Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression

Subjects

Abstract

Schizophrenia, bipolar disorder and major depressive disorder (MDD) have all been associated with aberrant blood cytokine levels; however, neither the pattern of cytokine alterations nor the impact of clinical status have been compared across disorders. We performed a meta-analysis of blood cytokines in acutely and chronically ill patients with these major psychiatric disorders. Articles were identified by searching the PubMed, PsycInfo and Web of Science, and the reference lists of these studies. Sixty-eight studies met the inclusion criteria (40 schizophrenia, 10 bipolar disorder and 18 MDD) for acutely ill patients. Forty-six studies met the inclusion criteria (18 schizophrenia, 16 bipolar disorder and 12 MDD) for chronically ill patients. Levels of two cytokines (interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α)), one soluble cytokine receptor (sIL-2R), and one cytokine receptor antagonist (IL-1RA) were significantly increased in acutely ill patients with schizophrenia, bipolar mania and MDD compared with controls (P<0.01). Following treatment of the acute illness, IL-6 levels significantly decreased in both schizophrenia and MDD (P<0.01); sIL-2R levels increased in schizophrenia; and IL-1RA levels in bipolar mania decreased. In chronically ill patients, the levels of IL-6 were significantly increased in schizophrenia, euthymic (but not depressed) bipolar disorder and MDD compared with controls (P<0.01). The levels of IL-1β and sIL-2R were significantly increased in both chronic schizophrenia and euthymic bipolar disorder. Overall, there were similarities in the pattern of cytokine alterations in schizophrenia, bipolar disorder and MDD during acute and chronic phases of illness, raising the possibility of common underlying pathways for immune dysfunction. Effects of treatment on cytokines were more robust for schizophrenia and MDD, but were more frequently studied than for acute mania. These findings have important implications for our understanding of the pathophysiology and treatment of major psychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Network and Pathway Analysis Subgroup of Psychiatric Genomics Consortium. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nat Neurosci 2015; 18: 199–209.

    Article  CAS  Google Scholar 

  2. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014; 511: 421–427.

    Article  CAS  PubMed Central  Google Scholar 

  3. The International Schizophrenia Consortium Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF et al. Common polygenic variation contributes to risk of schizophrenia that overlaps with bipolar disorder. Nature 2009; 460: 748–752.

    Google Scholar 

  4. Barbosa IG, Machado-Vieira R, Soares JC, Teixeira AL . The immunology of bipolar disorder. Neuroimmunomodulation 2014; 21: 117–122.

    Article  CAS  PubMed  Google Scholar 

  5. Ezeoke A, Mellor A, Buckley P, Miller BJ . A systematic quantitative review of blood autoantibody elevations in schizophrenia. Schizophr Res 2013; 150: 245–251.

    Article  PubMed  Google Scholar 

  6. Gibney SM, Drexhage HA . Evidence for a dysregulated immune system in the etiology of psychiatric disorders. J Neuroimmune Pharmacol 2013; 8: 900–920.

    Article  PubMed  Google Scholar 

  7. Miller B, Gassama B, Sebastian D, Buckley P, Mellor A . Meta-analysis of lymphocytes in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry 2013; 73: 993–999.

    Article  CAS  PubMed  Google Scholar 

  8. Müller N . Immunology of major depression. Neuroimmunomodulation 2014; 21: 123–130.

    Article  PubMed  CAS  Google Scholar 

  9. Pearlman DM, Najjar S . Meta-analysis of the association between N-methyl-d-aspartate receptor antibodies and schizophrenia, schizoaffective disorder, bipolar disorder, and major depressive disorder. Schizophr Res 2014; 157: 249–258.

    Article  PubMed  Google Scholar 

  10. Ayorech Z, Tracy DK, Baumeister D, Giaroli G . Taking the fuel out of the fire: evidence for the use of anti-inflammatory agents in the treatment of bipolar disorders. J Affect Disord 2015; 174: 467–478.

    Article  CAS  PubMed  Google Scholar 

  11. Köhler O, Benros ME, Nordentoft M, Farkouh ME, Iyengar RL, Mors O et al. Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: a systematic review and meta-analysis of randomized clinical trials. JAMA Psychiatry 2014; 71: 1381–1391.

