Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Prenatal one-carbon metabolism dysregulation programs schizophrenia-like deficits

Abstract

The methionine-folate cycle-dependent one-carbon metabolism is implicated in the pathophysiology of schizophrenia. Since schizophrenia is a developmental disorder, we examined the effects that perturbation of the one-carbon metabolism during gestation has on mice progeny. Pregnant mice were administered methionine equivalent to double their daily intake during the last week of gestation. Their progeny (MET mice) exhibited schizophrenia-like social deficits, cognitive impairments and elevated stereotypy, decreased neurogenesis and synaptic plasticity, and abnormally reduced local excitatory synaptic connections in CA1 neurons. Neural transcript expression of only one gene, encoding the Npas4 transcription factor, was >twofold altered (downregulated) in MET mice; strikingly, similar Npas4 downregulation occurred in the prefrontal cortex of human patients with schizophrenia. Finally, therapeutic actions of typical (haloperidol) and atypical (clozapine) antipsychotics in MET mice mimicked effects in human schizophrenia patients. Our data support the validity of MET mice as a model for schizophrenia, and uncover methionine metabolism as a potential preventive and/or therapeutic target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Loenen WA . S-adenosylmethionine: jack of all trades and master of everything? Biochem Soc Trans 2006; 34 (Pt 2): 330–333.

    Article  CAS  PubMed  Google Scholar 

  2. Kim M, Park YK, Kang TW, Lee SH, Rhee YH, Park JL et al. Dynamic changes in DNA methylation and hydroxymethylation when hES cells undergo differentiation toward a neuronal lineage. Hum Mol Genet 2014; 23: 657–667.

    Article  CAS  PubMed  Google Scholar 

  3. Chen Y, Ozturk NC, Zhou FC . DNA methylation program in developing hippocampus and its alteration by alcohol. PLoS ONE 2013; 8: e60503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Horvath S, Zhang Y, Langfelder P, Kahn RS, Boks MP, van Eijk K et al. Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biol 2012; 13: R97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu H, Coskun V, Tao J, Xie W, Ge W, Yoshikawa K et al. Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science 2010; 329: 444–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Krebs MO, Bellon A, Mainguy G, Jay TM, Frieling H . One-carbon metabolism and schizophrenia: current challenges and future directions. Trends Mol Med 2009; 15: 562–570.

    Article  CAS  PubMed  Google Scholar 

  7. Pollin W, Cardon PV Jr, Kety SS . Effects of amino acid feedings in schizophrenic patients treated with iproniazid. Science 1961; 133: 104–105.

    Article  CAS  PubMed  Google Scholar 

  8. Antun FT, Burnett GB, Cooper AJ, Daly RJ, Smythies JR, Zealley AK . The effects of L-methionine (without MAOI) in schizophrenia. J Psychiatr Res 1971; 8: 63–71.

    Article  CAS  PubMed  Google Scholar 

  9. Osmond H, Smythies J . Schizophrenia: a new approach. J Ment Sci 1952; 98: 309–315.

    Article  CAS  PubMed  Google Scholar 

  10. Hei G, Pang L, Chen X, Zhang W, Zhu Q, Lu L et al. Association of serum folic acid and homocysteine levels and 5, 10-methylenetetrahydrofolate reductase gene polymorphism with schizophrenia. Zhonghua Yi Xue Za Zhi 2014; 94: 2897–2901.

    CAS  PubMed  Google Scholar 

  11. Kale A, Naphade N, Sapkale S, Kamaraju M, Pillai A, Joshi S et al. Reduced folic acid, vitamin B12 and docosahexaenoic acid and increased homocysteine and cortisol in never-medicated schizophrenia patients: implications for altered one-carbon metabolism. Psychiatry Res 2010; 175: 47–53.

    Article  CAS  PubMed  Google Scholar 

  12. Hu CY, Qian ZZ, Gong FF, Lu SS, Feng F, Wu YL et al. Methylenetetrahydrofolate reductase (MTHFR) polymorphism susceptibility to schizophrenia and bipolar disorder: an updated meta-analysis. J Neural Transm 2014; 122: 307–320.

