Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

VGF function in depression and antidepressant efficacy

Abstract

Brain-derived neurotrophic factor (BDNF) is a critical effector of depression-like behaviors and antidepressant responses. Here, we show that VGF (non-acronymic), which is robustly regulated by BDNF/TrkB signaling, is downregulated in hippocampus (male/female) and upregulated in nucleus accumbens (NAc) (male) in depressed human subjects and in mice subjected to chronic social defeat stress (CSDS). Adeno-associated virus (AAV)-Cre-mediated Vgf ablation in floxed VGF mice, in dorsal hippocampus (dHc) or NAc, led to pro-depressant or antidepressant behaviors, respectively, while dHc- or NAc-AAV-VGF overexpression induced opposite outcomes. Mice with reduced VGF levels in the germ line (Vgf+/−) or in dHc (AAV-Cre-injected floxed mice) showed increased susceptibility to CSDS and impaired responses to ketamine treatment in the forced swim test. Floxed mice with conditional pan-neuronal (Synapsin-Cre) but not those with forebrain (αCaMKII-Cre) Vgf ablation displayed increased susceptibility to subthreshold social defeat stress, suggesting that neuronal VGF, expressed in part in inhibitory interneurons, regulates depression-like behavior. Acute antibody-mediated sequestration of VGF-derived C-terminal peptides AQEE-30 and TLQP-62 in dHc induced pro-depressant effects. Conversely, dHc TLQP-62 infusion had rapid antidepressant efficacy, which was reduced in BDNF floxed mice injected in dHc with AAV-Cre, and in NBQX- and rapamycin-pretreated wild-type mice, these compounds blocking α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor and mammalian target of rapamycin (mTOR) signaling, respectively. VGF is therefore a critical modulator of depression-like behaviors in dHc and NAc. In hippocampus, the antidepressant response to ketamine is associated with rapid VGF translation, is impaired by reduced VGF expression, and as previously reported, requires coincident, rapid BDNF translation and release.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L et al. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry 2006; 163: 28–40.

    Article  Google Scholar 

  2. Keller MB, Gelenberg AJ, Hirschfeld RM, Rush AJ, Thase ME, Kocsis JH et al. The treatment of chronic depression, part 2: a double-blind, randomized trial of sertraline and imipramine. J Clin Psychiatry 1998; 59: 598–607.

    Article  CAS  Google Scholar 

  3. Keller MB, McCullough JP, Klein DN, Arnow B, Dunner DL, Gelenberg AJ et al. A comparison of nefazodone, the cognitive behavioral-analysis system of psychotherapy, and their combination for the treatment of chronic depression. N Engl J Med 2000; 342: 1462–1470.

    Article  CAS  Google Scholar 

  4. Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 1995; 15: 7539–7547.

    Article  CAS  Google Scholar 

  5. Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 2002; 22: 3251–3261.

    Article  CAS  Google Scholar 

  6. Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 2006; 311: 864–868.

    Article  CAS  Google Scholar 

  7. Bonni A, Ginty DD, Dudek H, Greenberg ME. Serine 133-phosphorylated CREB induces transcription via a cooperative mechanism that may confer specificity to neurotrophin signals. Mol Cell Neurosci 1995; 6: 168–183.

    Article  CAS  Google Scholar 

  8. Alder J, Thakker-Varia S, Bangasser DA, Kuroiwa M, Plummer MR, Shors TJ et al. Brain-derived neurotrophic factor-induced gene expression reveals novel actions of VGF in hippocampal synaptic plasticity. J Neurosci 2003; 23: 10800–10808.

    Article  CAS  Google Scholar 

  9. Hunsberger JG, Newton SS, Bennett AH, Duman CH, Russell DS, Salton SR et al. Antidepressant actions of the exercise-regulated gene VGF. Nat Med 2007; 13: 1476–1482.

    Article  CAS  Google Scholar 

  10. Thakker-Varia S, Krol JJ, Nettleton J, Bilimoria PM, Bangasser DA, Shors TJ et al. The neuropeptide VGF produces antidepressant-like behavioral effects and enhances proliferation in the hippocampus. J Neurosci 2007; 27: 12156–12167.

    Article  CAS  Google Scholar 

  11. Cattaneo A, Sesta A, Calabrese F, Nielsen G, Riva MA, Gennarelli M. The expression of VGF is reduced in leukocytes of depressed patients and it is restored by effective antidepressant treatment. Neuropsychopharmacology 2010; 35: 1423–1428.

    Article  CAS  Google Scholar 

  12. Lin P, Wang C, Xu B, Gao S, Guo J, Zhao X et al. The VGF-derived peptide TLQP62 produces antidepressant-like effects in mice via the BDNF/TrkB/CREB signaling pathway. Pharmacol Biochem Behav 2014; 120: 140–148.

