Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Epigenetic programming by stress and glucocorticoids along the human lifespan

Abstract

Psychosocial stress triggers a set of behavioral, neural, hormonal, and molecular responses that can be a driving force for survival when adaptive and time-limited, but may also contribute to a host of disease states if dysregulated or chronic. The beneficial or detrimental effects of stress are largely mediated by the hypothalamic-pituitary axis, a highly conserved neurohormonal cascade that culminates in systemic secretion of glucocorticoids. Glucocorticoids activate the glucocorticoid receptor, a ubiquitous nuclear receptor that not only causes widespread changes in transcriptional programs, but also induces lasting epigenetic modifications in many target tissues. While the epigenome remains sensitive to stressors throughout life, we propose two key principles that may govern the epigenetics of stress and glucocorticoids along the lifespan: first, the presence of distinct life periods, during which the epigenome shows heightened plasticity to stress exposure, such as in early development and at advanced age; and, second, the potential of stress-induced epigenetic changes to accumulate throughout life both in select chromatin regions and at the genome-wide level. These principles have important clinical and translational implications, and they show striking parallels with the existence of sensitive developmental periods and the cumulative impact of stressful experiences on the development of stress-related phenotypes. We hope that this conceptual mechanistic framework will stimulate fruitful research that aims at unraveling the molecular pathways through which our life stories sculpt genomic function to contribute to complex behavioral and somatic phenotypes.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1
Figure 2

References

  1. 1

    Telese F, Gamliel A, Skowronska-Krawczyk D, Garcia-Bassets I, Rosenfeld MG . ‘Seq-ing’ insights into the epigenetics of neuronal gene regulation. Neuron 2013; 77: 606–623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Zannas AS, West AE . Epigenetics and the regulation of stress vulnerability and resilience. Neuroscience 2014; 264: 157–170.

    Article  CAS  Google Scholar 

  3. 3

    Dias BG, Ressler KJ . Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat Neurosci 2014; 17: 89–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Gassen NC, Chrousos GP, Binder EB, Zannas AS . Life stress, glucocorticoid signaling, and the aging epigenome: Implications for aging-related diseases. Neurosci Biobehav Rev 2016 (in press).

  5. 5

    Talens RP, Boomsma DI, Tobi EW, Kremer D, Jukema JW, Willemsen G et al. Variation, patterns, and temporal stability of DNA methylation: considerations for epigenetic epidemiology. FASEB j 2010; 24: 3135–3144.

    Article  CAS  Google Scholar 

  6. 6

    Vockley CM, D'Ippolito AM, McDowell IC, Majoros WH, Safi A, Song L et al. Direct GR Binding Sites Potentiate Clusters of TF Binding across the Human Genome. Cell 2016; 166: 1269–1281.e1219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Klengel T, Mehta D, Anacker C, Rex-Haffner M, Pruessner JC, Pariante CM et al. Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat Neurosci 2013; 16: 33–41.

