Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Forebrain glutamatergic, but not GABAergic, neurons mediate anxiogenic effects of the glucocorticoid receptor

Abstract

Anxiety disorders constitute a major disease and social burden worldwide; however, many questions concerning the underlying molecular mechanisms still remain open. Besides the involvement of the major excitatory (glutamate) and inhibitory (gamma aminobutyric acid (GABA)) neurotransmitter circuits in anxiety disorders, the stress system has been directly implicated in the pathophysiology of these complex mental illnesses. The glucocorticoid receptor (GR) is the major receptor for the stress hormone cortisol (corticosterone in rodents) and is widely expressed in excitatory and inhibitory neurons, as well as in glial cells. However, currently it is unknown which of these cell populations mediate GR actions that eventually regulate fear- and anxiety-related behaviors. In order to address this question, we generated mice lacking the receptor specifically in forebrain glutamatergic or GABAergic neurons by breeding GRflox/flox mice to Nex-Cre or Dlx5/6-Cre mice, respectively. GR deletion specifically in glutamatergic, but not in GABAergic, neurons induced hypothalamic–pituitary–adrenal axis hyperactivity and reduced fear- and anxiety-related behavior. This was paralleled by reduced GR-dependent electrophysiological responses in the basolateral amygdala (BLA). Importantly, viral-mediated GR deletion additionally showed that fear expression, but not anxiety, is regulated by GRs in glutamatergic neurons of the BLA. This suggests that pathological anxiety likely results from altered GR signaling in glutamatergic circuits of several forebrain regions, while modulation of fear-related behavior can largely be ascribed to GR signaling in glutamatergic neurons of the BLA. Collectively, our results reveal a major contribution of GRs in the brain’s key excitatory, but not inhibitory, neurotransmitter system in the regulation of fear and anxiety behaviors, which is crucial to our understanding of the molecular mechanisms underlying anxiety disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Norrholm SD, Ressler KJ . Genetics of anxiety and trauma-related disorders. Neuroscience 2009; 164: 272–287.

    Article  CAS  Google Scholar 

  2. Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE . Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 2005; 62: 593–602.

    Article  Google Scholar 

  3. Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380: 2163–2196.

    Article  Google Scholar 

  4. Kalueff AV, Nutt DJ . Role of GABA in anxiety and depression. Depress Anxiety 2007; 24: 495–517.

    Article  CAS  Google Scholar 

  5. Zorumski CF, Paul SM, Izumi Y, Covey DF, Mennerick S . Neurosteroids, stress and depression: potential therapeutic opportunities. Neurosci Biobehav Rev 2013; 37: 109–122.

    Article  CAS  Google Scholar 

  6. Wu LJ, Kim SS, Zhuo M . Molecular targets of anxiety: from membrane to nucleus. Neurochem Res 2008; 33: 1925–1932.

    Article  CAS  Google Scholar 

  7. Sanacora G, Treccani G, Popoli M . Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology 2012; 62: 63–77.

    Article  CAS  Google Scholar 

  8. Gross C, Hen R . The developmental origins of anxiety. Nat Rev Neurosci 2004; 5: 545–552.

    Article  CAS  Google Scholar 

  9. Caspi A, Moffitt TE . Gene-environment interactions in psychiatry: joining forces with neuroscience. Nat Rev Neurosci 2006; 7: 583–590.

    Article  CAS  Google Scholar 

  10. Shin LM, Liberzon I . The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology 2010; 35: 169–191.

    Article  Google Scholar 

  11. de Kloet ER, Joëls M, Holsboer F . Stress and the brain: from adaptation to disease. Nat Rev Neurosci 2005; 6: 463–475.

    Article  CAS  Google Scholar 

  12. Joëls M, Baram TZ . The neuro-symphony of stress. Nat Rev Neurosci 2009; 10: 459–466.

    Article  Google Scholar 

  13. Joëls M . Impact of glucocorticoids on brain function: relevance for mood disorders. Psychoneuroendocrinology 2011; 36: 406–414.

    Article  Google Scholar 

  14. Yehuda R . Status of glucocorticoid alterations in post-traumatic stress disorder. Ann NY Acad Sci 2009; 1179: 56–69.

    Article  CAS  Google Scholar 

  15. Müller MB, Holsboer F . Mice with mutations in the HPA-system as models for symptoms of depression. Biol Psychiatry 2006; 59: 1104–1115.

    Article  Google Scholar 

  16. Tronche F, Kellendonk C, Kretz O, Gass P, Anlag K, Orban PC et al. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat Genet 1999; 23: 99–103.

