Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

BDNF at the synapse: why location matters

Abstract

Neurotrophic factors, a family of secreted proteins that support the growth, survival and differentiation of neurons, have been intensively studied for decades due to the powerful and diverse effects on neuronal physiology, as well as their therapeutic potential. Such efforts have led to a detailed understanding on the molecular mechanisms of neurotrophic factor signaling. One member, brain-derived neurotrophic factor (BDNF) has drawn much attention due to its pleiotropic roles in the central nervous system and implications in various brain disorders. In addition, recent advances linking the rapid-acting antidepressant, ketamine, to BDNF translation and BDNF-dependent signaling, has re-emphasized the importance of understanding the precise details of BDNF biology at the synapse. Although substantial knowledge related to the genetic, epigenetic, cell biological and biochemical aspects of BDNF biology has now been established, certain aspects related to the precise localization and release of BDNF at the synapse have remained obscure. A recent series of genetic and cell biological studies have shed light on the question—the site of BDNF release at the synapse. In this Perspectives article, these new insights will be placed in the context of previously unresolved issues related to BDNF biology, as well as how BDNF may function as a downstream mediator of newer pharmacological agents currently under investigation for treating psychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Thoenen H . The changing scene of neurotrophic factors. Trends Neurosci 1991; 14: 165–170.

    Article  CAS  Google Scholar 

  2. Chung WS, Welsh CA, Barres BA, Stevens B . Do glia drive synaptic and cognitive impairment in disease? Nat Neurosci 2015; 18: 1539–1545.

    Article  CAS  Google Scholar 

  3. Dieni S, Matsumoto T, Dekkers M, Rauskolb S, Ionescu MS, Deogracias R et al. BDNF and its pro-peptide are stored in presynaptic dense core vesicles in brain neurons. J Cell Biol 2012; 196: 775–788.

    Article  CAS  Google Scholar 

  4. Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR 3rd, Lafaille JJ et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 2013; 155: 1596–1609.

    Article  CAS  Google Scholar 

  5. Harward SC, Hedrick NG, Hall CE, Parra-Bueno P, Milner TA, Pan E et al. Autocrine BDNF-TrkB signalling within a single dendritic spine. Nature 2016; 538: 99–103.

    Article  CAS  Google Scholar 

  6. Hedrick NG, Harward SC, Hall CE, Murakoshi H, McNamara JO, Yasuda R . Rho GTPase complementation underlies BDNF-dependent homo- and heterosynaptic plasticity. Nature 2016; 538: 104–108.

    Article  CAS  Google Scholar 

  7. Chao MV . Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 2003; 4: 299–309.

    Article  CAS  Google Scholar 

  8. Lee FS, Kim AH, Khursigara G, Chao MV . The uniqueness of being a neurotrophin receptor. Curr Opin Neurobiol 2001; 11: 281–286.

    Article  CAS  Google Scholar 

  9. Lessmann V, Brigadski T . Mechanisms, locations, and kinetics of synaptic BDNF secretion: an update. Neurosci Res 2009; 65: 11–22.

    Article  CAS  Google Scholar 

  10. Chen ZY, Ieraci A, Teng H, Dall H, Meng CX, Herrera DG et al. Sortilin controls intracellular sorting of brain-derived neurotrophic factor to the regulated secretory pathway. J Neurosci 2005; 25: 6156–6166.

    Article  CAS  Google Scholar 

  11. Lou H, Kim SK, Zaitsev E, Snell CR, Lu B, Loh YP . Sorting and activity-dependent secretion of BDNF require interaction of a specific motif with the sorting receptor carboxypeptidase e. Neuron 2005; 45: 245–255.

    Article  CAS  Google Scholar 

  12. Dean C, Liu H, Dunning FM, Chang PY, Jackson MB, Chapman ER . Synaptotagmin-IV modulates synaptic function and long-term potentiation by regulating BDNF release. Nat Neurosci 2009; 12: 767–776.

    Article  CAS  Google Scholar 

  13. Shimojo M, Courchet J, Pieraut S, Torabi-Rander N, Sando R 3rd, Polleux F et al. SNAREs controlling vesicular release of BDNF and development of callosal axons. Cell Rep 2015; 11: 1054–1066.

