Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Brain-derived neurotrophic factor Val66Met genotype and ovarian steroids interactively modulate working memory-related hippocampal function in women: a multimodal neuroimaging study

Abstract

Preclinical evidence suggests that the actions of ovarian steroid hormones and brain-derived neurotrophic factor (BDNF) are highly convergent on brain function. Studies in humanized mice document an interaction between estrus cycle-related changes in estradiol secretion and BDNF Val66Met genotype on measures of hippocampal function and anxiety-like behavior. We believe our multimodal imaging data provide the first demonstration in women that the effects of the BDNF Val/Met polymorphism on hippocampal function are selectively modulated by estradiol. In a 6-month pharmacological hormone manipulation protocol, healthy, regularly menstruating, asymptomatic women completed positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) scans while performing the n-back working memory task during three hormone conditions: ovarian suppression induced by the gonadotropin-releasing hormone agonist, leuprolide acetate; leuprolide plus estradiol; and leuprolide plus progesterone. For each of the three hormone conditions, a discovery data set was obtained with oxygen-15 water regional cerebral blood flow PET in 39 healthy women genotyped for BDNF Val66Met, and a confirmatory data set was obtained with fMRI in 27 women. Our results, in close agreement across the two imaging platforms, demonstrate an ovarian hormone-by-BDNF interaction on working memory-related hippocampal function (PET: F2,37=9.11, P=0.00026 uncorrected, P=0.05, familywise error corrected with small volume correction; fMRI: F2,25=5.43, P=0.01, uncorrected) that reflects differential hippocampal recruitment in Met carriers but only in the presence of estradiol. These findings have clinical relevance for understanding the neurobiological basis of individual differences in the cognitive and behavioral effects of ovarian steroids in women, and may provide a neurogenetic framework for understanding neuropsychiatric disorders related to reproductive hormones as well as illnesses with sex differences in disease expression and course.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Schiller CE, Johnson AL, Abate AC, Schmidt PJ, Rubinow DR . Reproductive steroid regulation of mood and behavior. Compr Physiol 2016; 6: 1135–1160.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jacobs E, D'Esposito M . Estrogen shapes dopamine-dependent cognitive processes: implications for women's health. J Neurosci 2011; 31: 5286–5293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Epperson CN, Bale TL . BDNF Val66Met polymorphism and brain-derived neurotrophic factor levels across the female life span: implications for the sex bias in affective disorders. Biol Psychiatry 2012; 72: 434–436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pilgrim C, Hutchison JB . Developmental regulation of sex-differences in the brain - can the role of gonadal-steroids be redefined. Neuroscience 1994; 60: 843–855.

    Article  CAS  PubMed  Google Scholar 

  5. Huang EJ, Reichardt LF . Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 2001; 24: 677–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ninan I, Bath KG, Dagar K, Perez-Castro R, Plummer MR, Lee FS et al. The BDNF Val66Met polymorphism impairs NMDA receptor-dependent synaptic plasticity in the hippocampus. J Neurosci 30: 8866–8870.

    Article  CAS  PubMed  Google Scholar 

  7. Yang F, Je HS, Ji YY, Nagappan G, Hempstead B, Lu B . Pro-BDNF-induced synaptic depression and retraction at developing neuromuscular synapses. J Cell Biol 2009; 185: 727–741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ji YY, Lu Y, Yang F, Shen WH, Tang TTT, Feng LY et al. Acute and gradual increases in BDNF concentration elicit distinct signaling and functions in neurons. Nat Neurosci 2010; 13: 302–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tyler WJ, Pozzo-Miller L . Miniature synaptic transmission and BDNF modulate dendritic spine growth and form in rat CA1 neurones. J Physiol 2003; 553: 497–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Berman KF, Schmidt PJ, Rubinow DR, Danaceau MA, VanHorn JD, Esposito G et al. Modulation of cognition-specific cortical activity by gonadal steroids: a positron-emission tomography study in women. Proc Natl Acad Sci USA 1997; 94: 8836–8841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wei S-M, Eisenberg DP, Kohn PD, Kippenhan JS, Kolachana BS, Weinberger DR et al. Brain-derived neurotrophic factor Val(66)Met polymorphism affects resting regional cerebral blood flow and functional connectivity differentially in women versus men. J Neurosci 2012; 32: 7074–7081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 2003; 112: 257–269.

