Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The schizophrenia risk gene ZNF804A: clinical associations, biological mechanisms and neuronal functions

Abstract

ZNF804A (zinc-finger protein 804A) has been recognized as a schizophrenia risk gene across multiple world populations. Its intronic single-nucleotide polymorphism (SNP) rs1344706 is among one of the strongest susceptibility variants that have achieved genome-wide significance in genome-wide association studies (GWAS) for schizophrenia and has been widely and intensively studied. To elucidate the biological mechanisms underlying the genetic risk conferred by rs1344706, we retrospectively analyzed the progresses in brain gene expression quantitative trait loci (eQTL) analyses, ZNF804A-induced pathway alterations in neural cells and changes in synaptic phenotypes associated with ZNF804A expression. Based on these data, we hypothesize a potential biological mechanism for a genetic risk allele of ZNF804A in schizophrenia pathogenesis. We also review the efforts being made to characterize the affected intermediate phenotypes using neuroimaging and neuropsychological approaches. We then discuss additional common and rare ZNF804A variants in schizophrenia susceptibility and the potential genetic heterogeneity of these genomic loci between Europeans and Asians. This review for we believe the first time systematically presents the evidence for ZNF804A, describing its discovery and likely roles in brain development and schizophrenia pathogenesis. We believe that this work has summarized this information with a systemic and broad assessment of recent findings.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Saha S, Chant D, Welham J, McGrath J . A systematic review of the prevalence of schizophrenia. PLoS Med 2005; 2: e141.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sullivan PF, Kendler KS, Neale MC . Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 2003; 60: 1187–1192.

    Article  PubMed  Google Scholar 

  3. Kendler KS, Diehl SR . The genetics of schizophrenia: a current, genetic–epidemiologic perspective. Schizophr Bull 1993; 19: 261–285.

    Article  CAS  PubMed  Google Scholar 

  4. Maki P, Veijola J, Jones PB, Murray GK, Koponen H, Tienari P et al. Predictors of schizophrenia—a review. Br Med Bull 2005; 73-74: 1–15.

    Article  PubMed  Google Scholar 

  5. Luo XJ, Li M, Huang L, Steinberg S, Mattheisen M, Liang G et al. Convergent lines of evidence support CAMKK2 as a schizophrenia susceptibility gene. Mol Psychiatry 2014; 19: 774–783.

    Article  CAS  PubMed  Google Scholar 

  6. Li M, Mo Y, Luo XJ, Xiao X, Shi L, Peng YM et al. Genetic association and identification of a functional SNP at GSK3beta for schizophrenia susceptibility. Schizophr Res 2011; 133: 165–171.

    Article  PubMed  Google Scholar 

  7. Zhang W, Xiao MS, Ji S, Tang J, Xu L, Li X et al. Promoter variant rs2301228 on the neural cell adhesion molecule 1 gene confers risk of schizophrenia in Han Chinese. Schizophr Res 2014; 160: 88–96.

    Article  PubMed  Google Scholar 

  8. Huffaker SJ, Chen J, Nicodemus KK, Sambataro F, Yang F, Mattay V et al. A primate-specific, brain isoform of KCNH2 affects cortical physiology, cognition, neuronal repolarization and risk of schizophrenia. Nat Med 2009; 15: 509–518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. O'Donovan MC, Craddock N, Norton N, Williams H, Peirce T, Moskvina V et al. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet 2008; 40: 1053–1055.

    Article  CAS  PubMed  Google Scholar 

  10. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014; 511: 421–427.

    Article  CAS  PubMed Central  Google Scholar 

  11. Ripke S, O'Dushlaine C, Chambert K, Moran JL, Kahler AK, Akterin S et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 2013; 45: 1150–1159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ripke S, Sanders AR, Kendler KS, Levinson DF, Sklar P, Holmans PA et al. Genome-wide association study identifies five new schizophrenia loci. Nat Genet 2011; 43: 969–976.

    Article  CAS  Google Scholar 

  13. Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009; 460: 748–752.