    Article  CAS  Google Scholar 

  14. Hempstead BL . Deciphering proneurotrophin actions. Handb Exp Pharmacol 2014; 220: 17–32.

    Article  CAS  Google Scholar 

  15. Berg EA, Johnson RJ, Leeman SE, Boyd N, Kimerer L, Fine RE . Isolation and characterization of substance P-containing dense core vesicles from rabbit optic nerve and termini. J Neurosci Res 2000; 62: 830–839.

    Article  CAS  Google Scholar 

  16. Baquet ZC, Gorski JA, Jones KR . Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived neurotrophic factor. J Neurosci 2004; 24: 4250–4258.

    Article  CAS  Google Scholar 

  17. Anastasia A, Deinhardt K, Chao MV, Will NE, Irmady K, Lee FS et al. Val66Met polymorphism of BDNF alters prodomain structure to induce neuronal growth cone retraction. Nat Commun 2013; 4: 2490.

    Article  Google Scholar 

  18. Lang SB, Stein V, Bonhoeffer T, Lohmann C . Endogenous brain-derived neurotrophic factor triggers fast calcium transients at synapses in developing dendrites. J Neurosci 2007; 27: 1097–1105.

    Article  CAS  Google Scholar 

  19. Korte M, Carroll P, Wolf E, Brem G, Thoenen H, Bonhoeffer T . Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc Natl Acad Sci USA 1995; 92: 8856–8860.

    Article  CAS  Google Scholar 

  20. Patterson SL, Abel T, Deuel TA, Martin KC, Rose JC, Kandel ER . Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 1996; 16: 1137–1145.

    Article  CAS  Google Scholar 

  21. Zakharenko SS, Patterson SL, Dragatsis I, Zeitlin SO, Siegelbaum SA, Kandel ER et al. Presynaptic BDNF required for a presynaptic but not postsynaptic component of LTP at hippocampal CA1-CA3 synapses. Neuron 2003; 39: 975–990.

    Article  CAS  Google Scholar 

  22. Parpura V, Zorec R . Gliotransmission: exocytotic release from astrocytes. Brain Res Rev 2010; 63: 83–92.

    Article  CAS  Google Scholar 

  23. Gomes C, Ferreira R, George J, Sanches R, Rodrigues DI, Goncalves N et al. Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia. J Neuroinflamm 2013; 10: 16.

    Article  CAS  Google Scholar 

  24. Trang T, Beggs S, Wan X, Salter MW . P2X4-receptor-mediated synthesis and release of brain-derived neurotrophic factor in microglia is dependent on calcium and p38-mitogen-activated protein kinase activation. J Neurosci 2009; 29: 3518–3528.

    Article  CAS  Google Scholar 

  25. Miwa T, Furukawa S, Nakajima K, Furukawa Y, Kohsaka S . Lipopolysaccharide enhances synthesis of brain-derived neurotrophic factor in cultured rat microglia. J Neurosci Res 1997; 50: 1023–1029.

    Article  CAS  Google Scholar 

  26. Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 2005; 438: 1017–1021.

    Article  CAS  Google Scholar 

  27. Adachi N, Kohara K, Tsumoto T . Difference in trafficking of brain-derived neurotrophic factor between axons and dendrites of cortical neurons, revealed by live-cell imaging. BMC Neurosci 2005; 6: 42.

    Article  Google Scholar 

  28. Matsuda N, Lu H, Fukata Y, Noritake J, Gao H, Mukherjee S et al. Differential activity-dependent secretion of brain-derived neurotrophic factor from axon and dendrite. J Neurosci 2009; 29: 14185–14198.

    Article  CAS  Google Scholar 

  29. Brigadski T, Hartmann M, Lessmann V . Differential vesicular targeting and time course of synaptic secretion of the mammalian neurotrophins. J Neurosci 2005; 25: 7601–7614.

    Article  CAS  Google Scholar 

  30. Wong YH, Lee CM, Xie W, Cui B, Poo MM . Activity-dependent BDNF release via endocytic pathways is regulated by synaptotagmin-6 and complexin. Proc Natl Acad Sci USA 2015; 112: E4475–E4484.

    Article  CAS  Google Scholar 

  31. Baj G, Del Turco D, Schlaudraff J, Torelli L, Deller T, Tongiorgi E . Regulation of the spatial code for BDNF mRNA isoforms in the rat hippocampus following pilocarpine-treatment: a systematic analysis using laser microdissection and quantitative real-time PCR. Hippocampus 2013; 23: 413–423.