    Article  CAS  Google Scholar 

  8. 8

    Wiench M, John S, Baek S, Johnson TA, Sung MH, Escobar T et al. DNA methylation status predicts cell type-specific enhancer activity. EMBO j 2011; 30: 3028–3039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Thomassin H, Flavin M, Espinas ML, Grange T . Glucocorticoid-induced DNA demethylation and gene memory during development. EMBO j 2001; 20: 1974–1983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Zannas AS, Arloth J, Carrillo-Roa T, Iurato S, Roh S, Ressler KJ et al. Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling. Genome Biol 2015; 16: 266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Bose R, Moors M, Tofighi R, Cascante A, Hermanson O, Ceccatelli S . Glucocorticoids induce long-lasting effects in neural stem cells resulting in senescence-related alterations. Cell Death Dis 2010; 1: e92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Bose R, Spulber S, Kilian P, Heldring N, Lonnerberg P, Johnsson A et al. Tet3 mediates stable glucocorticoid-induced alterations in DNA methylation and Dnmt3a/Dkk1 expression in neural progenitors. Cell Death Dis 2015; 6: e1793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Resmini E, Santos A, Aulinas A, Webb SM, Vives-Gilabert Y, Cox O et al. Reduced DNA methylation of FKBP5 in Cushing's syndrome. Endocrine 2016; 54: 768–777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Niwa M, Jaaro-Peled H, Tankou S, Seshadri S, Hikida T, Matsumoto Y et al. Adolescent stress-induced epigenetic control of dopaminergic neurons via glucocorticoids. Science 2013; 339: 335–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Sawamura T, Klengel T, Armario A, Jovanovic T, Norrholm SD, Ressler KJ et al. Dexamethasone Treatment Leads to Enhanced Fear Extinction and Dynamic Fkbp5 Regulation in Amygdala. Neuropsychopharmacology 2015; 41: 832–846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Gassen NC, Fries GR, Zannas AS, Hartmann J, Zschocke J, Hafner K et al. Chaperoning epigenetics: FKBP51 decreases the activity of DNMT1 and mediates epigenetic effects of the antidepressant paroxetine. Sci Signal 2015; 8: ra119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Yang X, Ewald ER, Huo Y, Tamashiro KL, Salvatori R, Sawa A et al. Glucocorticoid-induced loss of DNA methylation in non-neuronal cells and potential involvement of DNMT1 in epigenetic regulation of Fkbp5. Biochem Biophys Res Commun 2012; 420: 570–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Benoit JD, Rakic P, Frick KM . Prenatal stress induces spatial memory deficits and epigenetic changes in the hippocampus indicative of heterochromatin formation and reduced gene expression. Behav Brain Res 2015; 281: 1–8.

    Article  CAS  Google Scholar 

  19. 19

    Dong E, Dzitoyeva SG, Matrisciano F, Tueting P, Grayson DR, Guidotti A . Brain-derived neurotrophic factor epigenetic modifications associated with schizophrenia-like phenotype induced by prenatal stress in mice. Biol Psychiatry 2015; 77: 589–596.

    Article  CAS  Google Scholar 

  20. 20

    Zannas AS, Chrousos GP . Glucocorticoid signaling drives epigenetic and transcription factors to induce key regulators of human parturition. Sci Signal 2015; 8: fs19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Di Stefano V, Wang B, Parobchak N, Roche N, Rosen T . RelB/p52-mediated NF-kappaB signaling alters histone acetylation to increase the abundance of corticotropin-releasing hormone in human placenta. Sci Signal 2015; 8: ra85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Dwivedi Y, Roy B, Lugli G, Rizavi H, Zhang H, Smalheiser NR . Chronic corticosterone-mediated dysregulation of microRNA network in prefrontal cortex of rats: relevance to depression pathophysiology. Transl Psychiatry 2015; 5: e682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Ko JY, Chuang PC, Ke HJ, Chen YS, Sun YC, Wang FS . MicroRNA-29a mitigates glucocorticoid induction of bone loss and fatty marrow by rescuing Runx2 acetylation. Bone 2015; 81: 80–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Ewald ER, Wand GS, Seifuddin F, Yang X, Tamashiro KL, Potash JB et al. Alterations in DNA methylation of Fkbp5 as a determinant of blood-brain correlation of glucocorticoid exposure. Psychoneuroendocrinology 2014; 44: 112–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Lee RS, Tamashiro KL, Yang X, Purcell RH, Harvey A, Willour VL et al. Chronic corticosterone exposure increases expression and decreases deoxyribonucleic acid methylation of Fkbp5 in mice. Endocrinology 2010; 151: 4332–4343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Yehuda R, Daskalakis NP, Bierer LM, Bader HN, Klengel T, Holsboer F et al. Holocaust Exposure Induced Intergenerational Effects on FKBP5 Methylation. Biol Psychiatry 2015; 80: 372–380.

    Article  CAS  Google Scholar 

  27. 27

    Montagud-Romero S, Montesinos J, Pascual M, Aguilar MA, Roger-Sanchez C, Guerri C et al. ‘Up-regulation of histone acetylation induced by social defeat mediates the conditioned rewarding effects of cocaine. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70: 39–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Rodgers AB, Morgan CP, Bronson SL, Revello S, Bale TL . Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J Neurosci 2013; 33: 9003–9012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Rodgers AB, Morgan CP, Leu NA, Bale TL . Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc Natl Acad Sci USA 2015; 112: 13699–13704.