    Article  PubMed  Google Scholar 

  12. Nitta M, Kishimoto T, Müller N, Weiser M, Davidson M, Kane JM et al. Adjunctive use of nonsteroidal anti-inflammatory drugs for schizophrenia: a meta-analytic investigation of randomized controlled trials. Schizophr Bull 2013; 39: 1230–1241.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sommer IE, van Westrhenen R, Begemann MJ, de Witte LD, Leucht S, Kahn RS . Efficacy of anti-inflammatory agents to improve symptoms in patients with schizophrenia: an update. Schizophr Bull 2014; 40: 181–191.

    Article  PubMed  Google Scholar 

  14. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK et al. A meta-analysis of cytokines in major depression. Biol Psychiatry 2010; 67: 446–457.

    Article  CAS  PubMed  Google Scholar 

  15. Liu Y, Ho RCM, Mak A . Interleukin (IL)-6, tumor necrosis factor alpha (TNF-α) and solubleinterleukin-2 receptors (sIL-2 R) are elevated in patients with major depressive disorder: a meta-analysis and meta-regression. J Affect Disord 2012; 139: 230–239.

    Article  CAS  PubMed  Google Scholar 

  16. Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B . Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry 2011; 70: 663–671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Modabbernia A, Taslimi S, Brietzke E, Ashrafi M . Cytokine alterations in bipolar disorder: a meta-analysis of 30 studies. Biol Psychiatry 2013; 74: 15–25.

    Article  CAS  PubMed  Google Scholar 

  18. Munkholm K, Vinberg M, Kessing LV . Cytokines in bipolar disorder: a systematic review and meta-analysis. J Affect Disord 2013; 144: 16–27.

    Article  CAS  PubMed  Google Scholar 

  19. Potvin S, Stip E, Sepehry AA, Gendron A, Bah R, Kouassi E . Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review. Biol Psychiatry 2008; 63: 801–808.

    Article  CAS  PubMed  Google Scholar 

  20. Upthegrove R, Manzanares-Teson N, Barnes NM . Cytokine function in medication-naïve first episode psychosis: a systematic review and meta-analysis. Schizophr Resh 2014; 155: 101–108.

    Article  Google Scholar 

  21. Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simoes MJ, Cerri PS . Biology of bone tissue: structure, function, and factors that influence bone cells. BioMed Res Int 2015; 2015: 421746.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Ingman WV, Robertson SA . The essential roles of TGFB1 in reproduction. Cytokine Growth Factor Rev 2009; 20: 233–239.

    Article  CAS  PubMed  Google Scholar 

  23. Sullivan PF, Kendler KS, Neale MC . Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 2003; 60: 1187–1192.

    Article  PubMed  Google Scholar 

  24. Akiyama K . Serum levels of soluble IL-2 receptor alpha, IL-6 and IL-1 receptor antagonist in schizophrenia before and during neuroleptic administration. Schizophr Res 1999; 37: 97–106.

    Article  CAS  PubMed  Google Scholar 

  25. Borovcanin M, Jovanovic I, Radosavljevic G, Dejanovic SD, Bankovic D, Arsenijevic N et al. Elevated serum level of type-2 cytokine and low IL-17 in first episode psychosis and schizophrenia in relapse. J Psychiatric Res 2012; 46: 1421–1426.

    Article  Google Scholar 

  26. Borovcanin M, Jovanovic I, Radosavljevic G, Dejanovic SD, Stefanovic V, Arsenijevic N et al. Antipsychotics can modulate the cytokine profile in schizophrenia: attenuation of the type-2 inflammatory response. Schizophr Res 2013; 147: 103–109.

    Article  PubMed  Google Scholar 

  27. Chen S-L, Lee S-Y, Chang Y-H, Chen S-H, Chu C-H, Tzeng N-S et al. Inflammation in patients with schizophrenia: the therapeutic benefits of risperidone plus add-on dextromethorphan. J Neuroimmun Pharmacol 2012; 7: 656–664.

    Article  Google Scholar 

  28. Crespo-Facorro B, Carrasco-Marín E, Pérez-Iglesias R, Pelayo-Terán JM, Fernandez-Prieto L, Leyva-Cobián F et al. Interleukin-12 plasma levels in drug-naïve patients with a first episode of psychosis: effects of antipsychotic drugs. Psychiatry Res 2008; 158: 206–216.

