Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Early life adversity and telomere length: a meta-analysis

Abstract

Early adversity, in the form of abuse, neglect, socioeconomic status and other adverse experiences, is associated with poor physical and mental health outcomes. To understand the biologic mechanisms underlying these associations, studies have evaluated the relationship between early adversity and telomere length, a marker of cellular senescence. Such results have varied in regard to the size and significance of this relationship. Using meta-analytic techniques, we aimed to clarify the relationship between early adversity and telomere length while exploring factors affecting the association, including adversity type, timing and study design. A comprehensive search in July 2016 of PubMed/MEDLINE, PsycINFO and Web of Science identified 2462 studies. Multiple reviewers appraised studies for inclusion or exclusion using a priori criteria; 3.9% met inclusion criteria. Data were extracted into a structured form; the Newcastle-Ottawa Scale assessed study quality, validity and bias. Forty-one studies (N=30 773) met inclusion criteria. Early adversity and telomere length were significantly associated (Cohen’s d effect size=−0.35; 95% CI, –0.46 to –0.24; P<0.0001). Sensitivity analyses revealed no outlier effects. Adversity type and timing significantly impacted the association with telomere length (P<0.0001 and P=0.0025, respectively). Subgroup and meta-regression analyses revealed that medication use, medical or psychiatric conditions, case–control vs longitudinal study design, methodological factors, age and smoking significantly affected the relationship. Comprehensive evaluations of adversity demonstrated more extensive telomere length changes. These results suggest that early adversity may have long-lasting physiological consequences contributing to disease risk and biological aging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Children's Bureau. Child Maltreatment. Human Health and Services. 2012; http://www.acf.hhs.gov/sites/default/files/cb/cm2012.pdf-page=20. Accessed on 2016.

  2. Child Abuse Statistics & Facts. Accessed 2016; http://www.nccp.org/topics/childpoverty.html.

  3. Brown GR, Anderson B . Psychiatric morbidity in adult inpatients with childhood histories of sexual and physical abuse. Am J Psychiatry 1991; 148: 55–61.

    Article  CAS  PubMed  Google Scholar 

  4. Scott KM, Smith DA, Ellis PM . A population study of childhood maltreatment and asthma diagnosis: differential associations between child protection database versus retrospective self-reported data. Psychosom Med 2012; 74: 817–823.

    Article  PubMed  Google Scholar 

  5. Rich-Edwards JW, Spiegelman D, Lividoti Hibert EN, Jun HJ, Todd TJ, Kawachi I et al. Abuse in childhood and adolescence as a predictor of type 2 diabetes in adult women. Am J Prev Med 2010; 39: 529–536.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fang X, Brown DS, Florence CS, Mercy JA . The economic burden of child maltreatment in the United States and implications for prevention. Child Abuse Negl 2012; 36: 156–165.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bauer ME, Jeckel CM, Luz C . The role of stress factors during aging of the immune system. Ann NY Acad Sci 2009; 1153: 139–152.

    Article  CAS  PubMed  Google Scholar 

  8. Wolkowitz OM, Epel ES, Reus VI, Mellon SH . Depression gets old fast: do stress and depression accelerate cell aging? Depress Anxiety 2010; 27: 327–338.

    Article  CAS  PubMed  Google Scholar 

  9. Ridout SJ, Ridout KK, Kao HT, Carpenter LL, Philip NS, Tyrka AR et al. Telomeres, early-life stress and mental illness. Adv Psychosom Med 2015; 34: 92–108.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Blackburn EH . Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett 2005; 579: 859–862.

    CAS  PubMed  Google Scholar 

  11. Bernadotte A, Mikhelson VM, Spivak IM . Markers of cellular senescence. Telomere shortening as a marker of cellular senescence. Aging (Albany NY) 2016; 8: 3–11.

    Article  CAS  Google Scholar 

  12. Blackburn EH, Epel ES, Lin J . Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science 2015; 350: 1193–1198.

    Article  CAS  PubMed  Google Scholar 

  13. Zhao J, Miao K, Wang H, Ding H, Wang DW . Association between telomere length and type 2 diabetes mellitus: a meta-analysis. PLoS ONE 2013; 8: e79993.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Price LH, Kao HT, Burgers DE, Carpenter LL, Tyrka AR . Telomeres and early-life stress: an overview. Biol Psychiatry 2013; 73: 15–23.