    Article  CAS  Google Scholar 

  30. 30

    Mychasiuk R, Schmold N, Ilnytskyy S, Kovalchuk O, Kolb B, Gibb R . Prenatal bystander stress alters brain, behavior, and the epigenome of developing rat offspring. Dev Neurosci 2011; 33: 159–169.

    Article  CAS  Google Scholar 

  31. 31

    Xu L, Sun Y, Gao L, Cai YY, Shi SX . Prenatal restraint stress is associated with demethylation of corticotrophin releasing hormone (CRH) promoter and enhances CRH transcriptional responses to stress in adolescent rats. Neurochem Res 2014; 39: 1193–1198.

    Article  CAS  Google Scholar 

  32. 32

    Palma-Gudiel H, Cordova-Palomera A, Eixarch E, Deuschle M, Fananas L . Maternal psychosocial stress during pregnancy alters the epigenetic signature of the glucocorticoid receptor gene promoter in their offspring: a meta-analysis. Epigenetics 2015; 10: 893–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Boersma GJ, Lee RS, Cordner ZA, Ewald ER, Purcell RH, Moghadam AA et al. Prenatal stress decreases Bdnf expression and increases methylation of Bdnf exon IV in rats. Epigenetics 2014; 9: 437–447.

    Article  Google Scholar 

  34. 34

    Palacios-Garcia I, Lara-Vasquez A, Montiel JF, Diaz-Veliz GF, Sepulveda H, Utreras E et al. Prenatal stress down-regulates Reelin expression by methylation of its promoter and induces adult behavioral impairments in rats. PLoS ONE 2015; 10: e0117680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Mulligan CJ, D'Errico NC, Stees J, Hughes DA . Methylation changes at NR3C1 in newborns associate with maternal prenatal stress exposure and newborn birth weight. Epigenetics 2012; 7: 853–857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Cao-Lei L, Massart R, Suderman MJ, Machnes Z, Elgbeili G, Laplante DP et al. DNA methylation signatures triggered by prenatal maternal stress exposure to a natural disaster: Project Ice Storm. PLoS ONE 2014; 9: e107653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Schraut KG, Jakob SB, Weidner MT, Schmitt AG, Scholz CJ, Strekalova T et al. Prenatal stress-induced programming of genome-wide promoter DNA methylation in 5-HTT-deficient mice. Transl Psychiatry 2014; 4: e473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Winston JH, Li Q, Sarna SK . Chronic prenatal stress epigenetically modifies spinal cord BDNF expression to induce sex-specific visceral hypersensitivity in offspring. Neurogastroenterol Motil 2014; 26: 715–730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Monteleone MC, Adrover E, Pallares ME, Antonelli MC, Frasch AC, Brocco MA . Prenatal stress changes the glycoprotein GPM6A gene expression and induces epigenetic changes in rat offspring brain. Epigenetics 2014; 9: 152–160.

    Article  CAS  Google Scholar 

  40. 40

    Zucchi FC, Yao Y, Ward ID, Ilnytskyy Y, Olson DM, Benzies K et al. Maternal stress induces epigenetic signatures of psychiatric and neurological diseases in the offspring. PLoS ONE 2013; 8: e56967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Anier K, Malinovskaja K, Pruus K, Aonurm-Helm A, Zharkovsky A, Kalda A . Maternal separation is associated with DNA methylation and behavioural changes in adult rats. Eur Neuropsychopharmacol 2014; 24: 459–468.

    Article  CAS  Google Scholar 

  42. 42

    Doherty TS, Forster A, Roth TL . Global and gene-specific DNA methylation alterations in the adolescent amygdala and hippocampus in an animal model of caregiver maltreatment. Behav Brain Res 2016; 298 (Pt A): 55–61.

    Article  CAS  Google Scholar 

  43. 43

    Roth TL, Lubin FD, Funk AJ, Sweatt JD . Lasting epigenetic influence of early-life adversity on the BDNF gene. Biol Psychiatry 2009; 65: 760–769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Weaver IC, Cervoni N, Champagne FA, D'Alessio AC, Sharma S, Seckl JR et al. Epigenetic programming by maternal behavior. Nat Neurosci 2004; 7: 847–854.