    Article  CAS  PubMed  Google Scholar 

  13. Lu B . BDNF and activity-dependent synaptic modulation. Learn Mem 2003; 10: 86–98.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Luine VN, Jacome LF, Maclusky NJ . Rapid enhancement of visual and place memory by estrogens in rats. Endocrinology 2003; 144: 2836–2844.

    Article  CAS  PubMed  Google Scholar 

  15. Murer MG, Yan Q, Raisman-Vozari R . Brain-derived neurotrophic factor in the control human brain, and in Alzheimer's disease and Parkinson's disease. Prog Neurobiol 2001; 63: 71–124.

    Article  CAS  PubMed  Google Scholar 

  16. Miranda RC, Sohrabji F, Toranallerand CD . Neuronal colocalization of messenger-rnas for neurotrophins and their receptors in the developing central-nervous-system suggests a potential for autocrine interactions. Proc Natl Acad Sci USA 1993; 90: 6439–6443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gibbs RB . Estrogen replacement enhances acquisition of a spatial memory task and reduces deficits associated with hippocampal muscarinic receptor inhibition. Horm Behav 1999; 36: 222–233.

    Article  CAS  PubMed  Google Scholar 

  18. Sohrabji F, Miranda RCG, Toranallerand CD . Identification of a putative estrogen response element in the gene encoding brain-derived neurotrophic factor. Proc Natl Acad Sci USA 1995; 92: 11110–11114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shimizu E, Hashimoto K, Iyo M . Ethnic difference of the BDNF 196G/A (val66met) polymorphism frequencies: the possibility to explain ethnic mental traits. Am J Med Genet B 2004; 126B: 122–123.

    Article  Google Scholar 

  20. Chen ZY, Patel PD, Sant G, Meng CX, Teng KK, Hempstead BL et al. Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. J Neurosci 2004; 24: 4401–4411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hariri AR, Goldberg TE, Mattay VS, Kolachana BS, Callicott JH, Egan MF et al. Brain-derived neurotrophic factor val(66)met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J Neurosci 2003; 23: 6690–6694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wei S-M, Eisenberg DP, Nabel KG, Kohn PD, Kippenhan JS, Dickinson D et al. Brain-derived neurotrophic factor Val66Met polymorphism affects the relationship between an anxiety-related personality trait and resting regional cerebral blood flow. Cereb Cortex 2016; bhw072; doi: 10.1093/cercor/bhw072.

  23. Spencer JL, Waters EM, Milner TA, Lee FS, McEwen BS . BDNF variant Val66Met interacts with estrous cycle in the control of hippocampal function. Proc Natl Acad Sci USA 2010; 107: 4395–4400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bath KG, Chuang J, Spencer-Segal JL, Amso D, Altemus M, McEwen BS et al. Variant brain-derived neurotrophic factor (Valine66Methionine) polymorphism contributes to developmental and estrous stage-specific expression of anxiety-like behavior in female mice. Biol Psychiatry 2012; 72: 499–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Braver TS, Cohen JD, Nystrom LE, Jonides J, Smith EE, Noll DC . A parametric study of prefrontal cortex involvement in human working memory. Neuroimage 1997; 5: 49–62.

    Article  CAS  PubMed  Google Scholar 

  26. Owen AM, McMillan KM, Laird AR, Bullmore E . N-back working memory paradigm: A meta-analysis of normative functional neuroimaging. Hum Brain Mapp 2005; 25: 46–59.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Eriksson J, Vogel EK, Lansner A, Bergstrom F, Nyberg L . Neurocognitive architecture of working memory. Neuron 2015; 88: 33–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Olson IR, Page K, Moore KS, Chatterjee A, Verfaellie M . Working memory for conjunctions relies on the medial temporal lobe. J Neurosci 2006; 26: 4596–4601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hartley T, Bird CM, Chan D, Cipolotti L, Husain M, Vargha-Khadem F et al. The hippocampus is required for short-term topographical memory in humans. Hippocampus 2007; 17: 34–48.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ezzyat Y, Olson I . The medial temporal lobe and visual working memory: comparisons across tasks, delays, and visual similarity. Cogn Affect Behav Neurosci 2008; 8: 32–40.

