Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetic and pharmacological antagonism of NK1 receptor prevents opiate abuse potential

Abstract

Development of an efficacious, non-addicting analgesic has been challenging. Discovery of novel mechanisms underlying addiction may present a solution. Here we target the neurokinin system, which is involved in both pain and addiction. Morphine exerts its rewarding actions, at least in part, by inhibiting GABAergic input onto substance P (SP) neurons in the ventral tegmental area (VTA), subsequently increasing SP release onto dopaminergic neurons. Genome editing of the neurokinin 1 receptor (NK1R) in the VTA renders morphine non-rewarding. Complementing our genetic approach, we demonstrate utility of a bivalent pharmacophore with dual activity as a μ/δ opioid agonist and NK1R antagonist in inhibiting nociception in an animal model of acute pain while lacking any positive reinforcement. These data indicate that dual targeting of the dopaminergic reward circuitry and pain pathways with a multifunctional opioid agonist–NK1R antagonist may be an efficacious strategy in developing future analgesics that lack abuse potential.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Schuckit MA. Treatment of opioid-use disorders. N Engl J Med 2016; 375: 357–368.

    Article  Google Scholar 

  2. Dowell D, Haegerich TM, Chou R. CDC Guideline for Prescribing Opioids for Chronic Pain—United States. JAMA 2016; 315: 1624–1645.

    Article  CAS  Google Scholar 

  3. Sandweiss AJ, Vanderah TW. The pharmacology of neurokinin receptors in addiction: prospects for therapy. Subst Abuse Rehabil 2015; 6: 93–102.

    PubMed  PubMed Central  Google Scholar 

  4. Largent-Milnes TM, Yamamoto T, Nair P, Moulton JW, Hruby VJ, Lai J et al. Spinal or systemic TY005, a peptidic opioid agonist/neurokinin 1 antagonist, attenuates pain with reduced tolerance. Br J Pharmacol 2010; 161: 986–1001.

    Article  CAS  Google Scholar 

  5. Staubli U, Huston JP. Central action of substance P: possible role in reward. Behav Neural Biol 1985; 43: 100–108.

    Article  CAS  Google Scholar 

  6. Yaksh TL, Jessell TM, Gamse R, Mudge AW, Leeman SE. Intrathecal morphine inhibits substance P release from mammalian spinal cord in vivo. Nature 1980; 286: 155–157.

    Article  CAS  Google Scholar 

  7. Johnson SW, North RA. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci 1992; 12: 483–488.

    Article  CAS  Google Scholar 

  8. Mantyh PW, Gates T, Mantyh CR, Maggio JE. Autoradiographic localization and characterization of tachykinin receptor binding sites in the rat brain and peripheral tissues. J Neurosci 1989; 9: 258–279.

    Article  CAS  Google Scholar 

  9. Korotkova TM, Brown RE, Sergeeva OA, Ponomarenko AA, Haas HL. Effects of arousal- and feeding-related neuropeptides on dopaminergic and GABAergic neurons in the ventral tegmental area of the rat. Eur J Neurosci 2006; 23: 2677–2685.

    Article  CAS  Google Scholar 

  10. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. Elsevier Academic Press, 2005.

  11. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 2013; 31: 827–832.

    Article  CAS  Google Scholar 

  12. Guschin DY, Waite AJ, Katibah GE, Miller JC, Holmes MC, Rebar EJ. A rapid and general assay for monitoring endogenous gene modification. Methods Mol Biol 2010; 649: 247–256.

    Article  CAS  Google Scholar 

  13. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc 2013; 8: 2281–2308.

    Article  CAS  Google Scholar 

  14. Largent-Milnes TM, Brookshire SW, Skinner DP Jr, Hanlon KE, Giuvelis D, Tamamoto T et al. Building a better analgesic: multifunctional compounds that address injury-induced pathology to enhance analgesic efficacy while eliminating unwanted side effects. J Pharmacol Exp Ther 2013; 347: 7–19.

    Article  CAS  Google Scholar 

  15. Hylden JL, Wilcox GL. Intrathecal morphine in mice: a new technique. Eur J Pharmacol 1980; 67: 313–316.

    Article  CAS  Google Scholar 

  16. Hargreaves K, Dubner R, Brown F, Flores C, Joris J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 1988; 32: 77–88.