    Article  CAS  PubMed  Google Scholar 

  29. de Witte L, Tomasik J, Schwarz E, Guest PC, Rahmoune H, Kahn RS et al. Cytokine alterations in first-episode schizophrenia patients before and after antipsychotic treatment. Schizophr Res 2014; 154: 23–29.

    Article  PubMed  Google Scholar 

  30. Ding M, Song X, Zhao J, Gao J, Li X, Yang G et al. Activation of Th17 cells in drug naïve, first episode schizophrenia. Progr Neuro-Psychopharmacol Biol Psychiatry 2014; 51: 78–82.

    Article  CAS  Google Scholar 

  31. Di Nicola M, Cattaneo A, Hepgul N, Di Forti M, Aitchison KJ, Janiri L et al. Serum and gene expression profile of cytokines in first-episode psychosis. Brain Behav Immun 2013; 31: 90–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Drexhage RC, Hoogenboezem TA, Cohen D, Versnel MA, Nolen WA, van Beveren NJM et al. An activated set point of T-cell and monocyte inflammatory networks in recent-onset schizophrenia patients involves both pro- and anti-inflammatory forces. Int J Neuropsychopharmacol 2011; 14: 746–755.

    Article  CAS  PubMed  Google Scholar 

  33. Dunjic-Kostic B, Jasovic-Gasic M, Ivkovic M, Radonjic NV, Pantovic M, Damjanovic A et al. Serum levels of interleukin-6 and tumor necrosis factor-alpha in exacerbation and remission phase of schizophrenia. Psychiatr Danub 2013; 25: 55–61.

    CAS  PubMed  Google Scholar 

  34. El Kissi Y, Samoud S, Mtiraoui A, Letaief, Hannachi N, Ayachi M et al. Increased interleukin-17 and decreased BAFF serum levels in drug-free acute schizophrenia. Psychiatry Res 2015; 225: 58–63.

    Article  CAS  PubMed  Google Scholar 

  35. Fernandez-Egea E, Bernardo M, Donner T, Congent I, Parellada E, Justicia A et al. Metabolic profile of antipsychotic-naïve individuals with nonaffective psychosis. Br J Psychiatry 2009; 194: 434–438.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Frommberger UH, Bauer J, Haselbauer P, Fräulin A, Riemann D, Berger M . Interleukin-6 (IL-6) plasma levels in depression and schizophrenia: comparison between the acute state and after remission. Eur Arch Psychiatry Clin Neurosci 1997; 247: 228–233.

    Article  CAS  PubMed  Google Scholar 

  37. Ganguli R, Rabin BS . Increased serum interleukin 2 receptor concentration in schizophrenic and brain-damaged subjects. Arch Gen Psychiatry 1989; 46: 292.

    Article  CAS  PubMed  Google Scholar 

  38. Ganguli R, Yang Z, Shurin G, Chengappa KN, Brar JS, Gubbi AV et al. Serum interleukin-6 concentration in schizophrenia: elevation associated with duration of illness. Psychiatry Res 1994; 51: 1–10.

    Article  CAS  PubMed  Google Scholar 

  39. Gattaz WF, Dalgalarrondo P, Schröder HC . Abnormalities in serum concentrations of interleukin-2, interferon-α and interferon-γ in schizophrenia not detected. Schizophr Res 1992; 6: 237–241.

    Article  CAS  PubMed  Google Scholar 

  40. Haack M, Hinze-Selch D, Fenzel T, Kraus T, Kühn M, Schuld A et al. Plasma levels of cytokines and soluble cytokine receptors in psychiatric patients upon hospital admission: effects of confounding factors and diagnosis. J Psychiatr Res 1999; 33: 407–418.

    Article  CAS  PubMed  Google Scholar 

  41. Kalmady SV, Venkatasubramania G, Shivakumar V, Gautham S, Subramaniam A, Jose DA et al. Relationship between interleukin-6 gene polymorphism and hippocampal volume in antipsychotic-naïve schizophrenia: evidence for differential susceptibility? PLoS One 2014; 9: e96021.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Kaminska T, Wysocka A, Marmurowska-Michalowska H, Dubas-Slemp H, Kandefer-Szerszen M . Investigation of serum cytokine levels and cytokine production in whole blood cultures of paranoid schizophrenic patients. Arch Immunol Ther Exp (Warsz) 2001; 49: 439–445.