    Article  CAS  Google Scholar 

  45. 45

    Tyrka AR, Price LH, Marsit C, Walters OC, Carpenter LL . Childhood adversity and epigenetic modulation of the leukocyte glucocorticoid receptor: preliminary findings in healthy adults. PLoS ONE 2012; 7: e30148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Houtepen LC, Vinkers CH, Carrillo-Roa T, Hiemstra M, van Lier PA, Meeus W et al. Genome-wide DNA methylation levels and altered cortisol stress reactivity following childhood trauma in humans. Nat Commun 2016; 7: 10967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Ouellet-Morin I, Wong CC, Danese A, Pariante CM, Papadopoulos AS, Mill J et al. Increased serotonin transporter gene (SERT) DNA methylation is associated with bullying victimization and blunted cortisol response to stress in childhood: a longitudinal study of discordant monozygotic twins. Psychol Med 2013; 43: 1813–1823.

    Article  CAS  Google Scholar 

  48. 48

    Unternaehrer E, Luers P, Mill J, Dempster E, Meyer AH, Staehli S et al. Dynamic changes in DNA methylation of stress-associated genes (OXTR, BDNF ) after acute psychosocial stress. Transl Psychiatry 2012; 2: e150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    van der Knaap LJ, Riese H, Hudziak JJ, Verbiest MM, Verhulst FC, Oldehinkel AJ et al. Glucocorticoid receptor gene (NR3C1) methylation following stressful events between birth and adolescence. The TRAILS study. Transl Psychiatry 2014; 4: e381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Murgatroyd C, Patchev AV, Wu Y, Micale V, Bockmuhl Y, Fischer D et al. Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci 2009; 12: 1559–1566.

    Article  CAS  Google Scholar 

  51. 51

    van der Knaap LJ, Riese H, Hudziak JJ, Verbiest MM, Verhulst FC, Oldehinkel AJ et al. Adverse life events and allele-specific methylation of the serotonin transporter gene (SLC6A4) in adolescents: the TRAILS study. Psychosom Med 2015; 77: 246–255.

    Article  CAS  Google Scholar 

  52. 52

    McGowan PO, Sasaki A, D'Alessio AC, Dymov S, Labonte B, Szyf M et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 2009; 12: 342–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Perroud N, Paoloni-Giacobino A, Prada P, Olie E, Salzmann A, Nicastro R et al. Increased methylation of glucocorticoid receptor gene (NR3C1) in adults with a history of childhood maltreatment: a link with the severity and type of trauma. Transl Psychiatry 2011; 1: e59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Tyrka AR, Ridout KK, Parade SH, Paquette A, Marsit CJ, Seifer R . Childhood maltreatment and methylation of FK506 binding protein 5 gene (FKBP5). Dev Psychopathol 2015; 27 (4 Pt 2): 1637–1645.

    Article  PubMed  PubMed Central  Google Scholar 

  55. 55

    Kao GS, Cheng LY, Chen LH, Tzeng WY, Cherng CG, Su CC et al. Neonatal isolation decreases cued fear conditioning and frontal cortical histone 3 lysine 9 methylation in adult female rats. Eur J Pharmacol 2012; 697: 65–72.

    Article  CAS  Google Scholar 

  56. 56

    Zhang Y, Wang Y, Wang L, Bai M, Zhang X, Zhu X . Dopamine receptor D2 and associated microRNAs are involved in stress susceptibility and resistance to escitalopram treatment. Int J Neuropsychopharmacol 2015; 18: pii: pyv025.

  57. 57

    Uchida S, Hara K, Kobayashi A, Otsuki K, Yamagata H, Hobara T et al. Epigenetic status of Gdnf in the ventral striatum determines susceptibility and adaptation to daily stressful events. Neuron 2011; 69: 359–372.