    Article  CAS  Google Scholar 

  17. Seybold VS, Hylden JL, Wilcox GL. Intrathecal substance P and somatostatin in rats: behaviors indicative of sensation. Peptides 1982; 3: 49–54.

    Article  CAS  Google Scholar 

  18. Largent-Milnes TM, Brookshire SW, Skinner DP Jr, Hanlon KE, Giuvelis D, Yamamoto T et al. A novel efficacious antinociceptive opioid without dependence, reward, or emetic properties in animals. J Pharmacol Exp Ther 2013; 347: 7–19.

    Article  CAS  Google Scholar 

  19. Yaksh TL, Rudy TA. Chronic catheterization of the spinal subarachnoid space. Physiol Behav 1976; 17: 1031–1036.

    Article  CAS  Google Scholar 

  20. Kim SH, Chung JM. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 1992; 50: 355–363.

    Article  CAS  Google Scholar 

  21. Vanderah TW, Largent-Milnes T, Lai J, Porreca F, Houghten RA, Menzaghi F et al. Novel D-amino acid tetrapeptides produce potent antinociception by selectively acting at peripheral kappa-opioid receptors. Eur J Pharmacol 2008; 583: 62–72.

    Article  CAS  Google Scholar 

  22. Xie YY, Herman DS, Stiller CO, Gardell LR, Ossipov MH, Lai J et al. Cholecystokinin in the rostral ventromedial medulla mediates opioid-induced hyperalgesia and antinociceptive tolerance. J Neurosci 2005; 25: 409–416.

    Article  Google Scholar 

  23. Marshall TM, Herman DS, Largent-Milnes TM, Badghisi H, Zuber K, Holt SC et al. Activation of descending pain-facilitatory pathways from the rostral ventromedial medulla by cholecystokinin elicits release of prostaglandin-E2 in the spinal cord. Pain 2012; 153: 86–94.

    Article  CAS  Google Scholar 

  24. Rocha A, Kalivas PW. Role of the prefrontal cortex and nucleus accumbens in reinstating methamphetamine seeking. Eur J Neurosci 2010; 31: 903–909.

    Article  Google Scholar 

  25. Yamamoto T, Nair P, Largent-Milnes TM, Jacobsen NE, Davis P, Ma SW et al. Discovery of a potent and efficacious peptide derivative for delta/mu opioid agonist/neurokinin 1 antagonist activity with a 2',6'-dimethyl-L-tyrosine: in vitro in vivo, and NMR-based structural studies. J Med Chem 2011; 54: 2029–2038.

    Article  CAS  Google Scholar 

  26. Manchikanti L, Helm S, Fellows B, Janata JW, Pampati V, Grider JS et al. Opioid epidemic in the United States. Pain Physician 2012; 15: ES9–38.

    PubMed  Google Scholar 

  27. American Society of Addiction Medicine. Opioid Addiction Facts & Figures. Chevy Chase, MD: American Society of Addiction Medicine 2016. Available at: http://www.asam.org/docs/default-source/advocacy/opioid-addiction-disease-facts-figures.pdf.

  28. Perrone J, Mycyk MB. A challenging crossroad for emergency medicine: the epidemics of pain and pain medication deaths. Acad Emerg Med 2014; 21: 334–336.

    Article  Google Scholar 

  29. Margolis EB, Toy B, Himmels P, Morales M, Fields HL. Identification of rat ventral tegmental area GABAergic neurons. PLoS ONE 2012; 7: e42365.

    Article  CAS  Google Scholar 

  30. Margolis EB, Lock H, Hjelmstad GO, Fields HL. The ventral tegmental area revisited: is there an electrophysiological marker for dopaminergic neurons? J Physiol 2006; 577: 907–924.

    Article  CAS  Google Scholar 

  31. Yamaguchi T, Sheen W, Morales M. Glutamatergic neurons are present in the rat ventral tegmental area. Eur J Neurosci 2007; 25: 106–118.

    Article  Google Scholar 

  32. Nair-Roberts RG, Chatelain-Badie SD, Benson E, White-Cooper H, Bolam JP, Ungless MA. Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat. Neuroscience 2008; 152: 1024–1031.