    CAS  Google Scholar 

  43. Kim YK, Kim L, Lee MS . Relationships between interleukins, neurotransmitters and psychopathology in drug-free male schizophrenics. Schizophr Res 2000; 44: 165–175.

    Article  CAS  PubMed  Google Scholar 

  44. Kim DJ, Kim W, Yoon SJ, Go HJ, Choi BM, Jun TY et al. Effect of risperidone on serum cytokines. Int J Neurosci 2001; 111: 11–19.

    Article  CAS  PubMed  Google Scholar 

  45. Kim YK, Suh IB, Kim H, Han CS, Lim CS, Choi SH et al. The plasma levels of interleukin-12 in schizophrenia, major depression, and bipolar mania: Effects of psychotropic drugs. Mol Psychiatry 2002; 7: 1107–1114.

    Article  CAS  PubMed  Google Scholar 

  46. Kim YK, Myint AM, Lee BH, Han CS, Lee HJ, Kim DJ et al. Th1, Th2 and Th3 cytokine alteration in schizophrenia. Progr Neuropsychopharmacol Biol Psychiatry 2004; 28: 1129–1134.

    Article  CAS  Google Scholar 

  47. Kim YK, Myint AM, Verkerk R, Scharpe S, Steinbusch H, Leonard B . Cytokine changes and tryptophan metabolites in medication naïve and medication-free schizophrenic patients. Neuropsychobiology 2009; 59: 123–129.

    Article  CAS  PubMed  Google Scholar 

  48. Kubistova A, Joracek J, Novak T . Increased interleukin-6 and tumor necrosis factor alpha in first episode schizophrenia patients versus healthy controls. Psychiatr Danub 2012; 24: 153–156.

    CAS  Google Scholar 

  49. Lin CC, Chang MC, Chang PY, Huang TL . Increased interleukin-6 level in Taiwanese schizophrenic patients. Chang Gunng Med J 2011; 34: 375–381.

    Google Scholar 

  50. Maes M, Bosmans E, Ranjan R, Vandoolaeghe E, Meltzer HY, De Ley M et al. Lower plasma CC16, a natural anti-inflammatory protein, and increased plasma interleukin-1 receptor antagonist in schizophrenia: effects of antipsychotic drugs. Schizophr Res 1996; 21: 39–50.

    Article  CAS  PubMed  Google Scholar 

  51. Müller N, Empl M, Riedel M, Schwarz M, Ackenheil M . Neuroleptic treatment increases soluble IL-2 receptors and decreases soluble IL-6 receptors in schizophrenia. Eur Arch Psychiatry Clin Neurosci 1997; 247: 308–313.

    Article  PubMed  Google Scholar 

  52. O’Brien SM, Scully P, Dinan TG . Increased tumor necrosis factor alpha concentrations with interleukin-4 concentrations in exacerbations of schizophrenia. Psychiatry Res 2008; 160: 256–262.

    Article  PubMed  CAS  Google Scholar 

  53. Pae CU, Yoon CH, Kim TS, Kim JJ, Park SH, Lee CU et al. Antipsychotic treatment may alter T-helper (TH) 2 arm cytokines. Int Immunopharmacol 2006; 6: 666–671.

    Article  CAS  PubMed  Google Scholar 

  54. Rapaport MH, Lohr JB . Serum-soluble interleukin-2 receptors in neuroleptic-naïve schizophrenic subjects and in medicated schizophrenic subjects with and without tardive dyskinesia. Acta Psychiatr Scand 1994; 90: 311–315.

    Article  CAS  PubMed  Google Scholar 

  55. Schwarz MJ, Riedel M, Gruber R, Muller N, Ackenheil M . Autoantibodies against 60-kDa heat shock protein in schizophrenia. Eur Arch Psychiatry Clin Neurosci 1998; 248: 282–288.

    Article  CAS  PubMed  Google Scholar 

  56. Sirota P, Meiman M, Herschko R, Bessler H . Effect of neuroleptic administration on serum levels of soluble IL-2 receptor-alpha and IL-1 receptor antagonist in schizophrenic patients. Psychiatry Res 2005; 134: 151–159.

    Article  CAS  PubMed  Google Scholar 

  57. Song XQ, Lv LX, Li WQ, Hao YH, Zhao JP . The interaction of nuclear factor-kappa B and cytokines is associated with schizophrenia. Biol Psychiatry 2009; 65: 481–488.

