Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A neurogenetic model for the study of schizophrenia spectrum disorders: the International 22q11.2 Deletion Syndrome Brain Behavior Consortium

Abstract

Rare copy number variants contribute significantly to the risk for schizophrenia, with the 22q11.2 locus consistently implicated. Individuals with the 22q11.2 deletion syndrome (22q11DS) have an estimated 25-fold increased risk for schizophrenia spectrum disorders, compared to individuals in the general population. The International 22q11DS Brain Behavior Consortium is examining this highly informative neurogenetic syndrome phenotypically and genomically. Here we detail the procedures of the effort to characterize the neuropsychiatric and neurobehavioral phenotypes associated with 22q11DS, focusing on schizophrenia and subthreshold expression of psychosis. The genomic approach includes a combination of whole-genome sequencing and genome-wide microarray technologies, allowing the investigation of all possible DNA variation and gene pathways influencing the schizophrenia-relevant phenotypic expression. A phenotypically rich data set provides a psychiatrically well-characterized sample of unprecedented size (n=1616) that informs the neurobehavioral developmental course of 22q11DS. This combined set of phenotypic and genomic data will enable hypothesis testing to elucidate the mechanisms underlying the pathogenesis of schizophrenia spectrum disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. CNV and Schizophrenia Working Groups of the Psychiatric Genomics Consortium. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat Genet 2017; 49: 27–35.

    Article  CAS  Google Scholar 

  2. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008; 320: 539–543.

    Article  CAS  PubMed  Google Scholar 

  3. International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 2008; 455: 237–241.

    Article  CAS  Google Scholar 

  4. Bassett AS, Scherer SW, Brzustowicz LM . Copy number variations in schizophrenia: critical review and new perspectives on concepts of genetics and disease. Am J Psychiatry 2010; 167: 899–914.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shprintzen RJ, Goldberg R, Golding-Kushner KJ, Marion RW . Late-onset psychosis in the velo-cardio-facial syndrome. Am J Med Genet 1992; 42: 141–142.

    Article  CAS  PubMed  Google Scholar 

  6. Chow EW, Bassett AS, Weksberg R . Velo-cardio-facial syndrome and psychotic disorders: implications for psychiatric genetics. Am J Med Genet A 1994; 54: 107–112.

    Article  CAS  Google Scholar 

  7. Karayiorgou M, Morris MA, Morrow B, Shprintzen RJ, Goldberg R, Borrow J et al. Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. Proc Natl Acad Sci USA 1995; 92: 7612–7616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gothelf D, Frisch A, Munitz H, Rockah R, Aviram A, Mozes T et al. Velocardiofacial manifestations and microdeletions in schizophrenic inpatients. Am J Med Genet A 1997; 72: 455–461.

    Article  CAS  Google Scholar 

  9. Bassett AS, Hodgkinson K, Chow EW, Correia S, Scutt LE, Weksberg R . 22q11 deletion syndrome in adults with schizophrenia. Am J Med Genet 1998; 81: 328–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bassett AS, Chow EW . 22q11 deletion syndrome: a genetic subtype of schizophrenia. Biol Psychiatry 1999; 46: 882–891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Murphy KC, Jones LA, Owen MJ . High rates of schizophrenia in adults with velo-cardio-facial syndrome. Arch Gen Psychiatry 1999; 56: 940–945.

    Article  CAS  PubMed  Google Scholar 

  12. Costain G, Lionel AC, Merico D, Forsythe P, Russell K, Lowther C et al. Pathogenic rare copy number variants in community-based schizophrenia suggest a potential role for clinical microarrays. Hum Mol Genet 2013; 22: 4485–4501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McDonald-McGinn DM, Sullivan KE, Marino B, Philip N, Swillen A, Vorstman JAS et al. 22q11.2 deletion syndrome. Nat Rev Dis Prim 2015; 1: 15071.