    Article  CAS  Google Scholar 

  17. Barik J, Marti F, Morel C, Fernandez SP, Lanteri C, Godeheu G et al. Chronic stress triggers social aversion via glucocorticoid receptor in dopaminoceptive neurons. Science 2013; 339: 332–335.

    Article  CAS  Google Scholar 

  18. Wei Q, Lu XY, Liu L, Schafer G, Shieh KR, Burke S et al. Glucocorticoid receptor overexpression in forebrain: a mouse model of increased emotional lability. Proc Natl Acad Sci USA 2004; 101: 11851–11856.

    Article  CAS  Google Scholar 

  19. Wagner KV, Wang XD, Liebl C, Scharf SH, Müller MB, Schmidt MV . Pituitary glucocorticoid receptor deletion reduces vulnerability to chronic stress. Psychoneuroendocrinology 2011; 36: 579–587.

    Article  CAS  Google Scholar 

  20. Arnett MG, Kolber BJ, Boyle MP, Muglia LJ . Behavioral insights from mouse models of forebrain—and amygdala-specific glucocorticoid receptor genetic disruption. Mol Cell Endocrinol 2011; 336: 2–5.

    Article  CAS  Google Scholar 

  21. Boyle MP, Kolber BJ, Vogt SK, Wozniak DF, Muglia LJ . Forebrain glucocorticoid receptors modulate anxiety-associated locomotor activation and adrenal responsiveness. J Neurosci 2006; 26: 1971–1978.

    Article  CAS  Google Scholar 

  22. Sandi C . Glucocorticoids act on glutamatergic pathways to affect memory processes. Trends Neurosci 2011; 34: 165–176.

    Article  CAS  Google Scholar 

  23. Lu A, Steiner MA, Whittle N, Vogl AM, Walser SM, Ableitner M et al. Conditional CRH overexpressing mice: an animal model for stress-elicited pathologies and treatments that target the central CRH system. Mol Psychiatry 2008; 13: 989.

    Article  CAS  Google Scholar 

  24. Minichiello L, Korte M, Wolfer D, Kühn R, Unsicker K, Cestari V et al. Essential role for TrkB receptors in hippocampus-mediated learning. Neuron 1999; 24: 401–414.

    Article  CAS  Google Scholar 

  25. Schmidt MV, Sterlemann V, Ganea K, Liebl C, Alam S, Harbich D et al. Persistent neuroendocrine and behavioral effects of a novel, etiologically relevant mouse paradigm for chronic social stress during adolescence. Psychoneuroendocrinology 2007; 32: 417–429.

    Article  CAS  Google Scholar 

  26. Refojo D, Schweizer M, Kuehne C, Ehrenberg S, Thoeringer C, Vogl AM et al. Glutamatergic and dopaminergic neurons mediate anxiogenic and anxiolytic effects of CRHR1. Science 2011; 333: 1903–1907.

    Article  CAS  Google Scholar 

  27. Wang XD, Chen Y, Wolf M, Wagner KV, Liebl C, Scharf SH et al. Forebrain CRHR1 deficiency attenuates chronic stress-induced cognitive deficits and dendritic remodeling. Neurobiol Dis 2011; 42: 300–310.

    Article  CAS  Google Scholar 

  28. Fluttert M, Dalm S, Oitzl MS . A refined method for sequential blood sampling by tail incision in rats. Lab Anim 2000; 34: 372–378.

    Article  CAS  Google Scholar 

  29. Herman JP, Mueller NK, Figueiredo H . Role of GABA and glutamate circuitry in hypothalamo-pituitary-adrenocortical stress integration. Ann NY Acad Sci 2004; 1018: 35–45.

    Article  CAS  Google Scholar 

  30. Fremeau RT, Troyer MD, Pahner I, Nygaard GO, Tran CH, Reimer RJ et al. The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 2001; 31: 247–260.

    Article  CAS  Google Scholar 

  31. Day HE, Curran EJ, Watson SJ, Akil H . Distinct neurochemical populations in the rat central nucleus of the amygdala and bed nucleus of the stria terminalis: evidence for their selective activation by interleukin-1beta. J Comp Neurol 1999; 413: 113–128.

    Article  CAS  Google Scholar 

  32. Goebbels S, Bormuth I, Bode U, Hermanson O, Schwab MH, Nave KA . Genetic targeting of principal neurons in neocortex and hippocampus of NEX-Cre mice. Genesis 2006; 44: 611–621.

    Article  CAS  Google Scholar 

  33. Klug JR, Mathur BN, Kash TL, Wang HD, Matthews RT, Robison AJ et al. Genetic inhibition of CaMKII in dorsal striatal medium spiny neurons reduces functional excitatory synapses and enhances intrinsic excitability. PLoS One 2012; 7: e45323.