    Article  CAS  PubMed  Google Scholar 

  15. Jones GT, Power C, Macfarlane GJ . Adverse events in childhood and chronic widespread pain in adult life: results from the 1958 British Birth Cohort Study. Pain 2009; 143: 92–96.

    Article  PubMed  Google Scholar 

  16. Gluckman PD, Hanson MA . Living with the past: evolution, development, and patterns of disease. Science 2004; 305: 1733–1736.

    Article  CAS  PubMed  Google Scholar 

  17. Ridout KK, Carpenter LL, Tyrka AR . The cellular sequelae of early stress: focus on aging and mitochondria. Neuropsychopharmacology 2016; 41: 388–389.

    Article  CAS  PubMed  Google Scholar 

  18. Shalev I, Entringer S, Wadhwa PD, Wolkowitz OM, Puterman E, Lin J et al. Stress and telomere biology: a lifespan perspective. Psychoneuroendocrinology 2013; 38: 1835–1842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Heidinger BJ, Blount JD, Boner W, Griffiths K, Metcalfe NB, Monaghan P . Telomere length in early life predicts lifespan. Proc Natl Acad Sci USA 2012; 109: 1743–1748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tyrka AR, Price LH, Kao HT, Porton B, Marsella SA, Carpenter LL . Childhood maltreatment and telomere shortening: preliminary support for an effect of early stress on cellular aging. Biol Psychiatry 2010; 67: 531–534.

    Article  CAS  PubMed  Google Scholar 

  21. Drury SS, Theall K, Gleason MM, Smyke AT, De Vivo I, Wong JY et al. Telomere length and early severe social deprivation: linking early adversity and cellular aging. Mol Psychiatry 2012; 17: 719–727.

    Article  CAS  PubMed  Google Scholar 

  22. Shalev I, Moffitt TE, Sugden K, Williams B, Houts RM, Danese A et al. Exposure to violence during childhood is associated with telomere erosion from 5 to 10 years of age: a longitudinal study. Mol Psychiatry 2013; 18: 576–581.

    Article  CAS  PubMed  Google Scholar 

  23. Entringer S, Epel ES, Kumsta R, Lin J, Hellhammer DH, Blackburn EH et al. Stress exposure in intrauterine life is associated with shorter telomere length in young adulthood. Proc Natl Acad Sci USA 2011; 108: E513–E518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mitchell C, Hobcraft J, McLanahan SS, Siegel SR, Berg A, Brooks-Gunn J et al. Social disadvantage, genetic sensitivity, and children's telomere length. Proc Natl Acad Sci USA 2014; 111: 5944–5949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ridout SJ, Ridout KK, Kao H-T, Carpenter LL, Phili NS, Tyrka AR et al. Telomeres, early-life stress, and mental illness. In: Balon RWT (ed.). Clinical Challenges in the Biopsychosocial Interface: Update on Psychosomatics for the 21st Century. Advances in Psychosomatic Medicine, Karger AG: Basel, Switzerland, 2015; 34: 92–108.

    Article  Google Scholar 

  26. Theall KP, Brett ZH, Shirtcliff EA, Dunn EC, Drury SS . Neighborhood disorder and telomeres: connecting children's exposure to community level stress and cellular response. Soc Sci Med 2013; 85: 50–58.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kananen L, Surakka I, Pirkola S, Suvisaari J, Lonnqvist J, Peltonen L et al. Childhood adversities are associated with shorter telomere length at adult age both in individuals with an anxiety disorder and controls. PLoS ONE 2010; 5: e10826.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Surtees PG, Wainwright NW, Pooley KA, Luben RN, Khaw KT, Easton DF et al. Educational attainment and mean leukocyte telomere length in women in the European Prospective Investigation into Cancer (EPIC)-Norfolk population study. Brain Behav Immun 2012; 26: 414–418.