    Article  PubMed  Google Scholar 

  14. Insel TR . Rethinking schizophrenia. Nature 2010; 468: 187–193.

    Article  CAS  PubMed  Google Scholar 

  15. Merico D, Zarrei M, Costain G, Ogura L, Alipanahi B, Gazzellone MJ et al. Whole-genome sequencing suggests schizophrenia risk mechanisms in humans with 22q11.2 deletion syndrome. G3 2015; 5: 2453–2461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meechan DW, Maynard TM, Tucker ES, Fernandez A, Karpinski BA, Rothblat LA et al. Modeling a model: Mouse genetics, 22q11.2 Deletion Syndrome, and disorders of cortical circuit development. Prog Neurobiol 2015; 130: 1–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Puech A, Saint-Jore B, Funke B, Gilbert DJ, Sirotkin H, Copeland NG et al. Comparative mapping of the human 22q11 chromosomal region and the orthologous region in mice reveals complex changes in gene organization. Proc Natl Acad Sci USA 1997; 94: 14608–14613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guna A, Butcher NJ, Bassett AS . Comparative mapping of the 22q11.2 deletion region and the potential of simple model organisms. J Neurodev Disord 2015; 7: 18.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shaikh TH, Kurahashi H, Saitta SC, O'Hare AM, Hu P, Roe BA et al. Chromosome 22-specific low copy repeats and the 22q11.2 deletion syndrome: genomic organization and deletion endpoint analysis. Hum Mol Genet 2000; 9: 489–501.

    Article  CAS  PubMed  Google Scholar 

  20. Edelmann L, Pandita RK, Spiteri E, Funke B, Goldberg R, Palanisamy N et al. A common molecular basis for rearrangement disorders on chromosome 22q11. Hum Mol Genet 1999; 8: 1157–1167.

    Article  CAS  PubMed  Google Scholar 

  21. Edelmann L, Pandita RK, Morrow BE . Low-copy repeats mediate the common 3- Mb deletion in patients with velo-cardio-facial syndrome. Am J Hum Genet 1999; 64: 1076–1086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schneider M, Debbané M, Bassett AS, Chow EWC, Fung WLA, Van den Bree MBM et al. Psychiatric disorders from childhood to adulthood in 22q11.2 deletion syndrome: results from the International Consortium on Brain and Behavior in 22q11.2 deletion syndrome. Am J Psychiat 2014; 171: 627–639.

    Article  PubMed  Google Scholar 

  23. Green T, Gothelf D, Glaser B, Debbane M, Frisch A, Kotler M et al. Psychiatric disorders and intellectual functioning throughout development in velocardiofacial (22q11.2 deletion) syndrome. J Am Acad Child Adolesc Psychiatry 2009; 48: 1060–1068.

    Article  PubMed  Google Scholar 

  24. Gur RE, Yi JJ, McDonald-McGinn DM, Tang SX, Calkins ME, Whinna D et al. Neurocognitive development in 22q11.2 deletion syndrome: comparison with youth having developmental delay and medical comorbidities. Mol Psychiatry 2014; 19: 1205–1211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tang SX, Yi JJ, Calkins ME, Whinna DA, Kohler CG, Souders MC et al. Psychiatric disorders in 22q11.2 deletion syndrome are prevalent but undertreated. Psychol Med 2014; 44: 1267–1277.

    Article  CAS  PubMed  Google Scholar 

  26. Niarchou M, Martin J, Thapar A, Owen MJ, van den Bree MB . The clinical presentation of attention deficit-hyperactivity disorder (ADHD) in children with 22q11.2 deletion syndrome. Am J Med Genet B Neuropsychiatr Genet 2015; 168: 730–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Morgan VA, Leonard H, Bourke J, Jablensky A . Intellectual disability co-occurring with schizophrenia and other psychiatric illness: population-based study. Br J Psychiatry 2008; 193: 364–372.

    Article  PubMed  Google Scholar 

  28. Karayiorgou M, Simon TJ, Gogos JA . 22q11.2 microdeletions: linking DNA structural variation to brain dysfunction and schizophrenia. Nat Rev Neurosci 2010; 11: 402–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jonas RK, Montojo CA, Bearden CE . The 22q11.2 deletion syndrome as a window into complex neuropsychiatric disorders over the lifespan. Biol Psychiatry 2014; 75: 351–360.