    Article  CAS  Google Scholar 

  33. Xia Y, Driscoll JR, Wilbrecht L, Margolis EB, Fields HL, Hjelmstad GO. Nucleus accumbens medium spiny neurons target non-dopaminergic neurons in the ventral tegmental area. J Neurosci 2011; 31(21): 7811–7816.

    Article  CAS  Google Scholar 

  34. Margolis EB, Hjelmstad GO, Fujita W, Fields HL. Direct bidirectional mu-opioid control of midbrain dopamine neurons. J Neurosci 2014; 34: 14707–14716.

    Article  Google Scholar 

  35. Morales M, Root DH. Glutamate neurons within the midbrain dopamine regions. Neuroscience 2014; 282C: 60–68.

    Article  Google Scholar 

  36. Mantyh PW, Pinnock RD, Downes CP, Goedert M, Hunt SP. Correlation between inositol phospholipid hydrolysis and substance P receptors in rat CNS. Nature 1984; 309: 795–797.

    Article  CAS  Google Scholar 

  37. De Biasi S, Rustioni A. Glutamate and substance P coexist in primary afferent terminals in the superficial laminae of spinal cord. PNAS 1988; 85: 7820–7824.

    Article  CAS  Google Scholar 

  38. Budai D, Khasabov SG, Mantyh PW, Simone DA. NK-1 receptors modulate the excitability of ON cells in the rostral ventromedial medulla. J Neurophysiol 2007; 97: 1388–1395.

    Article  CAS  Google Scholar 

  39. Zhou Q, Le Greves P, Ragnar F, Nyberg F. Intracerebroventricular injection of the N-terminal substance P fragment SP(1-7) regulates the expression of the N-methyl-D-aspartate receptor NR1, NR2A and NR2B subunit mRNAs in the rat brain. Neurosci Lett 2000; 291: 109–112.

    Article  CAS  Google Scholar 

  40. Guo Y, Wang HL, Xiang XH, Zhao Y. The role of glutamate and its receptors in mesocorticolimbic dopaminergic regions in opioid addiction. Neurosci Biobehav Rev 2009; 33: 864–873.

    Article  CAS  Google Scholar 

  41. Lu B, Su Y, Das S, Wang H, Wang Y, Lui J et al. Peptide neurotransmitters activate a cation channel complex of NALCN and UNC-80. Nature 2009; 457: 741–744.

    Article  CAS  Google Scholar 

  42. Murtra P, Sheasby AM, Hunt SP, De Felipe C. Rewarding effects of opiates are absent in mice lacking the receptor for substance P. Nature 2000; 405: 180–183.

    Article  CAS  Google Scholar 

  43. Ripley TL, Gadd CA, De Felipe C, Hunt SP, Stephens DN. Lack of self-administration and behavioural sensitisation to morphine, but not cocaine, in mice lacking NK1 receptors. Neuropharmacology 2002; 43: 1258–1268.

    Article  CAS  Google Scholar 

  44. Gadd CA, Murtra P, De Felipe C, Hunt SP. Neurokinin-1 receptor-expressing neurons in the amygdala modulate morphine reward and anxiety behaviors in the mouse. J Neurosci 2003; 23: 8271–8280.

    Article  CAS  Google Scholar 

  45. Lessard A, Pickel VM. Subcellular distribution and plasticity of neurokinin-1 receptors in the rat substantia nigra and ventral tegmental area. Neuroscience 2005; 135: 1309–1323.

    Article  CAS  Google Scholar 

  46. George DT, Gilman J, Hersh J, Thorsell A, Herion D, Geyer C et al. Neurokinin 1 receptor antagonism as a possible therapy for alcoholism. Science 2008; 319: 1536–1539.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr Jennifer Schnellmann for her revisions during the preparation of this manuscript as well as Josh Stark, Martin Faridian and Saul Ortega for their help in collecting data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T W Vanderah.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandweiss, A.J., McIntosh, M.I., Moutal, A. et al. Genetic and pharmacological antagonism of NK1 receptor prevents opiate abuse potential. Mol Psychiatry 23, 1745–1755 (2018). https://doi.org/10.1038/mp.2017.102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2017.102

Search

Quick links