    Article  PubMed  Google Scholar 

  29. Adams J, Martin-Ruiz C, Pearce MS, White M, Parker L, von Zglinicki T . No association between socio-economic status and white blood cell telomere length. Aging Cell 2007; 6: 125–128.

    Article  CAS  PubMed  Google Scholar 

  30. Boks MP, van Mierlo HC, Rutten BP, Radstake TR, De Witte L, Geuze E et al. Longitudinal changes of telomere length and epigenetic age related to traumatic stress and post-traumatic stress disorder. Psychoneuroendocrinology 2015; 51: 506–512.

    Article  CAS  PubMed  Google Scholar 

  31. Kiecolt-Glaser JK, Gouin JP, Weng NP, Malarkey WB, Beversdorf DQ, Glaser R . Childhood adversity heightens the impact of later-life caregiving stress on telomere length and inflammation. Psychosom Med 2011; 73: 16–22.

    Article  PubMed  Google Scholar 

  32. Malan-Muller S, Hemmings SM, Spies G, Kidd M, Fennema-Notestine C, Seedat S . Shorter telomere length—a potential susceptibility factor for HIV-associated neurocognitive impairments in South African women [corrected]. PLoS ONE 2013; 8: e58351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mason SM, Prescott J, Tworoger SS, DeVivo I, Rich-Edwards JW . Childhood physical and sexual abuse history and leukocyte telomere length among women in middle adulthood. PLoS ONE 2015; 10: e0124493.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Robertson T, Batty GD, Der G, Green MJ, McGlynn LM, McIntyre A et al. Is telomere length socially patterned? Evidence from the West of Scotland Twenty-07 Study. PLoS ONE 2012; 7: e41805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Robles TF, Carroll JE, Bai S, Reynolds BM, Esquivel S, Repetti RL . Emotions and family interactions in childhood: associations with leukocyte telomere length emotions, family interactions, and telomere length. Psychoneuroendocrinology 2016; 63: 343–350.

    Article  CAS  PubMed  Google Scholar 

  36. Savolainen K, Eriksson JG, Kananen L, Kajantie E, Pesonen AK, Heinonen K et al. Associations between early life stress, self-reported traumatic experiences across the lifespan and leukocyte telomere length in elderly adults. Biol Psychol 2014; 97: 35–42.

    Article  PubMed  Google Scholar 

  37. van Ockenburg SL, Bos EH, de Jonge P, van der Harst P, Gans RO, Rosmalen JG . Stressful life events and leukocyte telomere attrition in adulthood: a prospective population-based cohort study. Psychol Med 2015; 45: 2975–2984.

    Article  CAS  PubMed  Google Scholar 

  38. Brody GH, Yu T, Beach SR, Philibert RA . Prevention effects ameliorate the prospective association between nonsupportive parenting and diminished telomerelength. Prev Sci 2015; 16: 171–180.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cai N, Chang S, Li Y, Li Q, Hu J, Liang J et al. Molecular signatures of major depression. Curr Biol 2015; 25: 1146–1156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen SH, Epel ES, Mellon SH, Lin J, Reus VI, Rosser R et al. Adverse childhood experiences and leukocyte telomere maintenance in depressed and healthyadults. J Affect Disord 2014; 169: 86–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tyrka AR, Carpenter LL, Kao HT, Porton B, Philip NS, Ridout SJ et al. Association of telomere length and mitochondrial DNA copy number in a community sample of healthy adults. Exp Gerontol 2015; 66: 17–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Glass D, Parts L, Knowles D, Aviv A, Spector TD . No correlation between childhood maltreatment and telomere length. Biol Psychiatry 2010; 68: e21–e22, author replye23–e24.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jodczyk S, Fergusson DM, Horwood LJ, Pearson JF, Kennedy MA . No association between mean telomere length and life stress observed in a 30 year birth cohort. PLoS ONE 2014; 9: e97102.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 2009; 339: b2700.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Higgins JPT, Green S. Cochrane Handbook for Systematic Reviews of Interventions, Version 5.1.0. The Cochrane Collaboration. http://www.cochrane-handbook.org. Accessed on March 2011.

  46. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000; 283: 2008–2012.