    Article  CAS  PubMed  Google Scholar 

  14. Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe'er I et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 2009; 460: 753–757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shi Y, Li Z, Xu Q, Wang T, Li T, Shen J et al. Common variants on 8p12 and 1q24.2 confer risk of schizophrenia. Nat Genet 2011; 43: 1224–1227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D et al. Common variants conferring risk of schizophrenia. Nature 2009; 460: 744–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yue WH, Wang HF, Sun LD, Tang FL, Liu ZH, Zhang HX et al. Genome-wide association study identifies a susceptibility locus for schizophrenia in Han Chinese at 11p11.2. Nat Genet 2011; 43: 1228–1231.

    Article  CAS  PubMed  Google Scholar 

  18. Bergen SE, O'Dushlaine CT, Ripke S, Lee PH, Ruderfer DM, Akterin S et al. Genome-wide association study in a Swedish population yields support for greater CNV and MHC involvement in schizophrenia compared with bipolar disorder. Mol Psychiatry 2012; 17: 880–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Manolio TA . Genomewide association studies and assessment of the risk of disease. N Engl J Med 2010; 363: 166–176.

    Article  CAS  PubMed  Google Scholar 

  20. Riley B, Thiselton D, Maher BS, Bigdeli T, Wormley B, McMichael GO et al. Replication of association between schizophrenia and ZNF804A in the Irish case–control study of Schizophrenia sample. Mol Psychiatry 2010; 15: 29–37.

    Article  CAS  PubMed  Google Scholar 

  21. Steinberg S, Mors O, Borglum AD, Gustafsson O, Werge T, Mortensen PB et al. Expanding the range of ZNF804A variants conferring risk of psychosis. Mol Psychiatry 2011; 16: 59–66.

    Article  CAS  PubMed  Google Scholar 

  22. Williams HJ, Norton N, Dwyer S, Moskvina V, Nikolov I, Carroll L et al. Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. Mol Psychiatry 2011; 16: 429–441.

    Article  CAS  PubMed  Google Scholar 

  23. Zollner S, Pritchard JK . Overcoming the winner's curse: estimating penetrance parameters from case–control data. Am J Hum Genet 2007; 80: 605–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nci-Nhgri Working Group on Replication in Association Studies Chanock SJ Manolio T Boehnke M Boerwinkle E Hunter DJ et al. Replicating genotype–phenotype associations. Nature 2007; 447: 655–660.

    Article  CAS  Google Scholar 

  25. Clarke R, Xu P, Bennett D, Lewington S, Zondervan K, Parish S et al. Lymphotoxin-alpha gene and risk of myocardial infarction in 6,928 cases and 2,712 controls in the ISIS case-control study. PLoS Genet 2006; 2: e107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Donohoe G, Morris DW, Corvin A . The psychosis susceptibility gene ZNF804A: associations, functions, and phenotypes. Schizophr Bull 2010; 36: 904–909.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Richards AL, Jones L, Moskvina V, Kirov G, Gejman PV, Levinson DF et al. Schizophrenia susceptibility alleles are enriched for alleles that affect gene expression in adult human brain. Mol Psychiatry 2012; 17: 193–201.

    Article  CAS  PubMed  Google Scholar 

  28. Bacanu SA, Chen J, Sun J, Richardson K, Lai CQ, Zhao Z et al. Functional SNPs are enriched for schizophrenia association signals. Mol Psychiatry 2014; 19: 276–277.

    Article  CAS  PubMed  Google Scholar 

  29. Hill MJ, Bray NJ . Evidence that schizophrenia risk variation in the ZNF804A gene exerts its effects during fetal brain development. Am J Psychiatry 2012; 169: 1301–1308.

    Article  PubMed  Google Scholar 

  30. Tao R, Cousijn H, Jaffe AE, Burnet PW, Edwards F, Eastwood SL et al. Expression of ZNF804A in human brain and alterations in schizophrenia, bipolar disorder, and major depressive disorder: a novel transcript fetally regulated by the psychosis risk variant rs1344706. JAMA Psychiatry 2014; 71: 1112–1120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guella I, Sequeira A, Rollins B, Morgan L, Myers RM, Watson SJ et al. Evidence of allelic imbalance in the schizophrenia susceptibility gene ZNF804A in human dorsolateral prefrontal cortex. Schizophr Res 2014; 152: 111–116.

