Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Calhm2 governs astrocytic ATP releasing in the development of depression-like behaviors

A Corrigendum to this article was published on 09 January 2018

Abstract

Extracellular ATP is a widespread cell-to-cell signaling molecule in the brain, where it functions as a neuromodulator by activating glia and neurons. Although ATP exerts multiple effects on synaptic plasticity and neuro-glia interactions, as well as in mood disorders, the source and regulation of ATP release remain to be elaborated. Here, we define Calhm2 as an ATP-releasing channel protein based on in vitro and in vivo models. Conventional knockout and conditional astrocyte knockout of Calhm2 both lead to significantly reduced ATP concentrations, loss of hippocampal spine number, neural dysfunction and depression-like behaviors in mice, which can be significantly rescued by ATP replenishment. Our findings identify Calhm2 as a critical ATP-releasing channel that modulates neural activity and as a potential risk factor of depression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Collins PY, Insel TR, Chockalingam A, Daar A, Maddox YT . Grand challenges in global mental health: integration in research, policy, and practice. PLoS med 2013; 10: e1001434.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Collins PY, Patel V, Joestl SS, March D, Insel TR, Daar AS et al. Grand challenges in global mental health. Nature 2011; 475: 27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Briley M, Moret C . Present and future anxiolytics. IDrugs 2000; 3: 695–699.

    CAS  PubMed  Google Scholar 

  4. Murrough JW, Perez AM, Pillemer S, Stern J, Parides MK, aan het Rot M et al. Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment-resistant major depression. Biol Psychiatry 2013; 74: 250–256.

    Article  CAS  PubMed  Google Scholar 

  5. Murrough JW, Wan LB, Iacoviello B, Collins KA, Solon C, Glicksberg B et al. Neurocognitive effects of ketamine in treatment-resistant major depression: association with antidepressant response. Psychopharmacology 2013; 231: 481–488.

    Article  Google Scholar 

  6. Koppel J, Campagne F, Vingtdeux V, Dreses-Werringloer U, Ewers M, Rujescu D et al. CALHM1 P86L polymorphism modulates CSF Abeta levels in cognitively healthy individuals at risk for Alzheimer's disease. Mol Med 2011; 17: 974–979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lambert JC, Sleegers K, Gonzalez-Perez A, Ingelsson M, Beecham GW, Hiltunen M et al. The CALHM1 P86L polymorphism is a genetic modifier of age at onset in Alzheimer's disease: a meta-analysis study. J Alzheimer's Dis 2010; 22: 247–255.

    Article  CAS  Google Scholar 

  8. Cui PJ, Zheng L, Cao L, Wang Y, Deng YL, Wang G et al. CALHM1 P86L polymorphism is a risk factor for Alzheimer's disease in the Chinese population. J Alzheimer's Dis 2010; 19: 31–35.

    Article  Google Scholar 

  9. Boada M, Antunez C, Lopez-Arrieta J, Galan JJ, Moron FJ, Hernandez I et al. CALHM1 P86L polymorphism is associated with late-onset Alzheimer's disease in a recessive model. J Alzheimer's Dis 2010; 20: 247–251.

    Article  CAS  Google Scholar 

  10. Dreses-Werringloer U, Lambert JC, Vingtdeux V, Zhao H, Vais H, Siebert A et al. A polymorphism in CALHM1 influences Ca2+ homeostasis, Abeta levels, and Alzheimer's disease risk. Cell 2008; 133: 1149–1161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vingtdeux V, Chang EH, Frattini SA, Zhao H, Chandakkar P, Adrien L et al. CALHM1 deficiency impairs cerebral neuron activity and memory flexibility in mice. Sci Rep 2016; 6: 24250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moreno-Ortega AJ, Buendia I, Mouhid L, Egea J, Lucea S, Ruiz-Nuno A et al. CALHM1 and its polymorphism P86L differentially control Ca(2+) homeostasis, mitogen-activated protein kinase signaling, and cell vulnerability upon exposure to amyloid beta. Aging Cell 2015; 14: 1094–1102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dreses-Werringloer U, Vingtdeux V, Zhao H, Chandakkar P, Davies P, Marambaud P . CALHM1 controls the Ca(2)(+)-dependent MEK, ERK, RSK and MSK signaling cascade in neurons. J Cell Sci 2013; 126 (Pt 5): 1199–1206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gallego-Sandin S, Alonso MT, Garcia-Sancho J . Calcium homoeostasis modulator 1 (CALHM1) reduces the calcium content of the endoplasmic reticulum (ER) and triggers ER stress. Biochem J 2011; 437: 469–475.