    Article  PubMed  Google Scholar 

  13. Jadavji NM, Bahous RH, Deng L, Malysheva O, Grand'maison M, Bedell BJ et al. Mouse model for deficiency of methionine synthase reductase exhibits short-term memory impairment and disturbances in brain choline metabolism. Biochem J 2014; 461: 205–212.

    Article  CAS  PubMed  Google Scholar 

  14. Nohesara S, Ghadirivasfi M, Mostafavi S, Eskandari MR, Ahmadkhaniha H, Thiagalingam S et al. DNA hypomethylation of MB-COMT promoter in the DNA derived from saliva in schizophrenia and bipolar disorder. J Psychiatr Res 2011; 45: 1432–1438.

    Article  PubMed  Google Scholar 

  15. Roffman JL, Weiss AP, Deckersbach T, Freudenreich O, Henderson DC, Wong DH et al. Interactive effects of COMT Val108/158Met and MTHFR C677T on executive function in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 990–995.

    Article  CAS  PubMed  Google Scholar 

  16. Lajin B, Alhaj Sakur A, Michati R, Alachkar A . Association between MTHFR C677T and A1298C, and MTRR A66G polymorphisms and susceptibility to schizophrenia in a Syrian study cohort. Asian J Psychiatry 2012; 5: 144–149.

    Article  Google Scholar 

  17. Roffman JL, Brohawn DG, Nitenson AZ, Macklin EA, Smoller JW, Goff DC . Genetic variation throughout the folate metabolic pathway influences negative symptom severity in schizophrenia. Schizophr Bull 2013; 39: 330–338.

    Article  PubMed  Google Scholar 

  18. Saradalekshmi KR, Neetha NV, Sathyan S, Nair IV, Nair CM, Banerjee M . DNA methyl transferase (DNMT) gene polymorphisms could be a primary event in epigenetic susceptibility to schizophrenia. PLoS ONE 2014; 9: e98182.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cordero P, Milagro FI, Campion J, Martinez JA . Maternal methyl donors supplementation during lactation prevents the hyperhomocysteinemia induced by a high-fat-sucrose intake by dams. Int J Mol Sci 2013; 14: 24422–24437.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dominguez-Salas P, Moore SE, Baker MS, Bergen AW, Cox SE, Dyer RA et al. Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat Commun 2014; 5: 3746.

    Article  CAS  PubMed  Google Scholar 

  21. Xu J, He G, Zhu J, Zhou X St, Clair D, Wang T et al. Prenatal nutritional deficiency reprogrammed postnatal gene expression in mammal brains: implications for schizophrenia. Int J Neuropsychopharmacol 2014; 18.

  22. Picker JD, Coyle JT . Do maternal folate and homocysteine levels play a role in neurodevelopmental processes that increase risk for schizophrenia? Harv Rev Psychiatry 2005; 13: 197–205.

    Article  PubMed  Google Scholar 

  23. Waterland RA, Kellermayer R, Laritsky E, Rayco-Solon P, Harris RA, Travisano M et al. Season of conception in rural gambia affects DNA methylation at putative human metastable epialleles. PLoS Genet 2010; 6: e1001252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brown AS, Bottiglieri T, Schaefer CA, Quesenberry CP Jr, Liu L, Bresnahan M et al. Elevated prenatal homocysteine levels as a risk factor for schizophrenia. Arch Gen Psychiatry 2007; 64: 31–39.

    Article  CAS  PubMed  Google Scholar 

  25. Wang L, Alachkar A, Sanathara N, Belluzzi JD, Wang Z, Civelli O . A methionine-induced animal model of schizophrenia: face and predictive validity. Int J Neuropsychopharmacol 2015; 18.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Paylor R, Spencer CM, Yuva-Paylor LA, Pieke-Dahl S . The use of behavioral test batteries, II: effect of test interval. Physiol Behav 2006; 87: 95–102.

    Article  CAS  PubMed  Google Scholar 

  27. McIlwain KL, Merriweather MY, Yuva-Paylor LA, Paylor R . The use of behavioral test batteries: effects of training history. Physiol Behav 2001; 73: 705–717.