    Article  CAS  PubMed  Google Scholar 

  58. Song X, Fan X, Song X, Zhang J, Zhang W, Li X et al. Elevated levels of adiponectin and other cytokines in drug naïve first episode schizophrenia patients with normal weight. Schizophr Res 2013; 150: 269–273.

    Article  PubMed  Google Scholar 

  59. Song X, Fan X, Li X, Zhang W, Gao J, Zhao J et al. Changes in pro-inflammatory cytokines and body weight during 6-montth risperidone treatment in drug naïve first-episode schizophrenia. Psychopharmacology 2014; 231: 319–325.

    Article  CAS  PubMed  Google Scholar 

  60. Theodoropoulou S, Spanakos G, Baxevanis CN, Economou M, Gritzapis AD, Papamichail MP et al. Cytokine serum levels, autologous mixed lymphocyte reaction and surface marker analysis in never medicated and chronically medicated schizophrenic patients. Schizophr Res 2001; 47: 13–25.

    Article  CAS  PubMed  Google Scholar 

  61. Xiu MH, Yang GG, Tan YL, Chen DC, Tan SP, Wag ZR et al. Decreased interleukin-10 serum levels in first-episode drug-naïve schizophrenia: relationship to psychopathology. Schizophr Res 2014; 156: 9–14.

    Article  PubMed  Google Scholar 

  62. Xiu MH, Chen DC, Wang D, Zhang K, Dong A, Tang W et al. Elevated interleukin-18 serum levels in chronic schizophrenia: association with psychopathology. J Psychiatr Res 2012; 46: 1093–1098.

    Article  PubMed  Google Scholar 

  63. Zhang XY, Tang W, Xiu MH, Chen DC, Yang FD, Tan YL et al. Interleukin-18 and cognitive impairment in first episode and drug naïve schizophrenia versus healthy controls. Brain Behav Immun 2013; 32: 105–111.

    Article  PubMed  CAS  Google Scholar 

  64. Kapczinski F, Dal-Pizzol F, Teixeira AL, Magalhaes PVS, Kauer-Sant’Anna M, Flamt F et al. Peripheral biomarkers and illness activity in bipolar disorder. J Psychiatr Res 2011; 45: 156–161.

    Article  PubMed  Google Scholar 

  65. Kim YK, Myint AM, Lee BH, Han CS, Lee SW, Leonard BE et al. T-helper types 1, 2, and 3 cytokine interactions in symptomatic manic patients. Psychiatry Res 2004; 129: 267–272.

    Article  CAS  PubMed  Google Scholar 

  66. Li H, Hong W, Zhang C, Wu Z, Wang Z, Yuan C et al. IL-23 and TGF-β1 levels as potential predictive biomarkers in treatment of bipolar I disorder with acute manic episode. J Affect Disord 2015; 174: 361–366.

    Article  CAS  PubMed  Google Scholar 

  67. Liu HC, Yang YY, Chou YM, Chen KP, Shen WW, Leu SJ . Immunological variables in acute mania of bipolar disorder. J Neuroimmunol 2004; 150: 116–122.

    Article  CAS  PubMed  Google Scholar 

  68. Munkholm K, Weikop P, Kessing LV, Vinberg M . Elevated levels of IL-6 and IL-18 in manic hypomanic states in rapid cycling bipolar disorder patients. Brain Behav Immun 2014; 43: 205–213.

    Article  PubMed  CAS  Google Scholar 

  69. O’Brien SM, Scully P, Scott LV, Dinan TG . Cytokine profiles in bipolar affective disorder: focus on acutely ill patients. J Affect Disord 2006; 90: 263–267.

    Article  PubMed  CAS  Google Scholar 

  70. Tsai SY, Chen KP, Yang YY, Chen CC, Lee JC, Singh VK et al. Activation of indices of cell-mediated immunity in bipolar mania. Biol Psychiatry 1999; 45: 989–994.

    Article  CAS  PubMed  Google Scholar 

  71. Tsai SY, Yang YY, Kuo CJ, Chen CC, Leu SJC . Effects of symptomatic severity on elevation of plasma soluble interleukin-2 receptor in bipolar mania. J Affect Disord 2001; 64: 185–193.

    Article  CAS  PubMed  Google Scholar 

  72. Tsai SY, Lee HC, Chen CC, Lee CH . Plasma levels of soluble transferrin receptors and clara cell protein (CC16) during bipolar mania and subsequent remission. J Psychiatr Res 2003; 37: 229–235.