    Article  CAS  Google Scholar 

  34. Robison AJ, Vialou V, Sun HS, Labonte B, Golden SA, Dias C et al. Fluoxetine epigenetically alters the CaMKIIa promoter in nucleus accumbens to regulate DeltaFosB binding and antidepressant effects. Neuropsychopharmacology 2014; 39: 1178–1186.

    Article  CAS  Google Scholar 

  35. Robison AJ, Vialou V, Mazei-Robison M, Feng J, Kourrich S, Collins M et al. Behavioral and structural responses to chronic cocaine require a feedforward loop involving DeltaFosB and calcium/calmodulin-dependent protein kinase II in the nucleus accumbens shell. J Neurosci 2013; 33: 4295–4307.

    Article  CAS  Google Scholar 

  36. Erondu NE, Kennedy MB . Regional distribution of type II Ca2+/calmodulin-dependent protein kinase in rat brain. J Neurosci 1985; 5: 3270–3277.

    Article  CAS  Google Scholar 

  37. Jennings JH, Sparta DR, Stamatakis AM, Ung RL, Pleil KE, Kash TL et al. Distinct extended amygdala circuits for divergent motivational states. Nature 2013; 496: 224–228.

    Article  CAS  Google Scholar 

  38. Varoqui H, Schäfer MKH, Zhu H, Weihe E, Erickson JD . Identification of the differentiation-associated Na+/PI transporter as a novel vesicular glutamate transporter expressed in a distinct set of glutamatergic synapses. J Neurosci 2002; 22: 142–155.

    Article  CAS  Google Scholar 

  39. Hisano S . Vesicular glutamate transporters in the brain. Anat Sci Int 2003; 78: 191–204.

    Article  CAS  Google Scholar 

  40. Hrabovszky E, Wittmann G, Turi GF, Liposits Z, Fekete C . Hypophysiotropic thyrotropin-releasing hormone and corticotropin-releasing hormone neurons of the rat contain vesicular glutamate transporter-2. Endocrinology 2005; 146: 341–347.

    Article  CAS  Google Scholar 

  41. Singh-Taylor A, Korosi A, Molet J, Gunn BG, Baram TZ . Synaptic rewiring of stress-sensitive neurons by early-life experience: a mechanism for resilience? Neurobiol Stress 2015; 1: 109–115.

    Article  Google Scholar 

  42. Monory K, Massa F, Egertová M, Eder M, Blaudzun H, Westenbroek R et al. The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron 2006; 51: 455–466.

    Article  CAS  Google Scholar 

  43. Dine J, Kühne C, Deussing JM, Eder M . Optogenetic evocation of field inhibitory postsynaptic potentials in hippocampal slices: a simple and reliable approach for studying pharmacological effects on GABAA and GABAB receptor-mediated neurotransmission. Front Cell Neurosci 2014; 8: 2.

    Article  Google Scholar 

  44. Graham BM, Milad MR . The study of fear extinction: implications for anxiety disorders. Am J Psychiatry 2011; 168: 1255–1265.

    Article  Google Scholar 

  45. Dias BG, Ressler KJ . Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat Neurosci 2014; 17: 89–96.

    Article  CAS  Google Scholar 

  46. Bhagat SM, Butler SS, Taylor JR, McEwen BS, Strittmatter SM . Erasure of fear memories is prevented by Nogo Receptor 1 in adulthood. Mol Psychiatry; doi: 10.1038/mp.2015.179 (e-pub ahead of print 1 December 2015).

  47. Brinks V, De Kloet ER, Oitzl MS . Corticosterone facilitates extinction of fear memory in BALB/c mice but strengthens cue related fear in C57BL/6 mice. Exp Neurol 2009; 216: 375–382.

    Article  CAS  Google Scholar 

  48. Campolongo P, Roozendaal B, Trezza V, Hauer D, Schelling G, McGaugh JL et al. Endocannabinoids in the rat basolateral amygdala enhance memory consolidation and enable glucocorticoid modulation of memory. Proc Natl Acad Sci USA 2009; 106: 4888–4893.

    Article  CAS  Google Scholar 

  49. Karst H, Berger S, Erdmann G, Schütz G, Joels M . Metaplasticity of amygdalar responses to the stress hormone corticosterone. Proc Natl Acad Sci USA 2010; 107: 14449–14454.

    Article  CAS  Google Scholar 

  50. McDonald AJ. Cell types and intrinsic connections of the amygdala. In: Aggleton JP (ed). The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction. Wiley-Liss: New York, USA, 1992, pp 69–76.

