Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Isolating biomarkers for symptomatic states: considering symptom–substrate chronometry

Abstract

A long-standing goal of psychopathology research is to develop objective markers of symptomatic states, yet progress has been far slower than expected. Although prior reviews have attributed this state of affairs to diagnostic heterogeneity, symptom comorbidity and phenotypic complexity, little attention has been paid to the implications of intra-individual symptom dynamics and inter-relatedness for biomarker study designs. In this critical review, we consider the impact of short-term symptom fluctuations on widely used study designs that regress the ‘average level’ of a given symptom against biological data collected at a single time point, and summarize findings from ambulatory assessment studies suggesting that such designs may be sub-optimal to detect symptom–substrate relationships. Although such designs have a crucial role in advancing our understanding of biological substrates related to more stable, longer-term changes (for example, gray matter thinning during a depressive episode), they may be less optimal for the detection of symptoms that exhibit high frequency fluctuations, are susceptible to common reporting biases, or may be heavily influenced by the presence of other symptoms. We propose that a greater emphasis on intra-individual symptom chronometry may be useful for identifying subgroups of patients with common, proximal pathological indicators. Taken together, these three recent developments in the areas of symptom conceptualization and measurement raise important considerations for future studies attempting to identify reliable biomarkers in psychiatry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Kraemer HC, Schultz SK, Arndt S . Biomarkers in psychiatry: methodological issues. Am J Geriatr Psychiatry 2002; 10: 653–659.

    Article  PubMed  Google Scholar 

  2. Meehl PE . Clinical vs. Statistical Prediction. University of Minnesota Press: Minneapolis, USA, 1954.

    Google Scholar 

  3. Singh I, Rose N . Biomarkers in psychiatry. Nature 2009; 460: 202–207.

    Article  CAS  PubMed  Google Scholar 

  4. Davis J, Maes M, Andreazza A, McGrath JJ, Tye SJ, Berk M . Towards a classification of biomarkers of neuropsychiatric disease: from encompass to compass. Mol Psychiatry 2014; 20: 152–153.

    Article  PubMed  Google Scholar 

  5. Kapur S, Phillips AG, Insel TR . Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Mol Psychiatry 2012; 17: 1174–1179.

    Article  CAS  PubMed  Google Scholar 

  6. Naselaris T, Prenger RJ, Kay KN, Oliver M, Gallant JL . Bayesian reconstruction of natural images from human brain activity. Neuron 2009; 63: 902–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rao RPN, Stocco A, Bryan M, Sarma D, Youngquist TM, Wu J et al. A direct brain-to-brain interface in humans. PloS One 2014; 9: e111332.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. LaFleur K, Cassady K, Doud A, Shades K, Rogin E, He B . Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain–computer interface. J Neural Eng 2013; 10: 046003.

    Article  PubMed  Google Scholar 

  9. Etkin A, Wager TD . Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry 2007; 164: 1476–1488.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ipser JC, Singh L, Stein DJ . Meta-analysis of functional brain imaging in specific phobia. Psychiatry Clin Neurosci 2013; 67: 311–322.

    Article  PubMed  Google Scholar 

  11. Koolschijn PC, van Haren NE, Lensvelt-Mulders GJ, Hulshoff Pol HE, Kahn RS . Brain volume abnormalities in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Hum Brain Mapp 2009; 30: 3719–3735.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bora E, Fornito A, Pantelis C, Yucel M . Gray matter abnormalities in major depressive disorder: a meta-analysis of voxel based morphometry studies. J Affect Disord 2011; 138: 9–18.

    Article  PubMed  Google Scholar 

  13. Bora E, Fornito A, Yucel M, Pantelis C . Voxelwise meta-analysis of gray matter abnormalities in bipolar disorder. Biol Psychiatry 2010; 67: 1097–1105.

    Article  PubMed  Google Scholar 

  14. Kempton MJ, Salvador Z, Munafo MR, Geddes JR, Simmons A, Frangou S et al. Structural neuroimaging studies in major depressive disorder. Meta-analysis and comparison with bipolar disorder. Arch Gen Psychiatry 2011; 68: 675–690.