    Article  CAS  Google Scholar 

  13. Lin WJ, Jiang C, Sadahiro M, Bozdagi O, Vulchanova L, Alberini CM et al. VGF and Its C-terminal peptide TLQP-62 regulate memory formation in hippocampus via a BDNF-TrkB-dependent mechanism. J Neurosci 2015; 35: 10343–10356.

    Article  CAS  Google Scholar 

  14. Li C, Li M, Yu H, Shen X, Wang J, Sun X et al. Neuropeptide VGF C-terminal peptide TLQP-62 alleviates lipopolysaccharide-induced memory deficits and anxiety-like and depression-like behaviors in mice: the role of BDNF/TrkB signaling. ACS Chem Neurosci 2017; 8: 2005–2018.

    Article  CAS  Google Scholar 

  15. Thakker-Varia S, Behnke J, Doobin D, Dalal V, Thakkar K, Khadim F et al. VGF (TLQP-62)-induced neurogenesis targets early phase neural progenitor cells in the adult hippocampus and requires glutamate and BDNF signaling. Stem Cell Res 2014; 12: 762–777.

    Article  CAS  Google Scholar 

  16. Bozdagi O, Rich E, Tronel S, Sadahiro M, Patterson K, Shapiro ML et al. The neurotrophin-inducible gene Vgf regulates hippocampal function and behavior through a brain-derived neurotrophic factor-dependent mechanism. J Neurosci 2008; 28: 9857–9869.

    Article  CAS  Google Scholar 

  17. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 2000; 47: 351–354.

    Article  CAS  Google Scholar 

  18. Zarate CA Jr., Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 2006; 63: 856–864.

    Article  CAS  Google Scholar 

  19. Murrough JW, Perez AM, Pillemer S, Stern J, Parides MK, Aan Het Rot M et al. Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment-resistant major depression. Biol Psychiatry 2013; 74: 250–256.

    Article  CAS  Google Scholar 

  20. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 2010; 329: 959–964.

    Article  CAS  Google Scholar 

  21. Maeng S, Zarate CA Jr., Du J, Schloesser RJ, McCammon J, Chen G et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 2008; 63: 349–352.

    Article  CAS  Google Scholar 

  22. Golden SA, Covington HE 3rd, Berton O, Russo SJ. A standardized protocol for repeated social defeat stress in mice. Nat Protoc 2011; 6: 1183–1191.

    Article  CAS  Google Scholar 

  23. Hodes GE, Pfau ML, Purushothaman I, Ahn HF, Golden SA, Christoffel DJ et al. Sex differences in nucleus accumbens transcriptome profiles associated with susceptibility versus resilience to subchronic variable stress. J Neurosci 2015; 35: 16362–16376.

    Article  CAS  Google Scholar 

  24. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 2007; 445: 168–176.

    Article  CAS  Google Scholar 

  25. Krishnan V, Nestler EJ. Animal models of depression: molecular perspectives. Curr Top Behav Neurosci 2011; 7: 121–147.

    Article  Google Scholar 

  26. Chakraborty TR, Tkalych O, Nanno D, Garcia AL, Devi LA, Salton SR. Quantification of VGF- and pro-SAAS-derived peptides in endocrine tissues and the brain, and their regulation by diet and cold stress. Brain Res 2006; 1089: 21–32.

    Article  CAS  Google Scholar 

  27. Donahue RJ, Muschamp JW, Russo SJ, Nestler EJ, Carlezon WA Jr.. Effects of striatal DeltaFosB overexpression and ketamine on social defeat stress-induced anhedonia in mice. Biol Psychiatry 2014; 76: 550–558.

    Article  CAS  Google Scholar 

  28. Zhang K, Xu T, Yuan Z, Wei Z, Yamaki VN, Huang M et al. Essential roles of AMPA receptor GluA1 phosphorylation and presynaptic HCN channels in fast-acting antidepressant responses of ketamine. Sci Signal 2016; 9: ra123.

    Article  Google Scholar 

  29. Thakker-Varia S, Jean YY, Parikh P, Sizer CF, Jernstedt Ayer J, Parikh A et al. The neuropeptide VGF is reduced in human bipolar postmortem brain and contributes to some of the behavioral and molecular effects of lithium. J Neurosci 2010; 30: 9368–9380.

    Article  CAS  Google Scholar 

  30. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 2003; 112: 257–269.

    Article  CAS  Google Scholar 

  31. Chen ZY, Ieraci A, Teng H, Dall H, Meng CX, Herrera DG et al. Sortilin controls intracellular sorting of brain-derived neurotrophic factor to the regulated secretory pathway. J Neurosci 2005; 25: 6156–6166.

    Article  CAS  Google Scholar 

  32. Chen ZY, Jing D, Bath KG, Ieraci A, Khan T, Siao CJ et al. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science 2006; 314: 140–143.