    Article  CAS  PubMed  Google Scholar 

  28. McNamara RK, Logue A, Stanford K, Xu M, Zhang J, Richtand NM . Dose-response analysis of locomotor activity and stereotypy in dopamine D3 receptor mutant mice following acute amphetamine. Synapse 2006; 60: 399–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kaidanovich-Beilin O, Lipina T, Vukobradovic I, Roder J, Woodgett JR . Assessment of social interaction behaviors. J Vis Exp 2011.

  30. Risbrough V, Ji B, Hauger R, Zhou X . Generation and characterization of humanized mice carrying COMT158 Met/Val alleles. Neuropsychopharmacology 2014; 39: 1823–1832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McQuown SC, Barrett RM, Matheos DP, Post RJ, Rogge GA, Alenghat T et al. HDAC3 is a critical negative regulator of long-term memory formation. J Neurosci 2011; 31: 764–774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Duangdao DM, Clark SD, Okamura N, Reinscheid RK . Behavioral phenotyping of neuropeptide S receptor knockout mice. Behav Brain Res 2009; 205: 1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Errico F, Rossi S, Napolitano F, Catuogno V, Topo E, Fisone G et al. D-aspartate prevents corticostriatal long-term depression and attenuates schizophrenia-like symptoms induced by amphetamine and MK-801. J Neurosci 2008; 28: 10404–10414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. G Paxinos KF . The Mouse Brain in Stereotaxic Coordinates. Academic Press: London, UK, 2001.

    Google Scholar 

  35. Heerdt PM, Kant R, Hu Z, Kanda VA, Christini DJ, Malhotra JK et al. Transcriptomic analysis reveals atrial KCNE1 down-regulation following lung lobectomy. J Mol Cell Cardiol 2012; 53: 350–353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nagasaki H, Wang Z, Jackson VR, Lin S, Nothacker HP, Civelli O . Differential expression of the thyrostimulin subunits, glycoprotein alpha2 and beta5 in the rat pituitary. J Mol Endocrinol 2006; 37: 39–50.

    Article  CAS  PubMed  Google Scholar 

  37. San Antonio A, Liban K, Ikrar T, Tsyganovskiy E, Xu X . Distinct physiological and developmental properties of hippocampal CA2 subfield revealed by using anti-Purkinje cell protein 4 (PCP4) immunostaining. J Comp Neurol 2014; 522: 1333–1354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu X, Roby KD, Callaway EM . Immunochemical characterization of inhibitory mouse cortical neurons: three chemically distinct classes of inhibitory cells. J Comp Neurol 2010; 518: 389–404.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Shi Y, Nenadic Z, Xu X . Novel use of matched filtering for synaptic event detection and extraction. PLoS ONE 2010; 5: e15517.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Maycox PR, Kelly F, Taylor A, Bates S, Reid J, Logendra R et al. Analysis of gene expression in two large schizophrenia cohorts identifies multiple changes associated with nerve terminal function. Mol Psychiatry 2009; 14: 1083–1094.

    Article  CAS  PubMed  Google Scholar 

  41. Carpenter WT Jr., Buchanan RW, Kirkpatrick B, Tamminga C, Wood F . Strong inference, theory testing, and the neuroanatomy of schizophrenia. Arch Gen Psychiatry 1993; 50: 825–831.

    Article  PubMed  Google Scholar 

  42. Bloodgood BL, Sharma N, Browne HA, Trepman AZ, Greenberg ME . The activity-dependent transcription factor NPAS4 regulates domain-specific inhibition. Nature 2013; 503: 121–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Spiegel I, Mardinly AR, Gabel HW, Bazinet JE, Couch CH, Tzeng CP et al. Npas4 regulates excitatory-inhibitory balance within neural circuits through cell-type-specific gene programs. Cell 2014; 157: 1216–1229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Maya-Vetencourt JF . Activity-dependent NPAS4 expression and the regulation of gene programs underlying plasticity in the central nervous system. Neural Plast 2013; 2013: 683909.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ramamoorthi K, Fropf R, Belfort GM, Fitzmaurice HL, McKinney RM, Neve RL et al. Npas4 regulates a transcriptional program in CA3 required for contextual memory formation. Science 2011; 334: 1669–1675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Alberini CM . Transcription factors in long-term memory and synaptic plasticity. Physiol Rev 2009; 89: 121–145.