    Article  PubMed  Google Scholar 

  32. Guella I, Vawter MP . Allelic imbalance associated with the schizophrenia risk SNP rs1344706 indicates a cis-acting variant in ZNF804A. Schizophr Res 2014; 153: 243–245.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Schultz CC, Nenadic I, Riley B, Vladimirov VI, Wagner G, Koch K et al. ZNF804A and cortical structure in schizophrenia: in vivo and postmortem studies. Schizophr Bull 2014; 40: 532–541.

    Article  PubMed  Google Scholar 

  34. Hill MJ, Bray NJ . Allelic differences in nuclear protein binding at a genome-wide significant risk variant for schizophrenia in ZNF804A. Mol Psychiatry 2011; 16: 787–789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Klug A . The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu Rev Biochem 2010; 79: 213–231.

    Article  CAS  PubMed  Google Scholar 

  36. Klug A, Rhodes D . Zinc fingers: a novel protein fold for nucleic acid recognition. Cold Spring Harb Symp Quant Biol 1987; 52: 473–482.

    Article  CAS  PubMed  Google Scholar 

  37. Brown RS . Zinc finger proteins: getting a grip on RNA. Curr Opin Struct Biol 2005; 15: 94–98.

    Article  CAS  PubMed  Google Scholar 

  38. Berg JM . Zinc fingers and other metal-binding domains. Elements for interactions between macromolecules. J Biol Chem 1990; 265: 6513–6516.

    CAS  PubMed  Google Scholar 

  39. Laity JH, Lee BM, Wright PE . Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 2001; 11: 39–46.

    Article  CAS  PubMed  Google Scholar 

  40. Hill MJ, Jeffries AR, Dobson RJ, Price J, Bray NJ . Knockdown of the psychosis susceptibility gene ZNF804A alters expression of genes involved in cell adhesion. Hum Mol Genet 2012; 21: 1018–1024.

    Article  CAS  PubMed  Google Scholar 

  41. Chen J, Lin M, Hrabovsky A, Pedrosa E, Dean J, Jain S et al. ZNF804A transcriptional networks in differentiating neurons derived from induced pluripotent stem cells of human origin. PLoS One 2015; 10: e0124597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Girgenti MJ, LoTurco JJ, Maher BJ . ZNF804a regulates expression of the schizophrenia-associated genes PRSS16, COMT, PDE4B, and DRD2. PLoS One 2012; 7: e32404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chung HJ, Lee JY, Deocaris CC, Min H, Kim SH, Kim MH . Mouse homologue of the schizophrenia susceptibility gene ZNF804A as a target of Hoxc8. J Biomed Biotechnol 2010; 2010: 231708.

    PubMed  PubMed Central  Google Scholar 

  44. Hinna KH, Rich K, Fex-Svenningsen A, Benedikz E . The rat homolog of the schizophrenia susceptibility gene ZNF804A is highly expressed during brain development, particularly in growth cones. PLoS One 2015; 10: e0132456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chang EH, Kirtley A, Chandon TS, Borger P, Husain-Krautter S, Vingtdeux V et al. Postnatal neurodevelopmental expression and glutamate-dependent regulation of the ZNF804A rodent homologue. Schizophr Res 2015; 168: 402–410.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Deans MPJ, Raval P, Sellers JK, Gatford JFN, Halai S, Duarte RRR et al. Psychosis risk candidate ZNF804A localizes to synapses and regulates neurite formation and dendritic spine structure. Biol Psychiatry 2016; doi:10.1016/j.biopsych.2016.08.038.

  47. Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM . Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 2011; 14: 285–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Konopaske GT, Lange N, Coyle JT, Benes FM . Prefrontal cortical dendritic spine pathology in schizophrenia and bipolar disorder. JAMA Psychiatry 2014; 71: 1323–1331.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hattori T, Shimizu S, Koyama Y, Yamada K, Kuwahara R, Kumamoto N et al. DISC1 regulates cell–cell adhesion, cell-matrix adhesion and neurite outgrowth. Mol Psychiatry 2010; 15: 798–809.

    Article  CAS  Google Scholar 

  50. Ito H, Morishita R, Shinoda T, Iwamoto I, Sudo K, Okamoto K et al. Dysbindin-1, WAVE2 and Abi-1 form a complex that regulates dendritic spine formation. Mol Psychiatry 2010; 15: 976–986.