    Article  CAS  PubMed  Google Scholar 

  30. Hiroi N, Takahashi T, Hishimoto A, Izumi T, Boku S, Hiramoto T . Copy number variation at 22q11.2: from rare variants to common mechanisms of developmental neuropsychiatric disorders. Mol Psychiatry 2013; 18: 1153–1165.

    Article  CAS  PubMed  Google Scholar 

  31. Tamura M, Mukai J, Gordon JA, Gogos JA . Developmental inhibition of Gsk3 rescues behavioral and neurophysiological deficits in a mouse model of schizophrenia predisposition. Neuron 2016; 89: 1100–1109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hamm JP, Peterka DS, Gogos JA, Yuste R . Altered cortical ensembles in mouse models of schizophrenia. Neuron 2017; 94: 153–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bassett AS, Chow EW, Husted J, Weksberg R, Caluseriu O, Webb GD et al. Clinical features of 78 adults with 22q11 deletion syndrome. Am J Med Genet A 2005; 138: 307–313.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Murphy KC . Schizophrenia and velo-cardio-facial syndrome. Lancet 2002; 359: 426–430.

    Article  PubMed  Google Scholar 

  35. Bassett AS, Chow EW, AbdelMalik P, Gheorghiu M, Husted J, Weksberg R . The schizophrenia phenotype in 22q11 deletion syndrome. Am J Psychiat 2003; 160: 1580–1586.

    Article  PubMed  Google Scholar 

  36. Butcher N, Fung W, Fitzpatrick L, Guna A, Andrade D, Lang A et al. Response to clozapine in a clinically identifiable subtype of schizophrenia. Br J Psychiat 2015; 206: 484–491.

    Article  Google Scholar 

  37. Dori N, Green T, Weizman A, Gothelf D . The effectiveness and safety of antipsychotic and antidepressant medications in individuals with 22q11.2 deletion syndrome. J Child Adolesc Psychopharmacol 2017; 27: 83–90.

    Article  CAS  PubMed  Google Scholar 

  38. Cannon TD, Cadenhead K, Cornblatt B, Woods SW, Addington J, Walker E et al. Prediction of psychosis in youth at high clinical risk: a multisite longitudinal study in North America. Arch Gen Psychiatry 2008; 65: 28–37.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fusar-Poli P, Rutigliano G, Stahl D, Schmidt A, Ramella-Cravaro V, Hitesh S et al. Deconstructing pretest risk enrichment to optimize prediction of psychosis in individuals at clinical high risk. JAMA Psychiatry 2016; 73: 1260–1267.

    Article  PubMed  Google Scholar 

  40. Kelleher I, Connor D, Clarke MC, Devlin N, Harley M, Cannon M . Prevalence of psychotic symptoms in childhood and adolescence: a systematic review and meta-analysis of population-based studies. Psychol Med 2012; 42: 1857–1863.

    Article  CAS  PubMed  Google Scholar 

  41. Calkins ME, Moore TM, Merikangas KR, Burstein M, Satterthwaite TD, Bilker WB et al. The psychosis spectrum in a young U.S. community sample: findings from the Philadelphia Neurodevelopmental Cohort. World Psychiatry 2014; 13: 296–305.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Seidman LJ, Shapiro DI, Stone WS, Woodberry KA, Ronzio A, Cornblatt BA et al. Association of neurocognition with transition to psychosis: baseline functioning in the second phase of the North American prodrome longitudinal study. JAMA Psychiatry 2016; 73: 1239–1248.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gur RC, Calkins ME, Satterthwaite TD, Ruparel K, Bilker WB, Moore TM et al. Neurocognitive growth charting in psychosis spectrum youths. JAMA Psychiatry 2014; 71: 366–374.

    Article  PubMed  Google Scholar 

  44. Satterthwaite TD, Vandekar SN, Wolf DH, Bassett DS, Ruparel K, Shehzad Z et al. Connectome-wide network analysis of youth with psychosis-spectrum symptoms. Mol Psychiatry 2015; 20: 1508–1515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hooper SR, Curtiss K, Schoch K, Keshavan MS, Allen A, Shashi V . A longitudinal examination of the psychoeducational, neurocognitive, and psychiatric functioning in children with 22q11.2 deletion syndrome. Res Dev Disabil 2013; 34: 1758–1769.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Duijff SN, Klaassen PW, Swanenburg de Veye HF, Beemer FA, Sinnema G, Vorstman JA . Cognitive and behavioral trajectories in 22q11DS from childhood into adolescence: a prospective 6-year follow-up study. Res Dev Disabil 2013; 34: 2937–2945.