    Article  CAS  Google Scholar 

  58. 58

    Roth TL, Zoladz PR, Sweatt JD, Diamond DM . Epigenetic modification of hippocampal Bdnf DNA in adult rats in an animal model of post-traumatic stress disorder. J Psychiatr Res 2011; 45: 919–926.

    Article  PubMed  PubMed Central  Google Scholar 

  59. 59

    Witzmann SR, Turner JD, Meriaux SB, Meijer OC, Muller CP . Epigenetic regulation of the glucocorticoid receptor promoter 1 in adult rats. Epigenetics 2012; 7: 1290–1301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Tran L, Chaloner A, Sawalha AH, Greenwood Van-Meerveld B . Importance of epigenetic mechanisms in visceral pain induced by chronic water avoidance stress. Psychoneuroendocrinology 2013; 38: 898–906.

    CAS  Article  Google Scholar 

  61. 61

    Le Francois B, Soo J, Millar AM, Daigle M, Le Guisquet AM, Leman S et al. Chronic mild stress and antidepressant treatment alter 5-HT1A receptor expression by modifying DNA methylation of a conserved Sp4 site. Neurobiol Dis 2015; 82: 332–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Lam LL, Emberly E, Fraser HB, Neumann SM, Chen E, Miller GE et al. Factors underlying variable DNA methylation in a human community cohort. Proc Natl Acad Sci USA 2012; 109 (Suppl 2): 17253–17260.

    Article  Google Scholar 

  63. 63

    Alasaari JS, Lagus M, Ollila HM, Toivola A, Kivimaki M, Vahtera J et al. Environmental stress affects DNA methylation of a CpG rich promoter region of serotonin transporter gene in a nurse cohort. PLoS ONE 2012; 7: e45813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Elliott E, Ezra-Nevo G, Regev L, Neufeld-Cohen A, Chen A . Resilience to social stress coincides with functional DNA methylation of the Crf gene in adult mice. Nat Neurosci 2010; 13: 1351–1353.

    Article  CAS  Google Scholar 

  65. 65

    Ursini G, Bollati V, Fazio L, Porcelli A, Iacovelli L, Catalani A et al. Stress-related methylation of the catechol-O-methyltransferase Val 158 allele predicts human prefrontal cognition and activity. J Neurosci 2011; 31: 6692–6698.

    Article  CAS  Google Scholar 

  66. 66

    Erburu M, Munoz-Cobo I, Dominguez-Andres J, Beltran E, Suzuki T, Mai A et al. Chronic stress and antidepressant induced changes in Hdac5 and Sirt2 affect synaptic plasticity. Eur Neuropsychopharmacol 2015; 25: 2036–2048.

    Article  CAS  Google Scholar 

  67. 67

    Renthal W, Maze I, Krishnan V, Covington HE 3rd, Xiao G, Kumar A et al. Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron 2007; 56: 517–529.

    Article  CAS  Google Scholar 

  68. 68

    Nasca C, Zelli D, Bigio B, Piccinin S, Scaccianoce S, Nistico R et al. Stress dynamically regulates behavior and glutamatergic gene expression in hippocampus by opening a window of epigenetic plasticity. Proc Natl Acad Sci USA 2015; 112: 14960–14965.

    Article  CAS  Google Scholar 

  69. 69

    Volk N, Paul ED, Haramati S, Eitan C, Fields BK, Zwang R et al. MicroRNA-19b associates with Ago2 in the amygdala following chronic stress and regulates the adrenergic receptor beta 1. J Neurosci 2014; 34: 15070–15082.

    Article  CAS  Google Scholar 

  70. 70

    Volk N, Pape JC, Engel M, Zannas AS, Cattane N, Cattaneo A et al. Amygdalar MicroRNA-15a Is Essential for Coping with Chronic Stress. Cell Rep 2016; 17: 1882–1891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Sun H, Damez-Werno DM, Scobie KN, Shao NY, Dias C, Rabkin J et al. ACF chromatin-remodeling complex mediates stress-induced depressive-like behavior. Nat Med 2015; 21: 1146–1153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Horvath S . DNA methylation age of human tissues and cell types. Genome Biol 2013; 14: R115.