    Article  CAS  Google Scholar 

  32. Tongiorgi E, Righi M, Cattaneo A . Activity-dependent dendritic targeting of BDNF and TrkB mRNAs in hippocampal neurons. J Neurosci 1997; 17: 9492–9505.

    Article  CAS  Google Scholar 

  33. Aid T, Kazantseva A, Piirsoo M, Palm K, Timmusk T . Mouse and rat BDNF gene structure and expression revisited. J Neurosci Res 2007; 85: 525–535.

    Article  CAS  Google Scholar 

  34. Timmusk T, Palm K, Metsis M, Reintam T, Paalme V, Saarma M et al. Multiple promoters direct tissue-specific expression of the rat BDNF gene. Neuron 1993; 10: 475–489.

    Article  CAS  Google Scholar 

  35. Liu QR, Lu L, Zhu XG, Gong JP, Shaham Y, Uhl GR . Rodent BDNF genes, novel promoters, novel splice variants, and regulation by cocaine. Brain Res 2006; 1067: 1–12.

    Article  CAS  Google Scholar 

  36. Pruunsild P, Kazantseva A, Aid T, Palm K, Timmusk T . Dissecting the human BDNF locus: bidirectional transcription, complex splicing, and multiple promoters. Genomics 2007; 90: 397–406.

    Article  CAS  Google Scholar 

  37. Tongiorgi E . Activity-dependent expression of brain-derived neurotrophic factor in dendrites: facts and open questions. Neurosci Res 2008; 61: 335–346.

    Article  CAS  Google Scholar 

  38. Tongiorgi E, Armellin M, Giulianini PG, Bregola G, Zucchini S, Paradiso B et al. Brain-derived neurotrophic factor mRNA and protein are targeted to discrete dendritic laminas by events that trigger epileptogenesis. J Neurosci 2004; 24: 6842–6852.

    Article  CAS  Google Scholar 

  39. Sathanoori M, Dias BG, Nair AR, Banerjee SB, Tole S, Vaidya VA . Differential regulation of multiple brain-derived neurotrophic factor transcripts in the postnatal and adult rat hippocampus during development, and in response to kainate administration. Brain Res Mol Brain Res 2004; 130: 170–177.

    Article  CAS  Google Scholar 

  40. Baj G, Leone E, Chao MV, Tongiorgi E . Spatial segregation of BDNF transcripts enables BDNF to differentially shape distinct dendritic compartments. Proc Natl Acad Sci USA 2011; 108: 16813–16818.

    Article  CAS  Google Scholar 

  41. Pattabiraman PP, Tropea D, Chiaruttini C, Tongiorgi E, Cattaneo A, Domenici L . Neuronal activity regulates the developmental expression and subcellular localization of cortical BDNF mRNA isoforms in vivo. Mol Cell Neurosci 2005; 28: 556–570.

    Article  CAS  Google Scholar 

  42. Chiaruttini C, Sonego M, Baj G, Simonato M, Tongiorgi E . BDNF mRNA splice variants display activity-dependent targeting to distinct hippocampal laminae. Mol Cell Neurosci 2008; 37: 11–19.

    Article  CAS  Google Scholar 

  43. Maynard KR, Hobbs JW, Sukumar M, Kardian AS, Jimenez DV, Schloesser RJ et al. Bdnf mRNA splice variants differentially impact CA1 and CA3 dendrite complexity and spine morphology in the hippocampus. Brain Struct Funct 2017.

  44. An JJ, Gharami K, Liao GY, Woo NH, Lau AG, Vanevski F et al. Distinct role of long 3' UTR BDNF mRNA in spine morphology and synaptic plasticity in hippocampal neurons. Cell 2008; 134: 175–187.

    Article  CAS  Google Scholar 

  45. Aoki C, Wu K, Elste A, Len G, Lin S, McAuliffe G et al. Localization of brain-derived neurotrophic factor and TrkB receptors to postsynaptic densities of adult rat cerebral cortex. J Neurosci Res 2000; 59: 454–463.

    Article  CAS  Google Scholar 

  46. Gubellini P, Ben-Ari Y, Gaiarsa JL . Endogenous neurotrophins are required for the induction of GABAergic long-term potentiation in the neonatal rat hippocampus. J Neurosci 2005; 25: 5796–5802.