    Article  PubMed  Google Scholar 

  47. Antshel KM, Fremont W, Ramanathan S, Kates WR . Predicting cognition and psychosis in young adults with 22q11.2 deletion syndrome. Schizophr Bull 2016; pii: sbw135 [e-pub ahead of print 25 October 2016].

  48. Tang SX, Yi JJ, Moore TM, Calkins ME, Kohler CG, Whinna DA et al. Subthreshold psychotic symptoms in 22q11.2 deletion syndrome. J Am Acad Child Adolesc Psychiatry 2014; 53: 991–1000, e1002.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Armando M, Girardi P, Vicari S, Menghini D, Digilio MC, Pontillo M et al. Adolescents at ultra-high risk for psychosis with and without 22q11 deletion syndrome: a comparison of prodromal psychotic symptoms and general functioning. Schizophr Res 2012; 139: 151–156.

    Article  PubMed  Google Scholar 

  50. Gothelf D, Schneider M, Green T, Debbane M, Frisch A, Glaser B et al. Risk factors and the evolution of psychosis in 22q11.2 deletion syndrome: a longitudinal 2-site study. J Am Acad Child Adolesc Psychiatry 2013; 52: 1192–1203.

    Article  PubMed  Google Scholar 

  51. Kahn RS, Keefe RS . Schizophrenia is a cognitive illness: time for a change in focus. JAMA Psychiatry 2013; 70: 1107–1112.

    Article  PubMed  Google Scholar 

  52. Meier MH, Caspi A, Reichenberg A, Keefe RS, Fisher HL, Harrington H et al. Neuropsychological decline in schizophrenia from the premorbid to the postonset period: evidence from a population-representative longitudinal study. Am J Psychiatry 2014; 171: 91–101.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Cannon M, Caspi A, Moffitt TE, Harrington H, Taylor A, Murray RM et al. Evidence for early-childhood, pan-developmental impairment specific to schizophreniform disorder: results from a longitudinal birth cohort. Arch Gen Psychiatry 2002; 59: 449–456.

    Article  PubMed  Google Scholar 

  54. Vorstman JA, Breetvelt E, Duijff SN, Jalbrzikowsk M, Vogels A, Swillen A et al. Cognitive decline preceding the onset of psychosis in patients with 22q11.2 deletion syndrome. JAMA Psychiatry 2015; 72: 377–385.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zai G, Robbins TW, Sahakian BJ, Kennedy JL . A review of molecular genetic studies of neurocognitive deficits in schizophrenia. Neurosci Biobehav Rev 2017; 72: 50–67.

    Article  CAS  PubMed  Google Scholar 

  56. Fusar-Poli P, Borgwardt S, Bechdolf A, Addington J, Riecher-Rossler A, Schultze-Lutter F et al. The psychosis high-risk state: a comprehensive state-of-the-art review. JAMA Psychiatry 2012; 70: 1–14.

    Google Scholar 

  57. Carrion RE, McLaughlin D, Auther AM, Olsen R, Correll CU, Cornblatt BA . The impact of psychosis on the course of cognition: a prospective, nested case-control study in individuals at clinical high-risk for psychosis. Psychol Med 2015; 45: 3341–3354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gur RC, Braff DL, Calkins ME, Dobie DJ, Freedman R, Green MF et al. Neurocognitive performance in family-based and case-control studies of schizophrenia. Schizophr Res 2015; 163: 17–23.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gur RE, Nimgaonkar VL, Almasy L, Calkins ME, Ragland JD, Pogue-Geile MF et al. Neurocognitive endophenotypes in a multiplex multigenerational family study of schizophrenia. Am J Psychiatry 2007; 164: 813–819.