    Article  CAS  PubMed  Google Scholar 

  51. Ochs SM, Dorostkar MM, Aramuni G, Schon C, Filser S, Poschl J et al. Loss of neuronal GSK3beta reduces dendritic spine stability and attenuates excitatory synaptic transmission via beta-catenin. Mol Psychiatry 2015; 20: 482–489.

    Article  CAS  PubMed  Google Scholar 

  52. Meyer-Lindenberg A, Weinberger DR . Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat Rev Neurosci 2006; 7: 818–827.

    Article  CAS  PubMed  Google Scholar 

  53. Rasetti R, Weinberger DR . Intermediate phenotypes in psychiatric disorders. Curr Opin Genet Dev 2011; 21: 340–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gottesman II, Gould TD . The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 2003; 160: 636–645.

    Article  PubMed  Google Scholar 

  55. Greenwood TA, Braff DL, Light GA, Cadenhead KS, Calkins ME, Dobie DJ et al. Initial heritability analyses of endophenotypic measures for schizophrenia: the consortium on the genetics of schizophrenia. Arch Gen Psychiatry 2007; 64: 1242–1250.

    Article  PubMed  Google Scholar 

  56. Meyer-Lindenberg A, Nichols T, Callicott JH, Ding J, Kolachana B, Buckholtz J et al. Impact of complex genetic variation in COMT on human brain function. Mol Psychiatry 2006; 11: 867–877.

    Article  CAS  PubMed  Google Scholar 

  57. Nicodemus KK, Luna A, Vakkalanka R, Goldberg T, Egan M, Straub RE et al. Further evidence for association between ErbB4 and schizophrenia and influence on cognitive intermediate phenotypes in healthy controls. Mol Psychiatry 2006; 11: 1062–1065.

    Article  CAS  PubMed  Google Scholar 

  58. Eisenberg DP, Ianni AM, Wei SM, Kohn PD, Kolachana B, Apud J et al. Brain-derived neurotrophic factor (BDNF) Val(66)Met polymorphism differentially predicts hippocampal function in medication-free patients with schizophrenia. Mol Psychiatry 2013; 18: 713–720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Papaleo F, Burdick MC, Callicott JH, Weinberger DR . Epistatic interaction between COMT and DTNBP1 modulates prefrontal function in mice and in humans. Mol Psychiatry 2014; 19: 311–316.

    Article  CAS  PubMed  Google Scholar 

  60. Esslinger C, Walter H, Kirsch P, Erk S, Schnell K, Arnold C et al. Neural mechanisms of a genome-wide supported psychosis variant. Science 2009; 324: 605.

    Article  CAS  PubMed  Google Scholar 

  61. Esslinger C, Kirsch P, Haddad L, Mier D, Sauer C, Erk S et al. Cognitive state and connectivity effects of the genome-wide significant psychosis variant in ZNF804A. Neuroimage 2011; 54: 2514–2523.

    Article  PubMed  Google Scholar 

  62. Paulus FM, Krach S, Bedenbender J, Pyka M, Sommer J, Krug A et al. Partial support for ZNF804A genotype-dependent alterations in prefrontal connectivity. Hum Brain Mapp 2013; 34: 304–313.

    Article  PubMed  Google Scholar 

  63. Walter H, Schnell K, Erk S, Arnold C, Kirsch P, Esslinger C et al. Effects of a genome-wide supported psychosis risk variant on neural activation during a theory-of-mind task. Mol Psychiatry 2010; 16: 462–470.

    Article  CAS  PubMed  Google Scholar 

  64. Mohnke S, Erk S, Schnell K, Schutz C, Romanczuk-Seiferth N, Grimm O et al. Further evidence for the impact of a genome-wide-supported psychosis risk variant in ZNF804A on the Theory of Mind Network. Neuropsychopharmacology 2014; 39: 1196–1205.

    Article  CAS  PubMed  Google Scholar 

  65. Rasetti R, Sambataro F, Chen Q, Callicott JH, Mattay VS, Weinberger DR . Altered cortical network dynamics: a potential intermediate phenotype for schizophrenia and association with ZNF804A. Arch Gen Psychiatry 2011; 68: 1207–1217.