    Article  PubMed  Google Scholar 

  15. Fusar-Poli P, Meyer-Lindenberg A . Striatal presynaptic dopamine in schizophrenia, Part II: meta-analysis of [18F/11C]-DOPA PET studies. Schizophr Bull 2012; 39: 33–42.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Goodkind M, Eickhoff SB, Oathes DJ, Jiang Y, Chang A, Jones-Hagata LB et al. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry 2015; 72: 305–315.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Consortium C-DGotPG. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 2013; 381: 1371–1379.

    Article  CAS  Google Scholar 

  18. McMahon FJ . Prediction of treatment outcomes in psychiatry—where do we stand? Dialogues Clin Neurosci 2014; 16: 455–464.

    PubMed  PubMed Central  Google Scholar 

  19. Insel TR, Cuthbert BN . Brain disorders? Precisely. Science 2015; 348: 499–500.

    Article  CAS  PubMed  Google Scholar 

  20. Savitz JB, Rauch SL, Drevets WC . Clinical application of brain imaging for the diagnosis of mood disorders: the current state of play. Mol Psychiatry 18: 528–539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rubinov M, Bullmore E . Fledgling pathoconnectomics of psychiatric disorders. Trends Cogn Sci 2013; 17: 641–647.

    Article  PubMed  Google Scholar 

  22. Schizophrenia Working Group of the Psychiatric Genomics C. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014; 511: 421–427.

    Article  CAS  Google Scholar 

  23. Consortium SWGotPG. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014; 511: 421–427.

    Article  CAS  Google Scholar 

  24. Cross-Disorder Group of the Psychiatric Genomics C. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet 2013; 45: 984–994.

    Article  CAS  Google Scholar 

  25. Bullmore E, Sporns O . Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 2009; 10: 186–198.

    Article  CAS  PubMed  Google Scholar 

  26. Deco G, Kringelbach ML . Great expectations: using whole-brain computational connectomics for understanding neuropsychiatric disorders. Neuron 2014; 84: 892–905.

    Article  CAS  PubMed  Google Scholar 

  27. Telford C, McCarthy-Jones S, Corcoran R, Rowse G . Experience sampling methodology studies of depression: the state of the art. Psychol Med 2012; 42: 1119–1129.

    Article  CAS  PubMed  Google Scholar 

  28. Solhan MB, Trull TJ, Jahng S, Wood PK . Clinical assessment of affective instability: comparing EMA indices, questionnaire reports, and retrospective recall. Psychol Assess 2009; 21: 425–436.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kahneman D, Krueger AB, Schkade D, Schwarz N, Stone AA . Would you be happier if you were richer? A focusing illusion. Science 2006; 312: 1908–1910.

    Article  CAS  PubMed  Google Scholar 

  30. Conner TS, Barrett LF . Trends in ambulatory self-report: the role of momentary experience in psychosomatic medicine. Psychosom Med 2012; 74: 327–337.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dilks DD, Serences JT, Rosenau BJ, Yantis S, McCloskey M . Human adult cortical reorganization and consequent visual distortion. J Neurosci 2007; 27: 9585–9594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Frodl T, Jager M, Smajstrlova I, Born C, Bottlender R, Palladino T et al. Effect of hippocampal and amygdala volumes on clinical outcomes in major depression: a 3-year prospective magnetic resonance imaging study. J Psychiatry Neurosci 2008; 33: 423–430.

    PubMed  PubMed Central  Google Scholar 

  33. Frodl T, Meisenzahl EM, Zetzsche T, Hohne T, Banac S, Schorr C et al. Hippocampal and amygdala changes in patients with major depressive disorder and healthy controls during a 1-year follow-up. J Clin Psychiatry 2004; 65: 492–499.

    Article  PubMed  Google Scholar 

  34. Arnone D, McKie S, Elliott R, Juhasz G, Thomas EJ, Downey D et al. State-dependent changes in hippocampal grey matter in depression. Mol Psychiatry 2012; 18: 1265–1272.

    Article  PubMed  Google Scholar 

  35. Sheline YI, Sanghavi M, Mintun MA, Gado MH . Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. J Neurosci 1999; 19: 5034–5043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McKinnon MC, Yucel K, Nazarov A, MacQueen GM . A meta-analysis examining clinical predictors of hippocampal volume in patients with major depressive disorder. J Psychiatry Neurosci 2009; 34: 41–54.