    Article  PubMed  Google Scholar 

  31. Axmacher N, Mormann F, Fernandez G, Cohen MX, Elger CE, Fell J . Sustained neural activity patterns during working memory in the human medial temporal lobe. J Neurosci 2007; 27: 7807–7816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bahner F, Demanuele C, Schweiger J, Gerchen MF, Zamoscik V, Ueltzhoffer K et al. Hippocampal-dorsolateral prefrontal coupling as a species-conserved cognitive mechanism: a Human Translational Imaging Study. Neuropsychopharmacology 2015; 40: 1674–1681.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cousijn H, Rijpkema M, Qin SZ, van Wingen GA, Fernandez G . Phasic deactivation of the medial temporal lobe enables working memory processing under stress. Neuroimage 2012; 59: 1161–1167.

    Article  PubMed  Google Scholar 

  34. Finn AS, Sheridan MA, Kam CLH, Hinshaw S, D'Esposito M . Longitudinal evidence for functional specialization of the neural circuit supporting working memory in the human brain. J Neurosci 2010; 30: 11062–11067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dixson L, Walter H, Schneider M, Erk S, Schafer A, Haddad L et al. Identification of gene ontologies linked to prefrontal-hippocampal functional coupling in the human brain. Proc Natl Acad Sci USA 2014; 111: 9657–9662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McEvoy LK, Smith ME, Gevins A . Dynamic cortical networks of verbal and spatial working memory: effects of memory load and task practice. Cereb Cortex 1998; 8: 563–574.

    Article  CAS  PubMed  Google Scholar 

  37. Gradin V, Gountouna VE, Waiter G, Ahearn TS, Brennan D, Condon B et al. Between- and within-scanner variability in the CaliBrain study n-back cognitive task. Psychiatry Res Neuroimaging 2010; 184: 86–95.

    Article  Google Scholar 

  38. Baller EB, Wei SM, Kohn PD, Rubinow DR, Alarcon G, Schmidt PJ et al. Abnormalities of dorsolateral prefrontal function in women with premenstrual dysphoric disorder: a Multimodal Neuroimaging Study. Am J Psychiatry 2013; 170: 305–314.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Beck AT, Erbaugh J, Ward CH, Mock J, Mendelsohn M . An inventory for measuring depression. Arch Gen Psychiatry 1961; 4: 561–571.

    Article  CAS  PubMed  Google Scholar 

  40. Axmacher N, Elger CE, Fell J . Working memory-related hippocampal deactivation interferes with long-term memory formation. J Neurosci 2009; 29: 1052–1060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Meyer-Lindenberg A, Poline JB, Kohn PD, Holt JL, Egan MF, Weinberger DR et al. Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. Am J Psychiatry 2001; 158: 1809–1817.

    Article  CAS  PubMed  Google Scholar 

  42. Rajkowska G, Goldmanrakic PS . Cytoarchitectonic definition of prefrontal areas in the normal human cortex.2. Variability in locations of areas 9 and 46 and relationship to the Talairach Coordinate System. Cereb Cortex 1995; 5: 323–337.

    Article  CAS  PubMed  Google Scholar 

  43. Pluta J, Avants BB, Glynn S, Awate S, Gee JC, Detre JA . Appearance and incomplete label matching for diffeomorphic template based hippocampus segmentation. Hippocampus 2009; 19: 565–571.

    Article  PubMed  Google Scholar 

  44. Yeo BTT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 2011; 106: 1125–1165.

    Article  PubMed  Google Scholar 

  45. Cohen J . Statistical Power Analysis for the Behavioral Sciences (2nd Edition). Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1988.