    Article  PubMed  Google Scholar 

  60. Duijff SN, Klaassen PW, de Veye HF, Beemer FA, Sinnema G, Vorstman JA . Cognitive development in children with 22q11.2 deletion syndrome. Br J Psychiatry 2012; 200: 462–468.

    Article  PubMed  Google Scholar 

  61. De Smedt B, Devriendt K, Fryns JP, Vogels A, Gewillig M, Swillen A . Intellectual abilities in a large sample of children with velo-cardio-facial syndrome: an update. J Intellect Disabil Res 2007; 51: 666–670.

    Article  CAS  PubMed  Google Scholar 

  62. Chow EW, Watson M, Young DA, Bassett AS . Neurocognitive profile in 22q11 deletion syndrome and schizophrenia. Schizophr Res 2006; 87: 270–278.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Miller TJ, McGlashan TH, Rosen JL, Cadenhead K, Cannon T, Ventura J et al. Prodromal assessment with the structured interview for prodromal syndromes and the scale of prodromal symptoms: predictive validity, interrater reliability, and training to reliability. Schizophr Bull 2003; 29: 703–715.

    Article  PubMed  Google Scholar 

  64. First MB, Spitzer RL, Gibbon M et al. Structured Clinical Interview for DSM‐IV‐TR Axis I Disorders, Research Version, Patient Edition. Biometrics Research, New York State Psychiatric Institute: New York, 2002.

    Google Scholar 

  65. Kaufman J, Birmaher B, Brent D, Rao U, Flynn C, Moreci P et al. Schedule for Affective Disorders and Schizophrenia for School-Age Children—Present and Lifetime Version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry 1997; 36: 980–988.

    Article  CAS  PubMed  Google Scholar 

  66. Miller TJ, McGlashan TH, Rosen JL, Somjee L, Markovich PJ, Stein K et al. Prospective diagnosis of the initial prodrome for schizophrenia based on the Structured Interview for Prodromal Syndromes: preliminary evidence of interrater reliability and predictive validity. Am J Psychiatry 2002; 159: 863–865.

    Article  PubMed  Google Scholar 

  67. McGorry PD, Singh B Schizophrenia: risk and possibility. In: Burrows G (ed). Handbook of Studies on Preventive Psychiatry. Elsevier: Amsterdam, 1995, pp 491–514.

  68. Meienberg J, Bruggmann R, Oexle K, Matyas G . Clinical sequencing: is WGS the better WES? Hum Genet 2016; 135: 359–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Johnston HR, Chopra P, Wingo TS, Patel V International Consortium on Brain and Behavior in 22q11.2 Deletion Syndrome Epstein MP et al. PEMapper and PECaller provide a simplified approach to whole-genome sequencing. Proc Natl Acad Sci USA 2017; 114: E1923–E1932.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang K, Li M, Hakonarson H . ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 2010; 38: e164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM et al. A global reference for human genetic variation. Nature 2015; 526: 68–74.

    Article  CAS  Google Scholar 

  72. Tennessen JA, Bigham AW, O'Connor TD, Fu W, Kenny EE, Gravel S et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science 2012; 337: 64–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A . Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res 2010; 20: 110–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yuen RK, Thiruvahindrapuram B, Merico D, Walker S, Tammimies K, Hoang N et al. Whole-genome sequencing of quartet families with autism spectrum disorder. Nat Med 2015; 21: 185–191.

    Article  CAS  PubMed  Google Scholar 

  75. Karczewski KJ, Weisburd B, Thomas B, Solomonson M, Ruderfer DM, Kavanagh D et al. The ExAC browser: displaying reference data information from over 60 000 exomes. Nucleic Acids Res 2017; 45: D840–D845.

    Article  CAS  PubMed  Google Scholar 

  76. Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J . A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 2014; 46: 310–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P et al. A method and server for predicting damaging missense mutations. Nat Methods 2010; 7: 248–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gene Ontology C, Blake JA, Dolan M, Drabkin H, Hill DP, Li N et al. Gene ontology annotations and resources. Nucleic Acids Res 2013; 41: D530–D535.