    Article  PubMed  Google Scholar 

  66. Thurin K, Rasetti R, Sambataro F, Safrin M, Chen Q, Callicott JH et al. Effects of ZNF804A on neurophysiologic measures of cognitive control. Mol Psychiatry 2013; 18: 852–854.

    Article  CAS  PubMed  Google Scholar 

  67. Cousijn H, Rijpkema M, Harteveld A, Harrison PJ, Fernandez G, Franke B et al. Schizophrenia risk gene ZNF804A does not influence macroscopic brain structure: an MRI study in 892 volunteers. Mol Psychiatry 2012; 17: 1155–1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wassink TH, Epping EA, Rudd D, Axelsen M, Ziebell S, Fleming FW et al. Influence of ZNF804a on brain structure volumes and symptom severity in individuals with schizophrenia. Arch Gen Psychiatry 2012; 69: 885–892.

    Article  CAS  PubMed  Google Scholar 

  69. Lencz T, Szeszko PR, DeRosse P, Burdick KE, Bromet EJ, Bilder RM et al. A schizophrenia risk gene, ZNF804A, influences neuroanatomical and neurocognitive phenotypes. Neuropsychopharmacology 2010; 35: 2284–2291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Voineskos AN, Lerch JP, Felsky D, Tiwari A, Rajji TK, Miranda D et al. The ZNF804A gene: characterization of a novel neural risk mechanism for the major psychoses. Neuropsychopharmacology 2011; 36: 1871–1878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Walters JT, Corvin A, Owen MJ, Williams H, Dragovic M, Quinn EM et al. Psychosis susceptibility gene ZNF804A and cognitive performance in schizophrenia. Arch Gen Psychiatry 2010; 67: 692–700.

    Article  CAS  PubMed  Google Scholar 

  72. Chen M, Xu Z, Zhai J, Bao X, Zhang Q, Gu H et al. Evidence of IQ-modulated association between ZNF804A gene polymorphism and cognitive function in schizophrenia patients. Neuropsychopharmacology 2012; 37: 1572–1578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hargreaves A, Morris DW, Rose E, Fahey C, Moore S, Cummings E et al. ZNF804A and social cognition in patients with schizophrenia and healthy controls. Mol Psychiatry 2012; 17: 118–119.

    Article  CAS  PubMed  Google Scholar 

  74. Stefanis NC, Hatzimanolis A, Avramopoulos D, Smyrnis N, Evdokimidis I, Stefanis CN et al. Variation in psychosis gene ZNF804A is associated with a refined schizotypy phenotype but not neurocognitive performance in a large young male population. Schizophr Bull 2013; 39: 1252–1260.

    Article  PubMed  Google Scholar 

  75. Zhang F, Chen Q, Ye T, Lipska BK, Straub RE, Vakkalanka R et al. Evidence of sex-modulated association of ZNF804A with schizophrenia. Biol Psychiatry 2011; 69: 914–917.

    Article  CAS  PubMed  Google Scholar 

  76. Owen MJ, Craddock N, O'Donovan MC . Suggestion of roles for both common and rare risk variants in genome-wide studies of schizophrenia. Arch Gen Psychiatry 2010; 67: 667–673.

    Article  CAS  PubMed  Google Scholar 

  77. Xu B, Roos JL, Levy S, van Rensburg EJ, Gogos JA, Karayiorgou M . Strong association of de novo copy number mutations with sporadic schizophrenia. Nat Genet 2008; 40: 880–885.

    Article  CAS  PubMed  Google Scholar 

  78. International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 2008; 455: 237–241.

    Article  CAS  Google Scholar 

  79. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008; 320: 539–543.

    Article  CAS  PubMed  Google Scholar 

  80. Stefansson H, Rujescu D, Cichon S, Pietilainen OP, Ingason A, Steinberg S et al. Large recurrent microdeletions associated with schizophrenia. Nature 2008; 455: 232–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Vacic V, McCarthy S, Malhotra D, Murray F, Chou HH, Peoples A et al. Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia. Nature 2011; 471: 499–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ikeda M, Aleksic B, Kirov G, Kinoshita Y, Yamanouchi Y, Kitajima T et al. Copy number variation in schizophrenia in the Japanese population. Biol Psychiatry 2010; 67: 283–286.