  51. Spampanato J, Polepalli J, Sah P . Interneurons in the basolateral amygdala. Neuropharmacology 2011; 60: 765–773.

    Article  CAS  Google Scholar 

  52. Sah P, Faber ESL, Lopez De Armentia M, Power J . The amygdaloid complex: anatomy and physiology. Physiol Rev 2003; 83: 803–834.

    Article  CAS  Google Scholar 

  53. Boyle MP, Brewer JA, Funatsu M, Wozniak DF, Tsien JZ, Izumi Y et al. Acquired deficit of forebrain glucocorticoid receptor produces depression-like changes in adrenal axis regulation and behavior. PNAS 2005; 102: 473–478.

    Article  CAS  Google Scholar 

  54. Laryea G, Schütz G, Muglia LJ . Disrupting hypothalamic glucocorticoid receptors causes HPA axis hyperactivity and excess adiposity. Mol Endocrinol 2013; 27: 1655–1665.

    Article  CAS  Google Scholar 

  55. Dabrowska J, Hazra R, Guo JD, Dewitt S, Rainnie DG . Central CRF neurons are not created equal: phenotypic differences in CRF-containing neurons of the rat paraventricular hypothalamus and the bed nucleus of the stria terminalis. Front Neurosci 2013; 7: 156.

    Article  CAS  Google Scholar 

  56. Joels M, Karst H, DeRijk R, de Kloet ER . The coming out of the brain mineralocorticoid receptor. Trends Neurosci 2008; 31: 1–7.

    Article  CAS  Google Scholar 

  57. Ulrich-Lai YM, Herman JP . Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci 2009; 10: 397–409.

    Article  CAS  Google Scholar 

  58. Kolber BJ, Roberts MS, Howell MP, Wozniak DF, Sands MS, Muglia LJ . Central amygdala glucocorticoid receptor action promotes fear-associated CRH activation and conditioning. Proc Natl Acad Sci USA 2008; 105: 12004–12009.

    Article  CAS  Google Scholar 

  59. Blundell J, Blaiss CA, Lagace DC, Eisch AJ, Powell CM . Block of glucocorticoid synthesis during re-activation inhibits extinction of an established fear memory. Neurobiol Learn Mem 2011; 95: 453–460.

    Article  CAS  Google Scholar 

  60. Yang YL, Chao PK, Lu KT . Systemic and intra-amygdala administration of glucocorticoid agonist and antagonist modulate extinction of conditioned fear. Neuropsychopharmacology 2006; 31: 912–924.

    Article  CAS  Google Scholar 

  61. Myers KM, Davis M . Mechanisms of fear extinction. Mol Psychiatry 2007; 12: 120–150.

    Article  CAS  Google Scholar 

  62. McGaugh JL, Roozendaal B . Role of adrenal stress hormones in forming lasting memories in the brain. Curr Opin Neurobiol 2002; 12: 205–210.

    Article  CAS  Google Scholar 

  63. Donley MP, Schulkin J, Rosen JB . Glucocorticoid receptor antagonism in the basolateral amygdala and ventral hippocampus interferes with long-term memory of contextual fear. Behav Brain Res 2005; 164: 197–205.

    Article  CAS  Google Scholar 

  64. Conrad CD, MacMillan DD, Tsekhanov S, Wright RL, Baran SE, Fuchs RA . Influence of chronic corticosterone and glucocorticoid receptor antagonism in the amygdala on fear conditioning. Neurobiol Learn Mem 2004; 81: 185–199.

    Article  CAS  Google Scholar 

  65. Tronel S, Alberini CM . Persistent disruption of a traumatic memory by postretrieval inactivation of glucocorticoid receptors in the amygdala. Biol Psychiatry 2007; 62: 33–39.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Max Planck Society. We thank Daniela Harbich, Bianca Schmid and Ania Mederer for their excellent technical assistance; Carine Dournes for sharing unpublished data, Günther Schütz (German Cancer Research Center, Heidelberg, Germany) for originally sharing GRflox/flox mice; and Klaus-Armin Nave (Max Planck Institute of Experimental Medicine, Göttingen, Germany) for originally sharing Nex-Cre mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M V Schmidt.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartmann, J., Dedic, N., Pöhlmann, M. et al. Forebrain glutamatergic, but not GABAergic, neurons mediate anxiogenic effects of the glucocorticoid receptor. Mol Psychiatry 22, 466–475 (2017). https://doi.org/10.1038/mp.2016.87

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2016.87

This article is cited by

Search

Quick links