    Article  CAS  Google Scholar 

  47. Magby JP, Bi C, Chen ZY, Lee FS, Plummer MR . Single-cell characterization of retrograde signaling by brain-derived neurotrophic factor. J Neurosci 2006; 26: 13531–13536.

    Article  CAS  Google Scholar 

  48. Jakawich SK, Nasser HB, Strong MJ, McCartney AJ, Perez AS, Rakesh N et al. Local presynaptic activity gates homeostatic changes in presynaptic function driven by dendritic BDNF synthesis. Neuron 2010; 68: 1143–1158.

    Article  CAS  Google Scholar 

  49. Tanaka J, Horiike Y, Matsuzaki M, Miyazaki T, Ellis-Davies GC, Kasai H . Protein synthesis and neurotrophin-dependent structural plasticity of single dendritic spines. Science 2008; 319: 1683–1687.

    Article  CAS  Google Scholar 

  50. Drake CT, Terman GW, Simmons ML, Milner TA, Kunkel DD, Schwartzkroin PA et al. Dynorphin opioids present in dentate granule cells may function as retrograde inhibitory neurotransmitters. J Neurosci 1994; 14: 3736–3750.

    Article  CAS  Google Scholar 

  51. Simmons ML, Terman GW, Gibbs SM, Chavkin C . L-type calcium channels mediate dynorphin neuropeptide release from dendrites but not axons of hippocampal granule cells. Neuron 1995; 14: 1265–1272.

    Article  CAS  Google Scholar 

  52. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 2011; 475: 91–95.

    Article  CAS  Google Scholar 

  53. Lepack AE, Fuchikami M, Dwyer JM, Banasr M, Duman RS . BDNF release is required for the behavioral actions of ketamine. Int J Neuropsychopharmacol 2014; 18.

  54. Liu RJ, Lee FS, Li XY, Bambico F, Duman RS, Aghajanian GK . Brain-derived neurotrophic factor Val66Met allele impairs basal and ketamine-stimulated synaptogenesis in prefrontal cortex. Biol Psychiatry 2012; 71: 996–1005.

    Article  CAS  Google Scholar 

  55. Dunham JS, Deakin JF, Miyajima F, Payton A, Toro CT . Expression of hippocampal brain-derived neurotrophic factor and its receptors in Stanley consortium brains. J Psychiatr Res 2009; 43: 1175–1184.

    Article  CAS  Google Scholar 

  56. Tripp A, Oh H, Guilloux JP, Martinowich K, Lewis DA, Sibille E . Brain-derived neurotrophic factor signaling and subgenual anterior cingulate cortex dysfunction in major depressive disorder. Am J Psychiatry 2012; 169: 1194–1202.

    Article  Google Scholar 

  57. Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT . Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 2001; 50: 260–265.

    Article  CAS  Google Scholar 

  58. Dwivedi Y, Rizavi HS, Conley RR, Roberts RC, Tamminga CA, Pandey GN . Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry 2003; 60: 804–815.

    Article  CAS  Google Scholar 

  59. Dwivedi Y . Brain-derived neurotrophic factor: role in depression and suicide. Neuropsychiatr Dis Treat 2009; 5: 433–449.

    Article  CAS  Google Scholar 

  60. Sen S, Duman R, Sanacora G . Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol Psychiatry 2008; 64: 527–532.

    Article  CAS  Google Scholar 

  61. Duman RS, Monteggia LM . A neurotrophic model for stress-related mood disorders. Biol Psychiatry 2006; 59: 1116–1127.

    Article  CAS  Google Scholar 

  62. Nibuya M, Morinobu S, Duman RS . Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 1995; 15: 7539–7547.

    Article  CAS  Google Scholar 

  63. Smith MA, Makino S, Kvetnansky R, Post RM . Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 1995; 15 (3 Pt 1): 1768–1777.

    Article  CAS  Google Scholar 

  64. Newton SS, Collier EF, Hunsberger J, Adams D, Terwilliger R, Selvanayagam E et al. Gene profile of electroconvulsive seizures: induction of neurotrophic and angiogenic factors. J Neurosci 2003; 23: 10841–10851.