    Article  CAS  Google Scholar 

  79. Zhu M, Need AC, Han Y, Ge D, Maia JM, Zhu Q et al. Using ERDS to infer copy-number variants in high-coverage genomes. Am J Hum Genet 2012; 91: 408–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Abyzov A, Urban AE, Snyder M, Gerstein M . CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res 2011; 21: 974–984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ye K, Schulz MH, Long Q, Apweiler R, Ning Z . Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 2009; 25: 2865–2871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang J, Mullighan CG, Easton J, Roberts S, Heatley SL, Ma J et al. CREST maps somatic structural variation in cancer genomes with base-pair resolution. Nat Methods 2011; 8: 652–654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mlynarski EE, Sheridan MB, Xie M, Guo T, Racedo SE, McDonald-McGinn DM et al. Copy-number variation of the glucose transporter gene SLC2A3 and congenital heart defects in the 22q11.2 deletion syndrome. Am J Hum Genet 2015; 96: 753–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mlynarski EE, Xie M, Taylor D, Sheridan MB, Guo T, Racedo SE et al. Rare copy number variants and congenital heart defects in the 22q11.2 deletion syndrome. Hum Genet 2016; 135: 273–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Schizophrenia Working Group of the PGC. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014; 511: 421–427.

    Article  CAS  Google Scholar 

  86. Bassett AS, Marshall CR, Lionel AC, Chow EW, Scherer SW . Copy number variations and risk for schizophrenia in 22q11.2 deletion syndrome. Hum Mol Genet 2008; 17: 4045–4053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bassett AS, Lowther C, Merico D, Costain G, Chow EWC, Van Amelsvoort T et al. Rare genome-wide copy number variation affects expression of schizophrenia in 22q11.2 deletion syndrome. Am J Psychiatry; e-pub ahead of print 28 July 2017.

  88. Hestand MS, Nowakowska BA, Vergaelen E, Van Houdt J, Dehaspe L, Suhl JA et al. A catalog of hemizygous variation in 127 22q11 deletion patients. Hum Genome Var 2016; 3: 15065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Guo X, Delio M, Haque N, Castellanos R, Hestand MS, Vermeesch JR et al. Variant discovery and breakpoint region prediction for studying the human 22q11.2 deletion using BAC clone and whole genome sequencing analysis. Hum Mol Genet 2016; 25: 3754–3767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bailey JA, Yavor AM, Viggiano L, Misceo D, Horvath JE, Archidiacono N et al. Human-specific duplication and mosaic transcripts: the recent paralogous structure of chromosome 22. Am J Hum Genet 2002; 70: 83–100.

    Article  CAS  PubMed  Google Scholar 

  91. Babcock M, Pavlicek A, Spiteri E, Kashork CD, Ioshikhes I, Shaffer LG et al. Shuffling of genes within low-copy repeats on 22q11 (LCR22) by Alu-mediated recombination events during evolution. Genome Res 2003; 13: 2519–2532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lee S, Emond MJ, Bamshad MJ, Barnes KC, Rieder MJ, Nickerson DA et al. Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing studies. Am J Hum Genet 2012; 91: 224–237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lin JR, Cai Y, Zhang Q, Zhang W, Nogales-Cadenas R, Zhang ZD . Integrated post-GWAS analysis sheds new light on the disease mechanisms of schizophrenia. Genetics 2016; 204: 1587–1600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dickson H, Laurens KR, Cullen AE, Hodgins S . Meta-analyses of cognitive and motor function in youth aged 16 years and younger who subsequently develop schizophrenia. Psychol Med 2012; 42: 743–755.

    Article  CAS  PubMed  Google Scholar 

  95. Weisman O, Guri Y, Gur RE, McDonald-McGinn DM, Calkins MET S . Subthreshold psychosis in 22q11.2 deletion syndrom: multi-site naturalistic study. Schizophr Bull, doi: 10.1093/schbul/sbx005 [e-pub ahead of print 13 February 2017].

  96. Lionel AC, Crosbie J, Barbosa N, Goodale T, Thiruvahindrapuram B, Rickaby J et al. Rare copy number variation discovery and cross-disorder comparisons identify risk genes for ADHD. Sci Transl Med 2011; 3: 95ra75.