    Article  PubMed  Google Scholar 

  83. Li Z, Chen J, Xu Y, Yi Q, Ji W, Wang P et al. Genome-wide analysis of the role of copy number variation in schizophrenia risk in Chinese. Biol Psychiatry 2016; 80: 331–337.

    Article  PubMed  Google Scholar 

  84. Kushima I, Aleksic B, Nakatochi M, Shimamura T, Shiino T, Yoshimi A et al. High-resolution copy number variation analysis of schizophrenia in Japan. Mol Psychiatry 2017; 22: 430–440.

    Article  CAS  PubMed  Google Scholar 

  85. Szatkiewicz JP, O'Dushlaine C, Chen G, Chambert K, Moran JL, Neale BM et al. Copy number variation in schizophrenia in Sweden. Mol Psychiatry 2014; 19: 762–773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dwyer S, Williams H, Holmans P, Moskvina V, Craddock N, Owen MJ et al. No evidence that rare coding variants in ZNF804A confer risk of schizophrenia. Am J Med Genet B 2010; 153B: 1411–1416.

    Article  CAS  Google Scholar 

  87. Purcell SM, Moran JL, Fromer M, Ruderfer D, Solovieff N, Roussos P et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 2014; 506: 185–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 2014; 506: 179–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Girard SL, Gauthier J, Noreau A, Xiong L, Zhou S, Jouan L et al. Increased exonic de novo mutation rate in individuals with schizophrenia. Nat Genet 2011; 43: 860–863.

    Article  CAS  PubMed  Google Scholar 

  90. Xu B, Roos JL, Dexheimer P, Boone B, Plummer B, Levy S et al. Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat Genet 2011; 43: 864–868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Singh T, Kurki MI, Curtis D, Purcell SM, Crooks L, McRae J et al. Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders. Nat Neurosci 2016; 19: 571–577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mossner R, Schuhmacher A, Wagner M, Lennertz L, Steinbrecher A, Quednow BB et al. The schizophrenia risk gene ZNF804A influences the antipsychotic response of positive schizophrenia symptoms. Eur Arch Psychiatry Clin Neurosci 2012; 262: 193–197.

    Article  PubMed  Google Scholar 

  93. Zhang J, Wu X, Diao F, Gan Z, Zhong Z, Wei Q et al. Association analysis of ZNF804A (zinc finger protein 804A) rs1344706 with therapeutic response to atypical antipsychotics in first-episode Chinese patients with schizophrenia. Compr Psychiatry 2012; 53: 1044–1048.

    Article  PubMed  Google Scholar 

  94. Zhang R, Lu SM, Qiu C, Liu XG, Gao CG, Guo TW et al. Population-based and family-based association studies of ZNF804A locus and schizophrenia. Mol Psychiatry 2011; 16: 360–361.

    Article  CAS  PubMed  Google Scholar 

  95. Schwab SG, Kusumawardhani AA, Dai N, Qin W, Wildenauer MD, Agiananda F et al. Association of rs1344706 in the ZNF804A gene with schizophrenia in a case/control sample from Indonesia. Schizophr Res 2013; 147: 46–52.

    Article  PubMed  Google Scholar 

  96. Li M, Luo XJ, Xiao X, Shi L, Liu XY, Yin LD et al. Allelic differences between Han Chinese and Europeans for functional variants in ZNF804A and their association with schizophrenia. Am J Psychiatry 2011; 168: 1318–1325.

    Article  PubMed  Google Scholar 

  97. Lan X, Wei L, Wu X, Diao F, Tang X, Li L et al. Association analysis of ZNF804A rs1344706 polymorphism and schizophrenia. Chin J Nerv Ment Dis 2013; 39: 213–217.

    CAS  Google Scholar 

  98. Wang J, Zhao S, Shugart YY, Zhou Z, Jin C, Yuan J et al. No association between ZNF804A rs1344706 and schizophrenia in a case-control study of Han Chinese. Neurosci Lett 2016; 618: 14–18.

    Article  CAS  PubMed  Google Scholar 

  99. Liou YJ, Wang HH, Lee MT, Wang SC, Chiang HL, Chen CC et al. Genome-wide association study of treatment refractory schizophrenia in Han Chinese. PLoS One 2012; 7: e33598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wong EH, So HC, Li M, Wang Q, Butler AW, Paul B et al. Common variants on Xq28 conferring risk of schizophrenia in Han Chinese. Schizophr Bull 2014; 40: 777–786.