    Article  CAS  PubMed  Google Scholar 

  47. Agency for Healthcare Research and Quality. Methods Guide for Effectiveness and Comparative Effectiveness Reviews.http://effectivehealthcare.ahrq.gov/index.cfm/search-for-guides-reviews-and-reports/?pageaction=displayproduct&productid=318. Accessed on March 2015.

  48. Stang A . Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 2010; 25: 603–605.

    Article  PubMed  Google Scholar 

  49. Schaakxs R, Verhoeven JE, Oude Voshaar RC, Comijs HC, Penninx BW . Leukocyte telomere length and late-life depression. Am J Geriatr Psychiatry 2015; 23: 423–432.

    Article  PubMed  Google Scholar 

  50. Bornstein M, Hedges LV, Higgins JPT, Rothstein HR . Introduction to Meta-Analysis. John Wiley & Sons, Ltd: Hoboken, NJ, 2009; https://www.meta-analysis.com/downloads/Meta%20Analysis%20Fixed%20vs%20Random%20effects.pdf ; accessed March 2015.

    Book  Google Scholar 

  51. Needham BL, Fernandez JR, Lin J, Epel ES, Blackburn EH . Socioeconomic status and cell aging in children. Soc Sci Med 2012; 74: 1948–1951.

    Article  PubMed  Google Scholar 

  52. Tyrka AR, Parade SH, Price LH, Kao HT, Porton B, Philip NS et al. Alterations of mitochondrial DNA copy number and telomere length with early adversity and psychopathology. Biol Psychiatry 2016; 79: 78–86.

    Article  CAS  PubMed  Google Scholar 

  53. Effect Size Calculator. http://www.campbellcollaboration.org/escalc/html/EffectSizeCalculator-Home.php. Accessed 2010.

  54. Cohen J . Statistical Power Analysis for the Behavioral Sciences, 2nd edn. Lawrence Erlbaum Associates: New York, 1988; http://www.sciencedirect.com/science/article/pii/B9780121790608500013, accessed February 2016.

    Google Scholar 

  55. Thorlund K, Imberger G, Johnston BC, Walsh M, Awad T, Thabane L et al. Evolution of heterogeneity (I2) estimates and their 95% confidence intervals in large meta-analyses. PLoS ONE 2012; 7: e39471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Patsopoulos NA, Evangelou E, Ioannidis JP . Sensitivity of between-study heterogeneity in meta-analysis: proposed metrics and empirical evaluation. Int J Epidemiol 2008; 37: 1148–1157.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Egger M, Davey Smith G, Schneider M, Minder C . Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315: 629–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Duval S, Tweedie R . Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000; 56: 455–463.

    Article  CAS  PubMed  Google Scholar 

  59. Benjamini Y, Hochberg Y . Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B 1995; 57: 289–300.

    Google Scholar 

  60. Center for Disease Control, http://www.cdc.gov/ncbddd/childdevelopment/positiveparenting/index.html, Accessed February 2016.

  61. Blakemore SJ . Imaging brain development: the adolescent brain. Neuroimage 2012; 61: 397–406.

    Article  PubMed  Google Scholar 

  62. DerSimonian R, Laird N . Meta-analysis in clinical trials. Control Clin Trials 1986; 7: 177–188.

    Article  CAS  PubMed  Google Scholar 

  63. Bersani FS, Lindqvist D, Mellon SH, Epel ES, Yehuda R, Flory J et al. Association of dimensional psychological health measures with telomere length in male war veterans. J Affect Disord 2016; 190: 537–542.

    Article  PubMed  Google Scholar 

  64. Revesz D, Milaneschi Y, Terpstra EM, Penninx BW . Baseline biopsychosocial determinants of telomere length and 6-year attrition rate. Psychoneuroendocrinology 2016; 67: 153–162.

    Article  PubMed  Google Scholar 

  65. Surtees PG, Wainwright NW, Pooley KA, Luben RN, Khaw KT, Easton DF et al. Life stress, emotional health, and mean telomere length in the European Prospective Investigation into Cancer (EPIC)-Norfolk population study. The journals of gerontology Series A, Biological sciences and medical sciences 2011; 66: 1152–1162.

