile BR, Toni N, Palmer TD, Gage FH . Functional neurogenesis in the adult hippocampus. Nature 2002; 415: 1030–1034.

    Article  CAS  PubMed  Google Scholar 

  35. Aberg MA, Aberg ND, Palmer TD, Alborn AM, Carlsson-Skwirut C, Bang P et al. IGF-1 has a direct proliferative effect in adult hippocampal progenitor cells. Mol Cell Neurosci 2003; 24: 23–40.

    Article  CAS  PubMed  Google Scholar 

  36. Hoshaw BA, Malberg JE, Lucki I . Central administration of IGF-1 and BDNF leads to long-lasting antidepressant-like effects. Brain Res 2005; 1037: 204–208.

    Article  CAS  PubMed  Google Scholar 

  37. Bondy C, Werner H, Roberts CT, LeRoith D . Cellular pattern of type-1 insulin-like growth factor receptor gene expression during maturation of the rat brain: comparison with insulin-like growth factors 1 and 2. Neuroscience 1992; 46: 909–923.

    Article  CAS  PubMed  Google Scholar 

  38. Moser MB, Moser EI . Functional differentiation in the hippocampus. Hippocampus 1998; 8: 608–619.

    Article  CAS  PubMed  Google Scholar 

  39. Fanselow MS, Dong HW . Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 2010; 65: 7–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kheirbek MA, Hen R . Dorsal vs ventral hippocampal neurogenesis: implications for cognition and mood. Neuropsychopharmacology 2011; 36: 373–374.

    Article  PubMed  Google Scholar 

  41. Tanti A, Belzung C . Neurogenesis along the septo-temporal axis of the hippocampus: are depression and the action of antidepressants region-specific? Neuroscience 2013; 252: 234–252.

    Article  CAS  PubMed  Google Scholar 

  42. Mohammad H, Marchisella F, Ortega-Martinez S, Hollos P, Eerola K, Komulainen E et al. JNK1 controls adult hippocampal neurogenesis and imposes cell-autonomous control of anxiety behavior from the neurogenic niche. Mol Psychiatry 2016 e-pub ahead of print 15 November 2016; doi:10.1038/mp.2016.203.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Banasr M, Soumier A, Hery M, Mocaer E, Daszuta A . Agomelatine, a new antidepressant, induces regional changes in hippocampal neurogenesis. Biol Psychiatry 2006; 59: 1087–1096.

    Article  CAS  PubMed  Google Scholar 

  44. Boldrini M, Underwood MD, Hen R, Rosoklija GB, Dwork AJ, Mann JJ et al. Antidepressants increase neural progenitor cells in the human hippocampus. Neuropsychopharmacology 2009; 34: 2376–2389.

    Article  CAS  PubMed  Google Scholar 

  45. Brooker SM, Gobeske KT, Chen J, Peng CY, Kessler JA . Hippocampal bone morphogenetic protein signaling mediates behavioral effects of antidepressant treatment. Mol Psychiatry 2016 e-pub ahead of print 4 October 2016; doi:10.1038/mp.2016.160.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jiang W, Zhang Y, Xiao L, Van Cleemput J, Ji SP, Bai G et al. Cannabinoids promotes embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects. J Clin Invest 2005; 115: 3104–3116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang JW, David DJ, Monckton JE, Battaglia F, Hen R . Chronic fluoxetine stimulates maturation and synaptic plasticity of adult-born hippocampal granule cells. J Neurosci 2008; 28: 1374–1384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Berton O, Nestler EJ . New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci 2006; 7: 137–151.

    Article  CAS  PubMed  Google Scholar 

  49. Castren E, Voikar V, Rantamaki T . Role of neurotrophic factors in depression. Curr Opin Pharmacol 2007; 7: 18–21.

    Article  CAS  PubMed  Google Scholar 

  50. Yan YP, Sailor KA, Vemuganti R, Dempsey RJ . Insulin-like growth factor-1 is an endogeneous mediator of focal ischemia-induced neural progenitor proliferation. Eur J Neurosci 2006; 24: 45–54.