    Article  CAS  PubMed  Google Scholar 

  97. Scherer SW, Lee C, Birney E, Altshuler DM, Eichler EE, Carter NP et al. Challenges and standards in integrating surveys of structural variation. Nat Genet 2007; 39: S7–S15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Korn JM, Kuruvilla FG, McCarroll SA, Wysoker A, Nemesh J, Cawley S et al. Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs. Nat Genet 2008; 40: 1253–1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature 2010; 466: 368–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Silversides CK, Lionel AC, Costain G, Merico D, Migita O, Liu B et al. Rare copy number variations in adults with tetralogy of Fallot implicate novel risk gene pathways. PLoS Genet 2012; 8: e1002843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 2008; 82: 477–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The IBBC is supported by the National Institute of Mental Health grants USA U01MH101719, U01MH0101720, CAN+: U01MH0101723, EUA: U01MH101722, EUB: U01MH101724. Additional support includes: NIH R01MH087626 (REG), R01MH087636 (BSE, DMM-M), R01MH085953 (CEB), Simons Foundation Explorer Award (CEB), RO1MH064824 (WRK), P01HD070454 (BEM, BSE, DMM-M), R01MH107018 (TJS), NIH U54 HD079125 MIND Institute Intellectual and Developmental Disabilities Research Center (TJS), the Emory Integrated Genomics Core (EIGC), which is subsidized by the Emory University School of Medicine and is one of the Emory Integrated Core Facilities, National Center for Advancing Translational Sciences of the National Institutes of Health under Award Number UL1TR000454, RW Woodruff Fund (JFC, OYO), the Canadian Institutes of Health Research (ASB, EWCC, MOP-74631, MOP-97800; ASB, MOP-111238), the Canada Research Chair in Schizophrenia Genetics and Genomic Disorders (ASB), Brain Canada Mental Health Training Award (NJB), Baily Thomas Charitable Trust (2315/1) (MvdB), The Waterloo Foundation (WF918-1234) (MvdB), Wellcome Trust ISSF grant (MvdB), A Medical Research Council (UK) Centre grant G0800509 (MO), CIBERSAM (CA), the Binational Science Foundation, grant number 2011378 (DG), FONDECYT-Chile #1130392 and 1171014 (GMR), Wellcome Trust 110222/Z/15/Z (MN), The FWO grant G.0E11.17 N (JRV), the Brain and Behavior Research Foundation 22597 (AW), the Swiss National Science Foundation (324730_144260) (SE), the EU IMI initiative EU AIMS (DM), the Brain and Behavior Research Foundation (JV), the Brain and Behavior Research Foundation 21278 (MA), the NHMRC 1072593 (AL). We thank the research teams across the international sites and the individuals and family members who have enabled the establishment of the Consortium and have contributed to advancing the understanding and treatment of 22q11DS.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to R E Gur or A S Bassett.

Ethics declarations

Competing interests

DMM-M has given lectures on 22q11DS for Natera; CA has been a consultant to or has received honoraria or grants from Abbot, AMGEN, AstraZeneca, CIBERSAM, Dainippon Sumitomo Pharma, Fundación Alicia Koplowitz, Forum, Instituto de Salud Carlos III, Gedeon Richter, Janssen Cilag, Lundbeck, Ministerio de Ciencia e Innovación, Ministerio de Sanidad, Ministerio de Economía y Competitividad, Mutua Madrileña, Otsuka, Pfizer, Roche, Servier, Shire, Schering Plough, Sunovio and Takeda. DF has been a consultant and/or advisor to or has received honoraria from AstraZeneca, Bristol-Myers Squibb, Eisai, Janssen, Lundbeck, Otsuka and Ministerio de Ciencia e Innovación, Ministerio de Sanidad, Ministerio de Economía. The other authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gur, R., Bassett, A., McDonald-McGinn, D. et al. A neurogenetic model for the study of schizophrenia spectrum disorders: the International 22q11.2 Deletion Syndrome Brain Behavior Consortium. Mol Psychiatry 22, 1664–1672 (2017). https://doi.org/10.1038/mp.2017.161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2017.161

This article is cited by

Search

Quick links