    PubMed  PubMed Central  Google Scholar 

  37. MacQueen GM, Campbell S, McEwen BS, Macdonald K, Amano S, Joffe RT et al. Course of illness, hippocampal function, and hippocampal volume in major depression. Proc Natl Acad Sci 2003; 100: 1387–1392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Treadway MT, Waskom ML, Dillon DG, Holmes AJ, Park MTM, Chakravarty MM et al. Illness progression, recent stress, and morphometry of hippocampal subfields and medial prefrontal cortex in major depression. Biol Psychiatry 2015; 77: 285–294.

    Article  PubMed  Google Scholar 

  39. McEwen BS . Stress and hippocampal plasticity. Annu Rev Neurosci 1999; 22: 105–122.

    Article  CAS  PubMed  Google Scholar 

  40. McEwen BS . Plasticity of the hippocampus: adaptation to chronic stress and allostatic load. Ann N Y Acad Sci 2001; 933: 265–277.

    Article  CAS  PubMed  Google Scholar 

  41. MacQueen G, Frodl T . The hippocampus in major depression: evidence for the convergence of the bench and bedside in psychiatric research&quest. Mol Psychiatry 2010; 16: 252–264.

    Article  PubMed  Google Scholar 

  42. Dunlop BW, Mayberg HS . Neuroimaging-based biomarkers for treatment selection in major depressive disorder. Dialogues Clin Neurosci 2014; 16: 479.

    PubMed  PubMed Central  Google Scholar 

  43. Davidson RJ . Comment: affective chronometry has come of age. Emotion Rev 2015; 7: 368–370.

    Article  Google Scholar 

  44. Becker JT, Chang YF, Lopez OL, Dew MA, Sweet RA, Barnes D et al. Depressed mood is not a risk factor for incident dementia in a community-based cohort. Am J Geriatr Psychiatry 2009; 17: 653–663.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bruhl AB, Rufer M, Kaffenberger T, Baur V, Herwig U . Neural circuits associated with positive and negative self-appraisal. Neuroscience 2014; 265: 48–59.

    Article  CAS  PubMed  Google Scholar 

  46. Fanous AH, Neale MC, Aggen SH, Kendler KS . A longitudinal study of personality and major depression in a population-based sample of male twins. Psychol Med 2007; 37: 1163–1172.

    Article  PubMed  Google Scholar 

  47. Goldberg SB, Manley AR, Smith SS, Greeson JM, Russell E, Van Uum S et al. Hair cortisol as a biomarker of stress in mindfulness training for smokers. J Altern Complement Med 2014; 20: 630–634.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kendler KS, Gardner CO . A longitudinal etiologic model for symptoms of anxiety and depression in women. Psychol Med 2011; 41: 2035–2045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Naudin M, Carl T, Surguladze S, Guillen C, Gaillard P, Belzung C et al. Perceptive biases in major depressive episode. PLoS ONE 2014; 9: e86832.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Nikolova YS, Bogdan R, Brigidi BD, Hariri AR . Ventral striatum reactivity to reward and recent life stress interact to predict positive affect. Biol Psychiatry 2012; 72: 157–163.

    Article  PubMed  Google Scholar 

  51. Tadayonnejad R, Yang S, Kumar A, Ajilore O . Clinical, cognitive, and functional connectivity correlations of resting-state intrinsic brain activity alterations in unmedicated depression. J Affect Disord 2014; 172c: 241–250.

    Google Scholar 

  52. Wei J, Sun G, Zhao L, Yang X, Liu X, Lin D et al. Analysis of hair cortisol level in first-episodic and recurrent female patients with depression compared to healthy controls. J Affect Disord 2015; 175: 299–302.

    Article  CAS  PubMed  Google Scholar 

  53. Ormel J, Oldehinkel AJ, Nolen WA, Vollebergh W . Psychosocial disability before, during, and after a major depressive episode: a 3-wave population-based study of state, scar, and trait effects. Arch Gen Psychiatry 2004; 61: 387–392.

    Article  PubMed  Google Scholar 

  54. Edmondson D, Shaffer JA, Chaplin WF, Burg MM, Stone AA, Schwartz JE . Trait anxiety and trait anger measured by ecological momentary assessment and their correspondence with traditional trait questionnaires. J Res Pers 2013; 47: 843–852.