    Article  PubMed  PubMed Central  Google Scholar 

  73. 73

    Neidl R, Schneider A, Bousiges O, Majchrzak M, Barbelivien A, de Vasconcelos AP et al. Late-life environmental enrichment induces acetylation events and nuclear factor kappaB-dependent regulations in the hippocampus of aged rats showing improved plasticity and learning. J Neurosci 2016; 36: 4351–4361.

    Article  CAS  Google Scholar 

  74. 74

    Faulk C, Dolinoy DC . Timing is everything: the when and how of environmentally induced changes in the epigenome of animals. Epigenetics 2011; 6: 791–797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Tobi EW, Slieker RC, Stein AD, Suchiman HE, Slagboom PE, van Zwet EW et al. Early gestation as the critical time-window for changes in the prenatal environment to affect the adult human blood methylome. Int J Epidemiol 2015; 44: 1211–1223.

    Article  PubMed  PubMed Central  Google Scholar 

  76. 76

    Needham BL, Smith JA, Zhao W, Wang X, Mukherjee B, Kardia SL et al. Life course socioeconomic status and DNA methylation in genes related to stress reactivity and inflammation: The multi-ethnic study of atherosclerosis. Epigenetics 2015; 10: 958–969.

    Article  PubMed  PubMed Central  Google Scholar 

  77. 77

    John S, Sabo PJ, Johnson TA, Sung MH, Biddie SC, Lightman SL et al. Interaction of the glucocorticoid receptor with the chromatin landscape. Mol Cell 2008; 29: 611–624.

    Article  CAS  Google Scholar 

  78. 78

    Lightman SL . The neuroendocrinology of stress: a never ending story. J Neuroendocrinol 2008; 20: 880–884.

    Article  CAS  Google Scholar 

  79. 79

    Gitau R, Cameron A, Fisk NM, Glover V . Fetal exposure to maternal cortisol. Lancet 1998; 352: 707–708.

    Article  CAS  Google Scholar 

  80. 80

    Benayoun BA, Pollina EA, Brunet A . Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol 2015; 16: 593–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Shalev I, Moffitt TE, Sugden K, Williams B, Houts RM, Danese A et al. Exposure to violence during childhood is associated with telomere erosion from 5 to 10 years of age: a longitudinal study. Mol Psychiatry 2013; 18: 576–581.

    Article  CAS  Google Scholar 

  82. 82

    Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD et al. Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci USA 2004; 101: 17312–17315.

    Article  CAS  Google Scholar 

  83. 83

    Zhang Z, Deng C, Lu Q, Richardson B . Age-dependent DNA methylation changes in the ITGAL (CD11a) promoter. Mech Ageing Dev 2002; 123: 1257–1268.

    Article  CAS  Google Scholar 

  84. 84

    Li Y, Liu Y, Strickland FM, Richardson B . Age-dependent decreases in DNA methyltransferase levels and low transmethylation micronutrient levels synergize to promote overexpression of genes implicated in autoimmunity and acute coronary syndromes. Exp Gerontol 2010; 45: 312–322.

    Article  CAS  Google Scholar 

  85. 85

    Lee RS, Tamashiro KL, Yang X, Purcell RH, Huo Y, Rongione M et al. A measure of glucocorticoid load provided by DNA methylation of Fkbp5 in mice. Psychopharmacology (Berl) 2011; 218: 303–312.

    Article  CAS  Google Scholar 

  86. 86

    Hunter RG, McCarthy KJ, Milne TA, Pfaff DW, McEwen BS . Regulation of hippocampal H3 histone methylation by acute and chronic stress. Proc Natl Acad Sci USA 2009; 106: 20912–20917.

    Article  Google Scholar 

  87. 87

    Ferland CL, Harris EP, Lam M, Schrader LA . Facilitation of the HPA axis to a novel acute stress following chronic stress exposure modulates histone acetylation and the ERK/MAPK pathway in the dentate gyrus of male rats. Endocrinology 2014; 155: 2942–2952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Datson NA, van den Oever JM, Korobko OB, Magarinos AM, de Kloet ER, McEwen BS . Previous history of chronic stress changes the transcriptional response to glucocorticoid challenge in the dentate gyrus region of the male rat hippocampus. Endocrinology 2013; 154: 3261–3272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Jin B, Li Y, Robertson KD . DNA methylation: superior or subordinate in the epigenetic hierarchy? Genes Cancer 2011; 2: 607–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Simpson JA, Griskevicius V, Kuo SI, Sung S, Collins WA . Evolution, stress, and sensitive periods: the influence of unpredictability in early versus late childhood on sex and risky behavior. Dev Psychol 2012; 48: 674–686.