    Article  CAS  Google Scholar 

  65. Nibuya M, Nestler EJ, Duman RS . Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J Neurosci 1996; 16: 2365–2372.

    Article  CAS  Google Scholar 

  66. Van Hoomissen JD, Chambliss HO, Holmes PV, Dishman RK . Effects of chronic exercise and imipramine on mRNA for BDNF after olfactory bulbectomy in rat. Brain Res 2003; 974: 228–235.

    Article  CAS  Google Scholar 

  67. Xu H, Steven Richardson J, Li XM . Dose-related effects of chronic antidepressants on neuroprotective proteins BDNF, Bcl-2 and Cu/Zn-SOD in rat hippocampus. Neuropsychopharmacology 2003; 28: 53–62.

    Article  CAS  Google Scholar 

  68. Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 2016; 533: 481–486.

    Article  CAS  Google Scholar 

  69. Yang C, Qu Y, Abe M, Nozawa D, Chaki S, Hashimoto K . (R)-ketamine shows greater potency and longer lasting antidepressant effects than its metabolite (2R,6R)-hydroxynorketamine. Biol Psychiatry 2016; S0006-3223: 33154–33157.

    Google Scholar 

  70. Abdallah CG . What's the buzz about hydroxynorketamine? Is it the history, the story, the debate, or the promise? Biol Psychiatry 2017; 81: e61–e63.

    Article  Google Scholar 

  71. Collingridge GL, Lee Y, Bortolotto ZA, Kang H, Lodge D . Antidepressant actions of ketamine versus hydroxynorketamine. Biol Psychiatry 2017; 81: e65–e67.

    Article  CAS  Google Scholar 

  72. Suzuki K, Nosyreva E, Hunt KW, Kavalali ET, Monteggia LM . Effects of a ketamine metabolite on synaptic NMDAR function. Nature 2017; 546: E1–E3.

    Article  CAS  Google Scholar 

  73. Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI et al. Zanos et al reply. Nature 2017; 546: E4–E5.

    Article  CAS  Google Scholar 

  74. Takei N, Inamura N, Kawamura M, Namba H, Hara K, Yonezawa K et al. Brain-derived neurotrophic factor induces mammalian target of rapamycin-dependent local activation of translation machinery and protein synthesis in neuronal dendrites. J Neurosci 2004; 24: 9760–9769.

    Article  CAS  Google Scholar 

  75. Dorsey SG, Renn CL, Carim-Todd L, Barrick CA, Bambrick L, Krueger BK et al. In vivo restoration of physiological levels of truncated TrkB.T1 receptor rescues neuronal cell death in a trisomic mouse model. Neuron 2006; 51: 21–28.

    Article  CAS  Google Scholar 

  76. Woo NH, Teng HK, Siao CJ, Chiaruttini C, Pang PT, Milner TA et al. Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat Neurosci 2005; 8: 1069–1077.

    Article  CAS  Google Scholar 

  77. Song M, Giza J, Proenca CC, Jing D, Elliott M, Dincheva I et al. Slitrk5 mediates BDNF-dependent TrkB receptor trafficking and signaling. Dev Cell 2015; 33: 690–702.

    Article  CAS  Google Scholar 

  78. Biffo S, Offenhauser N, Carter BD, Barde YA . Selective binding and internalisation by truncated receptors restrict the availability of BDNF during development. Development 1995; 121: 2461–2470.

    CAS  PubMed  Google Scholar 

  79. Klein R, Conway D, Parada LF, Barbacid M . The trkB tyrosine protein kinase gene codes for a second neurogenic receptor that lacks the catalytic kinase domain. Cell 1990; 61: 647–656.

    Article  CAS  Google Scholar 

  80. Gomes RA, Hampton C, El-Sabeawy F, Sabo SL, McAllister AK . The dynamic distribution of TrkB receptors before, during, and after synapse formation between cortical neurons. J Neurosci 2006; 26: 11487–11500.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from the National Research Foundation of Korea (NRF) - NRF-2016R1D1A1B03934438 [M.S.], Ministry of Science, ICT and Future Planning (MSIP) - No. 2231-415 [M.S.], Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.) - MH105592 [K.M.], Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.) - NS052819 [F.S.L], New York Community Trust (NYCT) [F.S.L].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M Song or F S Lee.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, M., Martinowich, K. & Lee, F. BDNF at the synapse: why location matters. Mol Psychiatry 22, 1370–1375 (2017). https://doi.org/10.1038/mp.2017.144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2017.144

This article is cited by

Search

Quick links