    Article  Google Scholar 

  55. Trull TJ, Ebner-Priemer U . Ambulatory assessment. Annu Rev Clin Psychol 2013; 9: 151.

    Article  PubMed  Google Scholar 

  56. Gruber J, Kogan A, Quoidbach J, Mauss IB . Happiness is best kept stable: positive emotion variability is associated with poorer psychological health. Emotion 2013; 13: 1.

    Article  PubMed  Google Scholar 

  57. Myin-Germeys I, Oorschot M, Collip D, Lataster J, Delespaul P, van Os J . Experience sampling research in psychopathology: opening the black box of daily life. Psychol Med 2009; 39: 1533–1547.

    Article  CAS  PubMed  Google Scholar 

  58. Bowen R, Baetz M, Hawkes J, Bowen A . Mood variability in anxiety disorders. J Affect Disord 2006; 91: 165–170.

    Article  PubMed  Google Scholar 

  59. Bowen R, Clark M, Baetz M . Mood swings in patients with anxiety disorders compared with normal controls. J Affect Disord 2004; 78: 185–192.

    Article  PubMed  Google Scholar 

  60. Hutchison RM, Womelsdorf T, Allen EA, Bandettini PA, Calhoun VD, Corbetta M et al. Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 2013; 80: 360–378.

    Article  PubMed  Google Scholar 

  61. Yosef N, Regev A . Impulse control: temporal dynamics in gene transcription. Cell 2011; 144: 886–896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Robinson LF, Atlas LY, Wager TD . Dynamic functional connectivity using state-based dynamic community structure: Method and application to opioid analgesia. Neuroimage 2015; 108: 274–291.

    Article  PubMed  Google Scholar 

  63. Kinnison J, Padmala S, Choi J-M, Pessoa L . Network analysis reveals increased integration during emotional and motivational processing. J Neurosci 2012; 32: 8361–8372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Logan RW, Edgar N, Gillman AG, Hoffman D, Zhu X, McClung CA . Chronic stress induces brain region-specific alterations of molecular rhythms that correlate with depression-like behavior in mice. Biol Psychiatry 2015; 78: 249–258.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lee M, Kim Y, Park W, Park O, Kwon S, Hong K et al. Temporal variability of glucocorticoid receptor activity is functionally important for the therapeutic action of fluoxetine in the hippocampus. Mol Psychiatry 2014; 21: 252–260.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Hall DP, Sing HC, Romanoski AJ . Identification and characterization of greater mood variance in depression. Am J Psychiatry 1991; 148: 1341–1345.

    Article  PubMed  Google Scholar 

  67. Eid M, Diener E . Global judgments of subjective well-being: situational variability and long-term stability. Soc Indic Res 2004; 65: 245–277.

    Article  Google Scholar 

  68. Trull TJ, Solhan MB, Tragesser SL, Jahng S, Wood PK, Piasecki TM et al. Affective instability: measuring a core feature of borderline personality disorder with ecological momentary assessment. J Abnorm Psychol 2008; 117: 647.

    Article  PubMed  Google Scholar 

  69. Cowdry RW, Gardner DL, O'Leary KM, Leibenluft E, Rubinow DR . Mood variability: a study of four groups. Am J Psychiatry 1991; 148: 1505–1511.

    Article  CAS  PubMed  Google Scholar 

  70. Calhoun VD, Kiehl KA, Pearlson GD . Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Hum Brain Mapp 2008; 29: 828–838.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA et al. Functional network organization of the human brain. Neuron 2011; 72: 665–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kitzbichler MG, Henson RNA, Smith ML, Nathan PJ, Bullmore ET . Cognitive effort drives workspace configuration of human brain functional networks. J Neurosci 2011; 31: 8259–8270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shirer WR, Ryali S, Rykhlevskaia E, Menon V, Greicius MD . Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb Cortex 2012; 22: 158–165.

    Article  CAS  PubMed  Google Scholar 

  74. Hermans EJ, van Marle HJ, Ossewaarde L, Henckens MJ, Qin S, van Kesteren MT et al. Stress-related noradrenergic activity prompts large-scale neural network reconfiguration. Science 2011; 334: 1151–1153.

    Article  CAS  PubMed  Google Scholar 

  75. Geerligs L, Rubinov M, Henson RN . State and trait components of functional connectivity: individual differences vary with mental state. J Neurosci 2015; 35: 13949–13961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Verdecchia P, Porcellati C, Schillaci G, Borgioni C, Ciucci A, Battistelli M et al. Ambulatory blood pressure. An independent predictor of prognosis in essential hypertension. Hypertension 1994; 24: 793–801.