    Article  CAS  Google Scholar 

  33. Verhagen M, van der Meij A, van Deurzen PA, Janzing JG, Arias-Vasquez A, Buitelaar JK et al. Meta-analysis of the BDNF Val66Met polymorphism in major depressive disorder: effects of gender and ethnicity. Mol Psychiatry 2010; 15: 260–271.

    Article  CAS  Google Scholar 

  34. Dotson VM, Hsu FC, Langaee TY, McDonough CW, King AC, Cohen RA et al. Genetic moderators of the impact of physical activity on depressive symptoms. J Frailty Aging 2016; 5: 6–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gujral S, Manuck SB, Ferrell RE, Flory JD, Erickson KI. The BDNF Val66Met polymorphism does not moderate the effect of self-reported physical activity on depressive symptoms in midlife. Psychiatry Res 2014; 218: 93–97.

    Article  CAS  Google Scholar 

  36. Chaudhury D, Walsh JJ, Friedman AK, Juarez B, Ku SM, Koo JW et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 2013; 493: 532–536.

    Article  CAS  Google Scholar 

  37. Walsh JJ, Friedman AK, Sun H, Heller EA, Ku SM, Juarez B et al. Stress and CRF gate neural activation of BDNF in the mesolimbic reward pathway. Nat Neurosci 2014; 17: 27–29.

    Article  CAS  Google Scholar 

  38. Conner JM, Lauterborn JC, Yan Q, Gall CM, Varon S. Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J Neurosci 1997; 17: 2295–2313.

    Article  CAS  Google Scholar 

  39. Vilarino-Guell C, Wider C, Ross OA, Jasinska-Myga B, Kachergus J, Cobb SA et al. LINGO1 and LINGO2 variants are associated with essential tremor and Parkinson disease. Neurogenetics 2010; 11: 401–408.

    Article  Google Scholar 

  40. Wu YW, Prakash KM, Rong TY, Li HH, Xiao Q, Tan LC et al. Lingo2 variants associated with essential tremor and Parkinson's disease. Hum Genet 2011; 129: 611–615.

    Article  CAS  Google Scholar 

  41. Chen Y, Cao B, Yang J, Wei Q, Ou RW, Zhao B et al. Analysis and meta-analysis of five polymorphisms of the LINGO1 and LINGO2 genes in Parkinson's disease and multiple system atrophy in a Chinese population. J Neurol 2015; 262: 2478–2483.

    Article  CAS  Google Scholar 

  42. Mizoguchi T, Minakuchi H, Ishisaka M, Tsuruma K, Shimazawa M, Hara H. Behavioral abnormalities with disruption of brain structure in mice overexpressing VGF. Sci Rep 2017; 7: 4691.

    Article  Google Scholar 

  43. Snyder SE, Salton SR. Expression of VGF mRNA in the adult rat central nervous system. J Comp Neurol 1998; 394: 91–105.

    Article  CAS  Google Scholar 

  44. van den Pol AN, Bina K, Decavel C, Ghosh P. VGF expression in the brain. J Comp Neurol 1994; 347: 455–469.

    Article  CAS  Google Scholar 

  45. Holm MM, Nieto-Gonzalez JL, Vardya I, Henningsen K, Jayatissa MN, Wiborg O et al. Hippocampal GABAergic dysfunction in a rat chronic mild stress model of depression. Hippocampus 2011; 21: 422–433.

    Article  CAS  Google Scholar 

  46. Peruga I, Hartwig S, Merkler D, Thone J, Hovemann B, Juckel G et al. Endogenous ciliary neurotrophic factor modulates anxiety and depressive-like behavior. Behav Brain Res 2012; 229: 325–332.

    Article  CAS  Google Scholar 

  47. Lenz JD, Lobo MK. Optogenetic insights into striatal function and behavior. Behav Brain Res 2013; 255: 44–54.

    Article  CAS  Google Scholar 

  48. Preskorn S, Macaluso M, Mehra DO, Zammit G, Moskal JR, Burch RM. Randomized proof of concept trial of GLYX-13, an N-methyl-D-aspartate receptor glycine site partial agonist, in major depressive disorder nonresponsive to a previous antidepressant agent. J Psychiatr Pract 2015; 21: 140–149.

    Article  Google Scholar 

  49. Lu Y, Wang C, Xue Z, Li C, Zhang J, Zhao X et al. PI3K/AKT/mTOR signaling-mediated neuropeptide VGF in the hippocampus of mice is involved in the rapid onset antidepressant-like effects of GLYX-13. Int J Neuropsychopharmacol 2014; 18: 5.

    Google Scholar 

  50. Brown BP, Kang SC, Gawelek K, Zacharias RA, Anderson SR, Turner CP et al. In vivo and in vitro ketamine exposure exhibits a dose-dependent induction of activity-dependent neuroprotective protein in rat neurons. Neuroscience 2015; 290: 31–40.