    Article  CAS  PubMed  Google Scholar 

  47. Chowdhury S, Shepherd JD, Okuno H, Lyford G, Petralia RS, Plath N et al. Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron 2006; 52: 445–459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Plath N, Ohana O, Dammermann B, Errington ML, Schmitz D, Gross C et al. Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron 2006; 52: 437–444.

    Article  CAS  PubMed  Google Scholar 

  49. West AE, Greenberg ME . Neuronal activity-regulated gene transcription in synapse development and cognitive function. Cold Spring Harb Perspect in Biol 2011; 3: a005744.

    Article  Google Scholar 

  50. Coutellier L, Beraki S, Ardestani PM, Saw NL, Shamloo M . Npas4: a neuronal transcription factor with a key role in social and cognitive functions relevant to developmental disorders. PLoS ONE 2012; 7: e46604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Klaric TS, Thomas PQ, Dottori M, Leong WK, Koblar SA, Lewis MD . A reduction in Npas4 expression results in delayed neural differentiation of mouse embryonic stem cells. Stem Cell Res Ther 2014; 5: 64.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Toro R, Konyukh M, Delorme R, Leblond C, Chaste P, Fauchereau F et al. Key role for gene dosage and synaptic homeostasis in autism spectrum disorders. Trends Genet 2010; 26: 363–372.

    Article  CAS  PubMed  Google Scholar 

  53. Auerbach BD, Osterweil EK, Bear MF . Mutations causing syndromic autism define an axis of synaptic pathophysiology. Nature 2011; 480: 63–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Grant SG . Synaptopathies: diseases of the synaptome. Curr Opin Neurobiol 2012; 22: 522–529.

    Article  CAS  PubMed  Google Scholar 

  55. Gkogkas CG, Khoutorsky A, Ran I, Rampakakis E, Nevarko T, Weatherill DB et al. Autism-related deficits via dysregulated eIF4E-dependent translational control. Nature 2013; 493: 371–377.

    Article  CAS  PubMed  Google Scholar 

  56. Ripke S, O'Dushlaine C, Chambert K, Moran JL, Kahler AK, Akterin S et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 2013; 45: 1150–1159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hagger C, Buckley P, Kenny JT, Friedman L, Ubogy D, Meltzer HY . Improvement in cognitive functions and psychiatric symptoms in treatment-refractory schizophrenic patients receiving clozapine. Biol Psychiatry 1993; 34: 702–712.

    Article  CAS  PubMed  Google Scholar 

  58. Nielsen RE, Levander S, Kjaersdam Telleus G, Jensen SO, Ostergaard Christensen T, Leucht S . Second-generation antipsychotic effect on cognition in patients with schizophrenia—a meta-analysis of randomized clinical trials. Acta Psychiatr Scand 2015; 131: 185–196.

    Article  CAS  PubMed  Google Scholar 

  59. Keefe RS, Silva SG, Perkins DO, Lieberman JA . The effects of atypical antipsychotic drugs on neurocognitive impairment in schizophrenia: a review and meta-analysis. Schizophr Bull 1999; 25: 201–222.

    Article  CAS  PubMed  Google Scholar 

  60. Woodward ND, Purdon SE, Meltzer HY, Zald DH . A meta-analysis of neuropsychological change to clozapine, olanzapine, quetiapine, and risperidone in schizophrenia. Int J Neuropsychopharmacol 2005; 8: 457–472.

    Article  CAS  PubMed  Google Scholar 

  61. Keefe RS, Bilder RM, Davis SM, Harvey PD, Palmer BW, Gold JM et al. Neurocognitive effects of antipsychotic medications in patients with chronic schizophrenia in the CATIE trial. Arch Gen Psychiatry 2007; 64: 633–647.