    Article  PubMed  Google Scholar 

  101. Li M, Zhang H, Luo XJ, Gao L, Qi XB, Gourraud PA et al. Meta-analysis indicates that the European GWAS-identified risk SNP rs1344706 within ZNF804A is not associated with schizophrenia in Han Chinese population. PLoS One 2013; 8: e65780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sun Y, Hu D, Liang J, Bao YP, Meng SQ, Lu L et al. Association between variants of zinc finger genes and psychiatric disorders: systematic review and meta-analysis. Schizophr Res 2015; 162: 124–137.

    Article  PubMed  Google Scholar 

  103. Huang L, Ohi K, Chang H, Yu H, Wu L, Yue W et al. A comprehensive meta-analysis of ZNF804A SNPs in the risk of schizophrenia among Asian populations. Am J Med Genet B 2016; 171B: 437–446.

    Article  CAS  Google Scholar 

  104. Li M, Shi CJ, Shi YY, Luo XJ, Zheng XB, Li ZQ et al. ZNF804A and schizophrenia susceptibility in Asian populations. Am J Med Genet B 2012; 159B: 794–802.

    Article  CAS  Google Scholar 

  105. Zhang R, Yan JD, Valenzuela RK, Lu SM, Du XY, Zhong B et al. Further evidence for the association of genetic variants of ZNF804A with schizophrenia and a meta-analysis for genome-wide significance variant rs1344706. Schizophr Res 2012; 141: 40–47.

    Article  PubMed  Google Scholar 

  106. Li M, Su B . Meta-analysis supports association of a non-synonymous SNP in ZNF804A with schizophrenia. Schizophr Res 2013; 149: 188–189.

    Article  PubMed  Google Scholar 

  107. Umeda-Yano S, Hashimoto R, Yamamori H, Okada T, Yasuda Y, Ohi K et al. The regulation of gene expression involved in TGF-beta signaling by ZNF804A, a risk gene for schizophrenia. Schizophr Res 2013; 146: 273–278.

    Article  PubMed  Google Scholar 

  108. Schanze D, Ekici AB, Gawlik M, Pfuhlmann B, Reis A, Stober G . Evaluation of risk loci for schizophrenia derived from genome-wide association studies in a German population. Am J Med Genet B 2011; 156: 198–203.

    Article  CAS  Google Scholar 

  109. Yang Y, Li W, Yang G, Xiao B, Wang X, Ding M et al. Evaluation of the relationship between the ZNF804A single nucleotide polymorphism rs1344706 A/C variant and schizophrenia subtype in Han Chinese patients. Int J Psychiatry Med 2013; 45: 269–278.

    Article  PubMed  Google Scholar 

  110. Aberg KA, Liu Y, Bukszar J, McClay JL, Khachane AN, Andreassen OA et al. A comprehensive family-based replication study of schizophrenia genes. JAMA Psychiatry 2013; 70: 573–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Saito T, Kondo K, Iwayama Y, Shimasaki A, Aleksic B, Yamada K et al. Replication and cross-phenotype study based upon schizophrenia GWASs data in the Japanese population: support for association of MHC region with psychosis. Am J Med Genet B 2014; 165B: 421–427.

    Article  CAS  Google Scholar 

  112. Stepanov VA, Bocharova AV, Saduakassova KZ, Marusin AV, Koneva LA, Vagaitseva KV et al. Replicative study of susceptibility to childhood-onset schizophrenia in Kazakhs. Genetika 2015; 51: 227–235.

    CAS  PubMed  Google Scholar 

  113. Xiao B, Li W, Zhang H, Lv L, Song X, Yang Y et alTo the editor: association of ZNF804A polymorphisms with schizophrenia and antipsychotic drug efficacy in a Chinese Han population. Psychiatry Res 2011; 190: 379–381.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by CAS Pioneer Hundred Talents Program (to ML).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Li.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, H., Xiao, X. & Li, M. The schizophrenia risk gene ZNF804A: clinical associations, biological mechanisms and neuronal functions. Mol Psychiatry 22, 944–953 (2017). https://doi.org/10.1038/mp.2017.19

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2017.19

This article is cited by

Search

Quick links