    Article  PubMed  PubMed Central  Google Scholar 

  91. 91

    Heim C, Binder EB . Current research trends in early life stress and depression: review of human studies on sensitive periods, gene-environment interactions, and epigenetics. Exp Neurol 2012; 233: 102–111.

    Article  PubMed  PubMed Central  Google Scholar 

  92. 92

    Shevlin M, Houston JE, Dorahy MJ, Adamson G . Cumulative traumas and psychosis: an analysis of the national comorbidity survey and the British Psychiatric Morbidity Survey. Schizophr Bull 2008; 34: 193–199.

    Article  PubMed  PubMed Central  Google Scholar 

  93. 93

    Myers HF, Wyatt GE, Ullman JB, Loeb TB, Chin D, Prause N et al. Cumulative burden of lifetime adversities: Trauma and mental health in low-SES African Americans and Latino/as. Psychol Trauma 2015; 7: 243–251.

    Article  PubMed  PubMed Central  Google Scholar 

  94. 94

    Vinkers CH, Joels M, Milaneschi Y, Kahn RS, Penninx BW, Boks MP . Stress exposure across the life span cumulatively increases depression risk and is moderated by neuroticism. Depress Anxiety 2014; 31: 737–745.

    Article  PubMed  PubMed Central  Google Scholar 

  95. 95

    Kaltsas G, Zannas AS, Chrousos GP Hypothalamic-pituitary-adrenal axis and cardiovascular disease. In: Hjemdahl P, Rosengren A, Steptoe A (ed.). Stress and Cardiovascular Disease. Springer: London, UK, 2012.

    Google Scholar 

  96. 96

    Kendler KS, Karkowski LM, Prescott CA . Causal relationship between stressful life events and the onset of major depression. Am J Psychiatry 1999; 156: 837–841.

    Article  CAS  Google Scholar 

  97. 97

    Zannas AS, McQuoid DR, Steffens DC, Chrousos GP, Taylor WD . Stressful life events, perceived stress, and 12-month course of geriatric depression: direct effects and moderation by the 5-HTTLPR and COMT Val158Met polymorphisms. Stress 2012; 15: 425–434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Peavy GM, Salmon DP, Jacobson MW, Hervey A, Gamst AC, Wolfson T et al. Effects of chronic stress on memory decline in cognitively normal and mildly impaired older adults. Am J Psychiatry 2009; 166: 1384–1391.

    Article  PubMed  PubMed Central  Google Scholar 

  99. 99

    Eskelinen M, Ollonen P . Life stress and losses and deficit in adulthood as breast cancer risk factor: a prospective case-control study in Kuopio, Finland. In Vivo 2010; 24: 899–904.

    PubMed  PubMed Central  Google Scholar 

  100. 100

    Chandola T, Brunner E, Marmot M . Chronic stress at work and the metabolic syndrome: prospective study. BMJ 2006; 332: 521–525.

    Article  PubMed  PubMed Central  Google Scholar 

  101. 101

    Wong HP, Li ZJ, Shin VY, Tai EK, Wu WK, Yu L et al. Effects of cigarette smoking and restraint stress on human colon tumor growth in mice. Digestion 2009; 80: 209–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to those whose work could not be cited due to space constraints. ASZ is currently supported by a Marie-Sklodowska Curie Individual Fellowship (H2020 grant number 653240).

Author information

Affiliations

Authors

Corresponding author

Correspondence to A S Zannas.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zannas, A., Chrousos, G. Epigenetic programming by stress and glucocorticoids along the human lifespan. Mol Psychiatry 22, 640–646 (2017). https://doi.org/10.1038/mp.2017.35

Download citation

Further reading

Search

Quick links