    Article  CAS  PubMed  Google Scholar 

  62. Meltzer HY . Pharmacotherapy of cognition in schizophrenia. Curr Opin Behav Sci 2015; 4: 115–121.

    Article  Google Scholar 

  63. Gottesman II, Gould TD . The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 2003; 160: 636–645.

    Article  PubMed  Google Scholar 

  64. Hasler G, Drevets WC, Gould TD, Gottesman II, Manji HK . Toward constructing an endophenotype strategy for bipolar disorders. Biol Psychiatry 2006; 60: 93–105.

    Article  PubMed  Google Scholar 

  65. Faucher MA . Folic acid supplementation before and in early pregnancy may decrease risk for autism. J Midwifery Women Health 2013; 58: 471–472.

    Article  Google Scholar 

  66. Jones P . Schizophrenia after prenatal exposure to the Dutch hunger winter of 1944-1945. Arch Gen Psychiatry 1994; 51: 333–334.

    Article  CAS  PubMed  Google Scholar 

  67. Hoek HW, Susser E, Buck KA, Lumey LH, Lin SP, Gorman JM . Schizoid personality disorder after prenatal exposure to famine. Am J Psychiatry 1996; 153: 1637–1639.

    Article  CAS  PubMed  Google Scholar 

  68. St Clair D, Xu M, Wang P, Yu Y, Fang Y, Zhang F et al. Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959-1961. JAMA 2005; 294: 557–562.

    Article  CAS  PubMed  Google Scholar 

  69. Cao B, Wang DF, Xu MY, Liu YQ, Yan LL, Wang JY et al. Lower folate levels in schizophrenia: a meta-analysis. Psychiatry Res 2016; 245: 1–7.

    Article  CAS  PubMed  Google Scholar 

  70. Wang D, Zhai JX, Liu DW . Serum folate levels in schizophrenia: a meta-analysis. Psychiatry Res 2016; 235: 83–89.

    Article  CAS  PubMed  Google Scholar 

  71. Roffman JL, Lamberti JS, Achtyes E, Macklin EA, Galendez GC, Raeke LH et al. Randomized multicenter investigation of folate plus vitamin B12 supplementation in schizophrenia. JAMA Psychiatry 2013; 70: 481–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Canever L, Alves CS, Mastella G, Damazio L, Polla JV, Citadin S et al. The evaluation of folic acid-deficient or folic acid-supplemented diet in the gestational phase of female rats and in their adult offspring subjected to an animal model of schizophrenia. Mol Neurobiol 2017; 1–20.

  73. van Os J . Schizophrenia after prenatal famine. Arch Gen Psychiatry 1997; 54: 577–578.

    Article  CAS  PubMed  Google Scholar 

  74. Pitkin RM . Folate and neural tube defects. Am J Clin Nutr 2007; 85: 285S–288SS.

    Article  CAS  PubMed  Google Scholar 

  75. Bahous RH, Jadavji NM, Deng L, Cosín-Tomás M, Lu J, Malysheva O et al. High dietary folate in pregnant mice leads to pseudo-MTHFR deficiency and altered methyl metabolism, with embryonic growth delay and short-term memory impairment in offspring. Hum Mol Genet 2017; 26: 888–900.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kearney J . Food consumption trends and drivers. Philos Trans R Soci Lond B Biol Sci 2010; 365: 2793–2807.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Health (DA024746), CART and Eric L and Lila D Nelson Chair in Neuropharmacology. AA is supported by the Institute of International Education IIE-SRF fellowship.

Author contributions

AA and OC conceived the project and wrote the manuscript. AA, OC and LW designed the experiments. AA, LW, RY, SML and ZW conducted the experiments, ARH carried out the genetic analyses, XX and GWA supervised the transcriptomic and electrophysiological studies and helped with the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alachkar, A., Wang, L., Yoshimura, R. et al. Prenatal one-carbon metabolism dysregulation programs schizophrenia-like deficits. Mol Psychiatry 23, 282–294 (2018). https://doi.org/10.1038/mp.2017.164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2017.164

This article is cited by

Search

Quick links