    Google Scholar 

  46. Faul F, Erdfelder E, Buchner A, Lang AG . Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav Res Methods 2009; 41: 1149–1160.

    Article  PubMed  Google Scholar 

  47. Faul F, Erdfelder E, Lang AG, Buchner A . G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 2007; 39: 175–191.

    Article  PubMed  Google Scholar 

  48. Pike GB . Quantitative functional MRI: concepts, issues and future challenges. Neuroimage 2012; 62: 1234–1240.

    Article  PubMed  Google Scholar 

  49. Scharfman HE, MacLusky NJ . Estrogen and brain-derived neurotrophic factor (BDNF) in hippocampus: complexity of steroid hormone-growth factor interactions in the adult CNS. Front Neuroendocrinol 2006; 27: 415–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Spencer JL, Waters EM, Romeo RD, Wood GE, Milner TA, McEwen BS . Uncovering the mechanisms of estrogen effects on hippocampal function. Front Neuroendocrinol 2008; 29: 219–237.

    Article  CAS  PubMed  Google Scholar 

  51. Henderson CE . Role of neurotrophic factors in neuronal development. Curr Opin Neurobiol 1996; 6: 64–70.

    Article  CAS  PubMed  Google Scholar 

  52. Benraiss A, Chmielnicki E, Lerner K, Roh D, Goldman SA . Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J Neurosci 2001; 21: 6718–6731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Resnick SM, Maki PM, Golski S, Kraut MA, Zonderman AB . Effects of estrogen replacement therapy on PET cerebral blood flow and neuropsychological performance. Horm Behav 1998; 34: 171–182.

    Article  CAS  PubMed  Google Scholar 

  54. Maki PM, Resnick SM . Longitudinal effects of estrogen replacement therapy on PET cerebral blood flow and cognition. Neurobiol Aging 2000; 21: 373–383.

    Article  CAS  PubMed  Google Scholar 

  55. Mulnard RI, Cotman CW, Kawas C, van Dyck CH, Sano H, Doody R et al. Estrogen replacement therapy for treatment of mild to moderate Alzheimer disease - a randomized controlled trial. JAMA 2000; 283: 1007–1015.

    Article  CAS  PubMed  Google Scholar 

  56. Hogervorst E, Yaffe K, Richards M, Huppert F . Hormone replacement therapy for cognitive function in postmenopausal women (Review). Cochrane Database Syst Rev 2002; CD003122.

  57. Rapp SR, Espeland MA, Shumaker SA, Henderson VW, Brunner RL, Manson JE et al. Effect of estrogen plus progestin on global cognitive function in postmenopausal women - The Women's Health Initiative Memory Study: a randomized controlled trial. JAMA 2003; 289: 2663–2672.

    Article  CAS  PubMed  Google Scholar 

  58. Espeland MA, Rapp SR, Shumaker SA, Brunner R, Manson JE, Sherwin BB et al. Conjugated equine estrogens and global cognitive function in postmenopausal women - Women's Health Initiative Memory Study. JAMA 2004; 291: 2959–2968.

    Article  CAS  PubMed  Google Scholar 

  59. Shumaker SA, Legault C, Kuller L, Rapp SR, Thal L, Lane DS et al. Conjugated equine estrogens and incidence of probable dementia and mild cognitive impairment in postmenopausal women - Women's Health Initiative Memory Study. JAMA 2004; 291: 2947–2958.

    Article  CAS  PubMed  Google Scholar 

  60. Shumaker SA, Legault C, Rapp SR, Thal L, Wallace RB, Ockene JK et al. Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women - The Women's Health Initiative Memory Study: a randomized controlled trial. JAMA 2003; 289: 2651–2662.

    Article  CAS  PubMed  Google Scholar 

  61. Low LF, Anstey KJ . Hormone replacement therapy and cognitive performance in postmenopausal women - a review by cognitive domain. Neurosci Biobehav Rev 2006; 30: 66–84.