    Article  CAS  PubMed  Google Scholar 

  15. Tordoff MG, Ellis HT, Aleman TR, Downing A, Marambaud P, Foskett JK et al. Salty taste deficits in CALHM1 knockout mice. Chem Senses 2014; 39: 515–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sclafani A, Marambaud P, Ackroff K . Sucrose-conditioned flavor preferences in sweet ageusic T1r3 and Calhm1 knockout mice. Physiol Behav 2014; 126: 25–29.

    Article  CAS  PubMed  Google Scholar 

  17. Taruno A, Vingtdeux V, Ohmoto M, Ma Z, Dvoryanchikov G, Li A et al. CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. Nature 2013; 495: 223–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu J, Peng S, Wu R, Hao Y, Ji G, Yuan Z . Generation of Calhm1 knockout mouse and characterization of calhm1 gene expression. Protein Cell 2012; 3: 470–480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fellin T, Sul JY, D'Ascenzo M, Takano H, Pascual O, Haydon PG . Bidirectional astrocyte-neuron communication: the many roles of glutamate and ATP. Novartis Found Symp 2006; 276: 208–217.

    CAS  PubMed  Google Scholar 

  20. Marpegan L, Swanstrom AE, Chung K, Simon T, Haydon PG, Khan SK et al. Circadian regulation of ATP release in astrocytes. J Neurosci 2011; 31: 8342–8350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rial D, Lemos C, Pinheiro H, Duarte JM, Goncalves FQ, Real JI et al. Depression as a glial-based synaptic dysfunction. Front Cell Neurosci 2015; 9: 521.

    PubMed  Google Scholar 

  22. Cao X, Li LP, Wang Q, Wu Q, Hu HH, Zhang M et al. Astrocyte-derived ATP modulates depressive-like behaviors. Nat Med 2013; 19: 773–777.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang JM, Wang HK, Ye CQ, Ge W, Chen Y, Jiang ZL et al. ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 2003; 40: 971–982.

    Article  CAS  PubMed  Google Scholar 

  24. Yang J, Yang H, Liu Y, Li X, Qin L, Lou H et al. Astrocytes contribute to synapse elimination via type 2 inositol 1,4,5-trisphosphate receptor-dependent release of ATP. eLife 2016; 5: e15043.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bowser DN, Khakh BS . ATP excites interneurons and astrocytes to increase synaptic inhibition in neuronal networks. J Neurosci 2004; 24: 8606–8620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Torres A, Wang F, Xu Q, Fujita T, Dobrowolski R, Willecke K et al. Extracellular Ca(2)(+) acts as a mediator of communication from neurons to glia. Science Signal 2012; 5: ra8.

    Article  Google Scholar 

  27. Orellana JA, Froger N, Ezan P, Jiang JX, Bennett MV, Naus CC et al. ATP and glutamate released via astroglial connexin 43 hemichannels mediate neuronal death through activation of pannexin 1 hemichannels. J Neurochem 2011; 118: 826–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kang J, Kang N, Lovatt D, Torres A, Zhao Z, Lin J et al. Connexin 43 hemichannels are permeable to ATP. J Neurosci 2008; 28: 4702–4711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wallraff A, Kohling R, Heinemann U, Theis M, Willecke K, Steinhauser C . The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J Neurosci 2006; 26: 5438–5447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu HT, Sabirov RZ, Okada Y . Oxygen-glucose deprivation induces ATP release via maxi-anion channels in astrocytes. Purinergic Signal 2008; 4: 147–154.