    Article  PubMed  Google Scholar 

  66. Wojcicki JM, Heyman MB, Elwan D, Shiboski S, Lin J, Blackburn E et al. Telomere length is associated with oppositional defiant behavior and maternal clinical depression in Latino preschool children. Transl Psychiatry 2015; 5: e581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. O'Donovan A, Epel E, Lin J, Wolkowitz O, Cohen B, Maguen S et al. Childhood trauma associated with short leukocyte telomere length in posttraumatic stress disorder. Biol Psychiatry 2011; 70: 465–471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Marchetto NM, Glynn RA, Ferry ML, Ostojic M, Wolff SM, Yao R et al. Prenatal stress and newborn telomere length. Am J Obstet Gynecol 2016; 215: 94.e1–94.e8.

    Article  CAS  Google Scholar 

  69. Sterne JA, Sutton AJ, Ioannidis JP, Terrin N, Jones DR, Lau J et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 2011; 343: d4002.

    Article  PubMed  Google Scholar 

  70. Odgers CL, Jaffee SR . Routine versus catastrophic influences on the developingchild. Annu Rev Public Health 2013; 34: 29–48.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Blackburn EH, Greider CW, Szostak JW . Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med 2006; 12: 1133–1138.

    Article  CAS  PubMed  Google Scholar 

  72. Lindqvist D, Epel ES, Mellon SH, Penninx BW, Revesz D, Verhoeven JE et al. Psychiatric disorders and leukocyte telomere length: underlying mechanisms linking mental illness with cellular aging. Neurosci Biobehav Rev 2015; 55: 333–364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Flores I, Blasco MA . The role of telomeres and telomerase in stem cell aging. FEBS Lett 2010; 584: 3826–3830.

    Article  CAS  PubMed  Google Scholar 

  74. Ridout KK, Ridout SJ, Price LH, Sen S, Tyrka AR . Depression and telomere length: A meta-analysis. J Affect Disord 2016; 191: 237–247.

    Article  CAS  PubMed  Google Scholar 

  75. Schutte NS, Malouff JM . The association between depression and leukocyte telomere length: a meta-analysis. Depress Anxiety 2015; 32: 229–238.

    Article  CAS  PubMed  Google Scholar 

  76. Zeanah CH, Gleason MM . Annual research review: attachment disorders in early childhood—clinical presentation, causes, correlates, and treatment. J Child Psychol Psychiatry 2015; 56: 207–222.

    Article  PubMed  Google Scholar 

  77. Adams J, White M, Pearce MS, Parker L . Life course measures of socioeconomic position and self reported health at age 50: prospective cohort study. J Epidemiol Community Health 2004; 58: 1028–1029.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Park M, Verhoeven JE, Cuijpers P, Reynolds Iii CF, Penninx BW . Where you live may make you old: the association between perceived poor neighborhood quality and leukocyte telomere length. PLoS ONE 2015; 10: e0128460.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Asok A, Bernard K, Roth TL, Rosen JB, Dozier M . Parental responsiveness moderates the association between early-life stress and reduced telomere length. Development and psychopathology 2013; 25: 577–585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Drury SS, Mabile E, Brett ZH, Esteves K, Jones E, Shirtcliff EA et al. The association of telomere length with family violence and disruption. Pediatrics 2014; 134: e128–137.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Entringer S, Epel ES, Lin J, Buss C, Shahbaba B, Blackburn EH et al. Maternal psychosocial stress during pregnancy is associated with newborn leukocyte telomere length. Am J Obstet Gynecol 2013; 208: 134 e131–137.

    Article  Google Scholar 

  82. Gotlib IH, LeMoult J, Colich NL, Foland-Ross LC, Hallmayer J, Joormann J et al. Telomere length and cortisol reactivity in children of depressed mothers. Mol Psychiatry 2015; 20: 615–620.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Author contribution

All authors contributed to the conceptualization, design and preparation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K K Ridout.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ridout, K., Levandowski, M., Ridout, S. et al. Early life adversity and telomere length: a meta-analysis. Mol Psychiatry 23, 858–871 (2018). https://doi.org/10.1038/mp.2017.26

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2017.26

This article is cited by

Search

Quick links