    Article  CAS  PubMed  Google Scholar 

  62. Yaffe K, Vittinghoff E, Ensrud KE, Johnson KC, Diem S, Hanes V et al. Effects of ultra-low-dose transdermal estradiol on cognition and health-related quality of life. Arch Neurol 2006; 63: 945–950.

    Article  PubMed  Google Scholar 

  63. Lethaby A, Hogervorst E, Richards M, Yesufu A, Yaffe K . Hormone replacement therapy for cognitive function in postmenopausal women. Cochrane Database Syst Rev 2008; CD003122.

  64. Korol DL, Kolo LL . Estrogen-induced changes in place and response learning in young adult female rats. Behav Neurosci 2002; 116: 411–420.

    Article  CAS  PubMed  Google Scholar 

  65. Zurkovsky L, Brown SL, Boyd SE, Fell JA, Korol DL . Estrogen modulates learning in female rats by acting directly at distinct memory systems. Neuroscience 2007; 144: 26–37.

    Article  CAS  PubMed  Google Scholar 

  66. Wu YWC, Du X, van den Buuse M, Hill RA . Analyzing the influence of BDNF heterozygosity on spatial memory response to 17 beta-estradiol. Transl Psychiatry 2015; 5: 10.

    Article  CAS  Google Scholar 

  67. Grigorova M, Sherwin BB . No differences in performance on test of working memory and executive functioning between healthy elderly postmenopausal women using or not using hormone therapy. Climacteric 2006; 9: 181–194.

    Article  CAS  PubMed  Google Scholar 

  68. Owens JF, Matthews KA, Everson SA . Cognitive function effects of suppressing ovarian hormones in young women. Menopause 2002; 9: 227–235.

    Article  PubMed  Google Scholar 

  69. Hampson E, Morley EE . Estradiol concentrations and working memory performance in women of reproductive age. Psychoneuroendocrinology 2013; 38: 2897–2904.

    Article  CAS  PubMed  Google Scholar 

  70. Singh M, Meyer EM, Simpkins JW . The effect of ovariectomy and estradiol replacement on brain-derived neurotrophic factor messenger-ribonucleic-acid expression in cortical and hippocampal brain-regions of female Sprague-Dawley rats. Endocrinology 1995; 136: 2320–2324.

    Article  CAS  PubMed  Google Scholar 

  71. Gonzalez SL, Labombarda F, Deniselle MCG, Guennoun R, Schumacher M, De Nicola AF . Progesterone up-regulates neuronal brain-derived neurotrophic factor expression in the injured spinal cord. Neuroscience 2004; 125: 605–614.

    Article  CAS  PubMed  Google Scholar 

  72. Kaur P, Jodhka PK, Underwood WA, Bowles CA, de Fiebre NC, de Fiebre CM et al. Progesterone increases brain-derived neurotrophic factor expression and protects against glutamate toxicity in a mitogen-activated protein kinase- and phosphoinositide-3 kinase-dependent manner in cerebral cortical explants. J Neurosci Res 2007; 85: 2441–2449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rosner W, Hankinson SE, Sluss PM, Vesper HW, Wierman ME . Challenges to the measurement of estradiol: an endocrine society position statement. J Clin Endocrinol Metab 2013; 98: 1376–1387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the National Institutes of Health 2013 Bench-to-Bedside award program (290698), the Positron Emission Tomography Department, and the Functional Magnetic Resonance Imaging Core Facility of the National Institutes of Health for their help and support. This research was supported by the Intramural Research Program of the National Institute of Mental Health, National Institutes of Health; NIH protocols: NCT00004571, NCT00001258 and NCT00001322; NIMH project #: ZIAMH002717 and ZIAMH002874.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K F Berman.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, SM., Baller, E., Kohn, P. et al. Brain-derived neurotrophic factor Val66Met genotype and ovarian steroids interactively modulate working memory-related hippocampal function in women: a multimodal neuroimaging study. Mol Psychiatry 23, 1066–1075 (2018). https://doi.org/10.1038/mp.2017.72

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2017.72

This article is cited by

Search

Quick links