    Article  PubMed  Google Scholar 

  51. Zhang J, Moats-Staats BM, Ye P, D’Ercole AJ . Expression of insulin-like growth factor system genes during the early postnatal neurogenesis in the mouse hippocampus. J Neurosci Res 2007; 85: 1618–1627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lichtenwalner RJ, Forbes ME, Bennett SA, Lynch CD, Sonntag WE, Riddle DR . Intracerebroventricular infusion of insulin-like growth factor-1 ameliorates the age-related decline in hippocampal neurogenesis. Neuroscience 2001; 107: 603–613.

    Article  CAS  PubMed  Google Scholar 

  53. Anderson MF, Aberg MAI, Nilsson M, Eriksson PS . Insulin-like growth factor-1 and neurogenesis in the adult mammalian brain. Brain Res Dev Brain Res 2002; 134: 115–122.

    Article  CAS  PubMed  Google Scholar 

  54. Malberg J, Platt B, Rizzo SJS, Ring RH, Lucki I, Schechter LE et al. Increasing the levels of insulin-like growth factor-1 by an IGF binding protein inhibitor produces anxiolytic and antidepressant-like effects. Neuropsychopharmacology 2007; 32: 2360–2368.

    Article  CAS  PubMed  Google Scholar 

  55. Park SE, Dantzer R, Kelley KW, McCusker RH . Central administration of insulin-like growth factor-1 decreases depressive-like behavior and brain cytokine expression in mice. J Neuroinflammation 2011; 8: 12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tanaka KF, Samuels BA, Hen R . Serotonin receptor expression along the dorsal-ventral axis of mouse hippocampus. Philos Trans R Soc Lond B Biol Sci 2012; 367: 2395–2401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tecott LH, Maricq AV, Julius D . Nervous system distribution of the serotonin 5-HT3 receptor mRNA. Proc Natl Acad Sci USA 1993; 90: 1430–1434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Morales M, Battenberg E, de Lecea L, Sanna PP, Bloom FE . Cellular and subcellular immunolocalization of the type 3 serotonin receptor in the rat central nervous system. Mol Brain Res 1996; 36: 251–260.

    Article  CAS  PubMed  Google Scholar 

  59. Morales M, Battenberg E, de Lecea L, Bloom FE . The type 3 serotonin receptor is expressed in a subpopulation of GABAergic neurons in the rat neocortex and hippocampus. Brain Res 1996; 731: 199–202.

    Article  CAS  PubMed  Google Scholar 

  60. Inta D, Alfonso J, von Engelhardt J, Kreuzberg MM, Meyer AH, van Hooft JA et al. Neurogenesis and widespread forebrain migration of distinct GABAergic neurons from the postnatal subventricular zone. Proc Natl Acad Sci USA 2008; 105: 20994–20999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Martin P, Gozlan H, Puech AJ . 5-HT3 receptor antagonists reverse helpless behavior rats. Eur J Pharmacol 1992; 212: 73–78.

    Article  CAS  PubMed  Google Scholar 

  62. Ramamoorthy R, Radhakrishnan M, Borah M . Antidepressant-like effects of serotonin type-3 antagonist, ondansetron: an investigation in behavior-based rodent models. Behav Pharmacol 2008; 19: 29–40.

    Article  CAS  PubMed  Google Scholar 

  63. Gupta D, Prabhakar V, Radhakrishnan M . 5HT3 receptors: target for new antidepressant drugs. Neurosci Biobehav Rev 2016; 64: 311–325.

    Article  CAS  PubMed  Google Scholar 

  64. Shimizu K, Kurosawa N, Seki K . The role of the AMPA receptor and 5-HT3 receptor on aggressive behavior and depressive-like symptoms in chronic social isolation-reared mice. Physiol Behav 2016; 153: 70–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Japan Society for the Promotion of Science KAKENHI (No. 16K19764), the Mochida Memorial Foundation for Medical and Pharmaceutical Research, the Senri Life Science Foundation, the Nakajima Foundation, the Japan Health Foundation, Takeda Science Foundation, SENSHIN Medical Research Foundation, Life Science Foundation of Japan, the Uehara Memorial Foundation and Public Health Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Kondo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondo, M., Koyama, Y., Nakamura, Y. et al. A novel 5HT3 receptor–IGF1 mechanism distinct from SSRI-induced antidepressant effects. Mol Psychiatry 23, 833–842 (2018). https://doi.org/10.1038/mp.2017.87

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2017.87

This article is cited by

Search

Quick links