    Article  CAS  Google Scholar 

  51. Bagot RC, Cates HM, Purushothaman I, Vialou V, Heller EA, Yieh L et al. Ketamine and Imipramine Reverse Transcriptional Signatures of Susceptibility and Induce Resilience-Specific Gene Expression Profiles. Biol Psychiatry 2017; 81: 285–295.

    Article  CAS  Google Scholar 

  52. Xue W, Wang W, Gong T, Zhang H, Tao W, Xue L et al. PKA-CREB-BDNF signaling regulated long lasting antidepressant activities of Yueju but not ketamine. Sci Rep 2016; 6: 26331.

    Article  CAS  Google Scholar 

  53. Choi M, Lee SH, Wang SE, Ko SY, Song M, Choi JS et al. Ketamine produces antidepressant-like effects through phosphorylation-dependent nuclear export of histone deacetylase 5 (HDAC5) in rats. Proc Natl Acad Sci USA 2015; 112: 15755–15760.

    Article  CAS  Google Scholar 

  54. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 2011; 475: 91–95.

    Article  CAS  Google Scholar 

  55. Liu RJ, Lee FS, Li XY, Bambico F, Duman RS, Aghajanian GK. Brain-derived neurotrophic factor Val66Met allele impairs basal and ketamine-stimulated synaptogenesis in prefrontal cortex. Biol Psychiatry 2012; 71: 996–1005.

    Article  CAS  Google Scholar 

  56. Lepack AE, Fuchikami M, Dwyer JM, Banasr M, Duman RS. BDNF release is required for the behavioral actions of ketamine. Int J Neuropsychopharmacol 2014; 18: 1.

    Google Scholar 

  57. Cajigas IJ, Tushev G, Will TJ, tom Dieck S, Fuerst N, Schuman EM. The local transcriptome in the synaptic neuropil revealed by deep sequencing and high-resolution imaging. Neuron 2012; 74: 453–466.

    Article  CAS  Google Scholar 

  58. Fargali S, Garcia AL, Sadahiro M, Jiang C, Janssen WG, Lin WJ et al. The granin VGF promotes genesis of secretory vesicles, and regulates circulating catecholamine levels and blood pressure. FASEB J 2014; 28: 2120–2133.

    Article  CAS  Google Scholar 

  59. Lepack AE, Bang E, Lee B, Dwyer JM, Duman RS. Fast-acting antidepressants rapidly stimulate ERK signaling and BDNF release in primary neuronal cultures. Neuropharmacology 2016; 111: 242–252.

    Article  CAS  Google Scholar 

  60. Bambah-Mukku D, Travaglia A, Chen DY, Pollonini G, Alberini CM. A positive autoregulatory BDNF feedback loop via C/EBPbeta mediates hippocampal memory consolidation. J Neurosci 2014; 34: 12547–12559.

    Article  Google Scholar 

  61. Reus GZ, Abaleira HM, Titus SE, Arent CO, Michels M, da Luz JR et al. Effects of ketamine administration on the phosphorylation levels of CREB and TrKB and on oxidative damage after infusion of MEK inhibitor. Pharmacol Rep 2016; 68: 177–184.

    Article  CAS  Google Scholar 

  62. Esteban JA, Shi SH, Wilson C, Nuriya M, Huganir RL, Malinow R. PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nat Neurosci 2003; 6: 136–143.

    Article  CAS  Google Scholar 

  63. Slipczuk L, Bekinschtein P, Katche C, Cammarota M, Izquierdo I, Medina JH. BDNF activates mTOR to regulate GluR1 expression required for memory formation. PLoS ONE 2009; 4: e6007.

    Article  Google Scholar 

  64. Oh MC, Derkach VA, Guire ES, Soderling TR. Extrasynaptic membrane trafficking regulated by GluR1 serine 845 phosphorylation primes AMPA receptors for long-term potentiation. J Biol Chem 2006; 281: 752–758.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Supported in part by: NIH grants MH086499 (SRS), MH083496 (SRS), pilot grant on P50AT008661 (SRS; PI G.M. Pasinetti); MH090264 (SJR); Hope for Depression Research Foundation (SRS); BrightFocus Foundation (SRS); Brain and Behavior Research Foundation (SRS and CM); CM is a P&S Fund Investigator (Young Investigator Grant). CJ, W-JL, SJR and SRS designed the research; CJ, W-JL and MS performed the research; CJ, and W-JL analyzed the data; CAT, GT, CM, MLP, SJR, BL and EJN provided reagents/samples; CJ and SRS wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S R Salton.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Lin, WJ., Sadahiro, M. et al. VGF function in depression and antidepressant efficacy. Mol Psychiatry 23, 1632–1642 (2018). https://doi.org/10.1038/mp.2017.233

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2017.233

This article is cited by

Search

Quick links