    Article  CAS  PubMed  Google Scholar 

  77. Robinson MD, Clore GL . Belief and feeling: evidence for an accessibility model of emotional self-report. Psychol Bull 2002; 128: 934–960.

    Article  PubMed  Google Scholar 

  78. Robinson MD, Clore GL . Episodic and semantic knowledge in emotional self-report: evidence for two judgment processes. J Pers Soc Psychol 2002; 83: 198–215.

    Article  PubMed  Google Scholar 

  79. Schwarz N . Retrospective and concurrent self-reports: the rationale for real-time data capture. The Science of Real-Time Data Capture: Self-Reports in Health Research 2007; 11–26.

  80. Schwarz N Feelings as information: informational and motivational functions of affective states. In: Higgins ET, Sorrentino R (eds). Handbook of Motivation and Cognition. Guilford Press: New York, NY, 1990.

    Google Scholar 

  81. Gold JM, Waltz JA, Prentice KJ, Morris SE, Heerey EA . Reward processing in schizophrenia: a deficit in the representation of value. Schizophr Bull 2008; 34: 835–847.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Strauss GP, Gold JM . A New Perspective on Anhedonia in Schizophrenia. Am J Psychiatry 2012; 169: 364–373.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Gard DE, Gard MG, Kring AM, John OP . Anticipatory and consummatory components of the experience of pleasure: a scale development study. J Res Pers 2006; 40: 1086–1102.

    Article  Google Scholar 

  84. Heerey EA, Gold JM . Patients with schizophrenia demonstrate dissociation between affective experience and motivated behavior. J Abnorm Psychol 2007; 116: 268.

    Article  PubMed  Google Scholar 

  85. Burbridge JA, Barch DM . Anhedonia and the experience of emotion in individuals with schizophrenia. J Abnorm Psychol 2007; 116: 30.

    Article  PubMed  Google Scholar 

  86. Strauss GP, Robinson BM, Waltz JA, Frank MJ, Kasanova Z, Herbener ES et al. Patients with schizophrenia demonstrate inconsistent preference judgments for affective and nonaffective stimuli. Schizophr Bull 2011; 37: 1295–1304.

    Article  PubMed  Google Scholar 

  87. Brown JK, Waltz JA, Strauss GP, McMahon RP, Frank MJ, Gold JM . Hypothetical decision making in schizophrenia: the role of expected value computation and ‘irrational’ biases. Psychiatry Res 2013; 209: 142–149.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Strauss GP . The emotion paradox of anhedonia in schizophrenia: or is it? Schizophr Bull 2013; 39: 247–250.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Gard DE, Sanchez AH, Cooper K, Fisher M, Garrett C, Vinogradov S . Do people with schizophrenia have difficulty anticipating pleasure, engaging in effortful behavior, or both? Abnorm Psychol 2014; 123: 771–782.

    Article  Google Scholar 

  90. Meuret AE, Rosenfield D, Wilhelm FH, Zhou E, Conrad A, Ritz T et al. Do unexpected panic attacks occur spontaneously? Biol Psychiatry 2011; 70: 985–991.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Prince SA, Adamo KB, Hamel ME, Hardt J, Gorber SC, Tremblay M . A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. Int J Behav Nutr Phys Act 2008; 5: 56.

    Article  PubMed  PubMed Central  Google Scholar 

  92. van de Leemput IA, Wichers M, Cramer AO, Borsboom D, Tuerlinckx F, Kuppens P et al. Critical slowing down as early warning for the onset and termination of depression. Proc Natl Acad Sci USA 2014; 111: 87–92.

    Article  CAS  PubMed  Google Scholar 

  93. Gotlib IH, Krasnoperova E, Yue DN, Joormann J . Attentional biases for negative interpersonal stimuli in clinical depression. J Abnorm Psychol 2004; 113: 121–135.

    PubMed  Google Scholar 

  94. Joormann J, Gotlib IH . Is this happiness I see? Biases in the identification of emotional facial expressions in depression and social phobia. J Abnorm Psychol 2006; 115: 705–714.

    Article  PubMed  Google Scholar 

  95. Beck AT . The evolution of the cognitive model of depression and its neurobiological correlates. Am J Psychiatry 2008; 165: 969–977.