    Article  CAS  PubMed  Google Scholar 

  31. Lalo U, Palygin O, Rasooli-Nejad S, Andrew J, Haydon PG, Pankratov Y . Exocytosis of ATP from astrocytes modulates phasic and tonic inhibition in the neocortex. PLoS Biol 2014; 12: e1001747.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Verderio C, Cagnoli C, Bergami M, Francolini M, Schenk U, Colombo A et al. TI-VAMP/VAMP7 is the SNARE of secretory lysosomes contributing to ATP secretion from astrocytes. Biol Cell 2012; 104: 213–228.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Z, Chen G, Zhou W, Song A, Xu T, Luo Q et al. Regulated ATP release from astrocytes through lysosome exocytosis. Nat Cell Biol 2007; 9: 945–953.

    Article  CAS  PubMed  Google Scholar 

  34. Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY et al. Astrocytic purinergic signaling coordinates synaptic networks. Science 2005; 310: 113–116.

    Article  CAS  PubMed  Google Scholar 

  35. Cotrina ML, Lin JH, Alves-Rodrigues A, Liu S, Li J, Azmi-Ghadimi H et al. Connexins regulate calcium signaling by controlling ATP release. Proc Natl Acad Sci USA 1998; 95: 15735–15740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Surget A, Saxe M, Leman S, Ibarguen-Vargas Y, Chalon S, Griebel G et al. Drug-dependent requirement of hippocampal neurogenesis in a model of depression and of antidepressant reversal. Biol Psychiatry 2008; 64: 293–301.

    Article  CAS  PubMed  Google Scholar 

  37. Monleon S, D'Aquila P, Parra A, Simon VM, Brain PF, Willner P . Attenuation of sucrose consumption in mice by chronic mild stress and its restoration by imipramine. Psychopharmacology 1995; 117: 453–457.

    Article  CAS  PubMed  Google Scholar 

  38. Roybal K, Theobold D, Graham A, DiNieri JA, Russo SJ, Krishnan V et al. Mania-like behavior induced by disruption of CLOCK. Proc Natl Acad Sci USA 2007; 104: 6406–6411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 2000; 28: 41–51.

    Article  CAS  PubMed  Google Scholar 

  40. Coco S, Calegari F, Pravettoni E, Pozzi D, Taverna E, Rosa P et al. Storage and release of ATP from astrocytes in culture. J Biol Chem 2003; 278: 1354–1362.

    Article  CAS  PubMed  Google Scholar 

  41. Sultan S, Li L, Moss J, Petrelli F, Casse F, Gebara E et al. Synaptic integration of adult-born hippocampal neurons is locally controlled by astrocytes. Neuron 2015; 88: 957–972.

    Article  CAS  PubMed  Google Scholar 

  42. Fields RD, Woo DH, Basser PJ . Glial regulation of the neuronal connectome through local and long-distant communication. Neuron 2015; 86: 374–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Haydon PG . GLIA: listening and talking to the synapse. Nat Rev Neurosci 2001; 2: 185–193.

    Article  CAS  PubMed  Google Scholar 

  44. Sala C, Segal M . Dendritic spines: the locus of structural and functional plasticity. Physiol Rev 2014; 94: 141–188.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank Dr. Xu Zhiheng (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China) for advices about measuring neural dendritic spine density. We are grateful to Dr. Ji Guangju (Institute of Biophysics, Chinese Academy of Sciences, Beijing, China), Dr. Wang Yun (Neuroscience Research Institute, School of Basic Medical Science, Peking University, Beijing, China) and Dr. Zhao Yongfang (Institute of Biophysics, Chinese Academy of Sciences, Beijing, China) for helpful discussions and technical help. This work was supported by grants from the National Nature Science Foundation of China (Grant No. 81230026, 81125010, 81030025 and 81400987) and the Beijing Nature Science Foundation (7132147).

Author contributions

MJ, QX and YZ conceived, designed and directed the project, and wrote the manuscript. YC and ZC performed electrophysiological recordings and analysis. PR and WS conducted primary cell culturing. WJ, LY and HL conducted mice genotyping. CH, CJ and WR conducted drug delivery. ML helped to perform microdialysis analysis and WF constructed genomic mice strains. WZ, AJ, WY and ZX helped with data interpretation. YZ supervised the project and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Zengqiang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jun, M., Xiaolong, Q., Chaojuan, Y. et al. Calhm2 governs astrocytic ATP releasing in the development of depression-like behaviors. Mol Psychiatry 23, 883–891 (2018). https://doi.org/10.1038/mp.2017.229

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2017.229

This article is cited by

Search

Quick links