    Article  PubMed  Google Scholar 

  96. Korn C, Sharot T, Walter H, Heekeren H, Dolan R . Depression is related to an absence of optimistically biased belief updating about future life events. Psychol Med 2014; 44: 579–592.

    Article  CAS  PubMed  Google Scholar 

  97. Strunk DR, Lopez H, DeRubeis RJ . Depressive symptoms are associated with unrealistic negative predictions of future life events. Behav Res Ther 2006; 44: 861–882.

    Article  PubMed  Google Scholar 

  98. Strunk DR, Adler AD . Cognitive biases in three prediction tasks: A test of the cognitive model of depression. Behav Res Ther 2009; 47: 34–40.

    Article  PubMed  Google Scholar 

  99. Kagan J . A trio of concerns. Perspect Psychol Sci 2007; 2: 361–376.

    Article  PubMed  Google Scholar 

  100. Forbes EE, Hariri AR, Martin SL, Silk JS, Moyles DL, Fisher PM et al. Altered striatal activation predicting real-world positive affect in adolescent major depressive disorder. Am J Psychiatry 2009; 166: 64–73.

    Article  PubMed  Google Scholar 

  101. Telzer EH, Fuligni AJ, Lieberman MD, Galván A . Neural sensitivity to eudaimonic and hedonic rewards differentially predict adolescent depressive symptoms over time. Proc Natl Acad Sci 2014; 111: 6600–6605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Demos KE, Heatherton TF, Kelley WM . Individual differences in nucleus accumbens activity to food and sexual images predict weight gain and sexual behavior. J Neurosci 2012; 32: 5549–5552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Weinberger DR, Glick ID, Klein DF . Whither research domain criteria (RDoC)? The good, the bad, and the ugly. JAMA Psychiatry 2015; 72: 1161–1162.

    Article  PubMed  Google Scholar 

  104. Treadway MT, Zald DH . Reconsidering anhedonia in depression: lessons from translational neuroscience. Neurosci Biobehav Rev 2011; 35: 537–555.

    Article  PubMed  Google Scholar 

  105. Mayberg HS . Limbic-cortical dysregulation: a proposed model of depression. J Neuropsychiatry Clin Neurosci 1997; 9: 471–481.

    Article  CAS  PubMed  Google Scholar 

  106. Pizzagalli DA . Frontocingulate dysfunction in depression: toward biomarkers of treatment response. Neuropsychopharmacology 2011; 36: 183–206.

    Article  PubMed  Google Scholar 

  107. Miller AH, Maletic V, Raison CL . Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 2009; 65: 732–741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Haroon E, Raison CL, Miller AH . Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology 2011; 37: 137–162.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Felger JC, Miller AH . Cytokine effects on the basal ganglia and dopamine function: the subcortical source of inflammatory malaise. Front Neuroendocrinol 2014; 33: 315–327.

    Article  CAS  Google Scholar 

  110. Capuron L, Pagnoni G, Drake DF, Woolwine BJ, Spivey JR, Crowe RJ et al. Dopaminergic mechanisms of reduced Basal Ganglia responses to hedonic reward during interferon alfa administration. Arch Gen Psychiatry 2012; 69: 1044–1053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW . From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 2008; 9: 46–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Maes M, Bosmans E, De Jongh R, Kenis G, Vandoolaeghe E, Neels H . Increased serum IL-6 and IL-1 receptor antagonist concentrations in major depression and treatment resistant depression. Cytokine 1997; 9: 853–858.

    Article  CAS  PubMed  Google Scholar 

  113. Maier SF, Watkins LR . Cytokines for psychologists: implications of bidirectional immune-to-brain communication for understanding behavior, mood, and cognition. Psychol Rev 1998; 105: 83–107.

    Article  CAS  PubMed  Google Scholar 

  114. Chen R, Mias GI, Li-Pook-Than J, Jiang L, Lam HY, Chen R et al. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 2012; 148: 1293–1307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Poldrack RA, Laumann TO, Koyejo O, Gregory B, Hover A, Chen M-Y et al. Long-term neural and physiological phenotyping of a single human. Nat Commun 2015; 6: 8885.

    Article  CAS  PubMed  Google Scholar 

  116. van de Leemput IA, Wichers M, Cramer AOJ, Borsboom D, Tuerlinckx F, Kuppens P et al. Critical slowing down as early warning for the onset and termination of depression. Proc Natl Acad Sci USA 2014; 111: 87–92.

    Article  CAS  PubMed  Google Scholar 

  117. Rahdar A, Galván A . The cognitive and neurobiological effects of daily stress in adolescents. Neuroimage 2014; 92: 267–273.

    Article  PubMed  Google Scholar 

  118. Barabasi A-L . Linked: How everything is connected to everything else and what it means. Plume Editors 2002.

  119. Cramer AO, Waldorp LJ, van der Maas HL, Borsboom D . Comorbidity: a network perspective. Behav Brain Sci 2010; 33: 137–150.

    Article  PubMed  Google Scholar 

  120. Rubinov M, Sporns O . Complex network measures of brain connectivity: uses and interpretations. Neuroimage 2010; 52: 1059–1069.

    Article  PubMed  Google Scholar 

  121. Epskamp S, Cramer AOJ, Waldorp LJ, Schmittmann VD, Borsboom D . qgraph: network visualizations of relationships in psychometric data. J Stat Softw 2012; 48: 1–18.

    Article  Google Scholar 

  122. Bringmann L, Lemmens L, Huibers M, Borsboom D, Tuerlinckx F . Revealing the dynamic network structure of the Beck Depression Inventory-II. Psychol Med 2014; 45: 1–11.

    Google Scholar 

  123. Bringmann LF, Vissers N, Wichers M, Geschwind N, Kuppens P, Peeters F et al. A network approach to psychopathology: new insights into clinical longitudinal data. PLoS ONE 2013; 8: e60188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Debener S, Minow F, Emkes R, Gandras K, Vos M . How about taking a low-cost, small, and wireless EEG for a walk? Psychophysiology 2012; 49: 1617–1621.

    Article  PubMed  Google Scholar 

  125. McNab F, Varrone A, Farde L, Jucaite A, Bystritsky P, Forssberg H et al. Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science 2009; 323: 800–802.

    Article  CAS  PubMed  Google Scholar 

  126. Dux PE, Tombu MN, Harrison S, Rogers BP, Tong F, Marois R . Training improves multitasking performance by increasing the speed of information processing in human prefrontal cortex. Neuron 2009; 63: 127–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hasler G, Fromm S, Carlson PJ, Luckenbaugh DA, Waldeck T, Geraci M et al. Neural response to catecholamine depletion in unmedicated subjects with major depressive disorder in remission and healthy subjects. Arch Gen Psychiatry 2008; 65: 521–531.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Homan P, Drevets WC, Hasler G . Neural correlates of free T3 alteration after catecholamine depletion in subjects with remitted major depressive disorder and in controls. Psychopharmacology (Berl) 2013; 231: 409–417.

    Article  CAS  Google Scholar 

  129. Silk JS, Stroud LR, Siegle GJ, Dahl RE, Lee KH, Nelson EE . Peer acceptance and rejection through the eyes of youth: pupillary, eyetracking and ecological data from the Chatroom Interact task. Soc Cogn Affect Neurosci 2012; 7: 93–105.

    Article  PubMed  Google Scholar 

  130. Miller AH, Raison CL . Are anti-inflammatory therapies viable treatments for psychiatric disorders? Where the rubber meets the road. JAMA Psychiatry 2015; 72: 527–528.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Watkins E, Teasdale JD . Rumination and overgeneral memory in depression: effects of self-focus and analytic thinking. J Abnorm Psychol 2001; 110: 353.

    Article  CAS  PubMed  Google Scholar 

  132. Kim S, Thibodeau R, Jorgensen RS . Shame, guilt, and depressive symptoms: a meta-analytic review. Psychol Bull 2011; 137: 68.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded in part by NIMH grant R00MH10355. We thank David Zald, Scott Lilienfeld, Irwin Waldman and Joshua Buckholtz for insightful discussions and invaluable criticism. We also thank Nicole Treadway, Andrew Teer and Daniel Cole for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M T Treadway.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Treadway, M., Leonard, C. Isolating biomarkers for symptomatic states: considering symptom–substrate chronometry. Mol Psychiatry 21, 1180–1187 (2016). https://doi.org/10.1038/mp.2016.83

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2016.83

This article is cited by

Search

Quick links