    Article  PubMed  Google Scholar 

  73. Tsai SY, Chung KH, Wu JY, Kuo CJ, Lee HC, Huang SH . Inflammatory markers and their relationships with leptin and insulin from acute mania to full remission in bipolar disorder. J Affect Disord 2012; 136: 110–116.

    Article  CAS  PubMed  Google Scholar 

  74. Basterzi AD, Avdemir C, Kisa C, Aksaray S, Tuzer V, Yazici K et al. IL-6 levels decrease with SSRI treatment in patients with major depression. Hum Psychopharmacol 2005; 20: 473–476.

    Article  CAS  PubMed  Google Scholar 

  75. Berk M, Wadee AA, Kuschke RH, O’Neill-Kerr A . Acute phase proteins in major depression. J Psychosomat Res 1997; 43: 529–534.

    Article  CAS  Google Scholar 

  76. Dome P, Halmai Z, Dobos J, Lazary J, Gonda X, Kenessey I et al. Investigation of circulating endothelial progenitor cells and angiogenic and inflammatory cytokines during recovery from an episode of major depression. J Affect Disord 2012; 136: 1159–1163.

    Article  CAS  PubMed  Google Scholar 

  77. Eller T, Vaasar V, Shlik J, Maron E . Pro-inflammatory cytokines and treatment response to escitalopram in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32: 445–450.

    Article  CAS  PubMed  Google Scholar 

  78. Fornaro M, Rocchi G, Escelsior A, Contini P, Martino M . Might different cytokine trends in depressed patients receiving duloxetine indicate differential biological backgrounds. J Affect Disord 2013; 145: 300–307.

    Article  CAS  PubMed  Google Scholar 

  79. Hernandez ME, Mendieta D, Martinez-Fong D, Loria F, Moreno J, Estrada I et al. Variations in circulating cytokine levels during 52 week course of treatment with SSRI for major depressive disorder. Eur Neuropsychopharmacol 2008; 18: 917–924.

    Article  CAS  PubMed  Google Scholar 

  80. Huang TL, Lee CT . T-helper 1/T-helper 2 cytokine imbalance and clinical phenotypes of acute-phase major depression. Psychiatry Clin Neurosci 2007; 61: 415–420.

    Article  CAS  PubMed  Google Scholar 

  81. Kagaya A, Kugaya A, Takebayashi M, Fukue-Saeki M, Saeki T, Yamawaki S et al. Plasma concentrations on interleukin-1beta, interleukin-6, soluble interleukin-2 receptor and tumor necrosis factor alpha of depressed patients in Japan. Neuropsychobiology 2001; 43: 59–62.

    Article  CAS  PubMed  Google Scholar 

  82. Kubera M, Kenis G, Bosans E, Zieba A, Dudek D, Mowak G et al. Plasma levels of interleukin-6, interleukin-10, and interleukin-1 receptor antagonist in depression: comparison between the acute state and after remission. Polish J Pharmacol 2000; 52: 237–241.

    CAS  Google Scholar 

  83. Lee K-M, Kim Y-K . The role of IL-12 and TGF-β1 in the pathophysiology of major depressive disorder. Int Immunopharmacol 2006; 6: 1298–1304.

    Article  CAS  PubMed  Google Scholar 

  84. Leo R, DiLorenzo G, Tesauro M, Razzini C, Forleo GB, Chiricolo G et al. Association between enchanced soluble CD40 ligand and proinflammatory and prothrombotic states in major depressive disorder: pilot observations on the effects of selective serotonin reuptake inhibitor therapy. J Clin Psychiatry 2006; 67: 1760–1766.

    Article  CAS  PubMed  Google Scholar 

  85. Maes M, Meltzer HY, Bosmans E, Bergmans R, Vadoolaeghe E, Ranjan R et al. Increased plasma concentrations of interleukin-6, soluble interleukin-2 and transferrin receptor in major depression. J Affect Disord 1995; 34: 301–309.

    Article  CAS  PubMed  Google Scholar 

  86. Maes M, Bosmans E, De Jongh R, Kenis G, Vadoolaeghe E, Neels H . Increased serum IL-6 and IL-1 receptor antagonist concentrations in major depression and treatment resistant depression. Cytokine 1997; 9: 853–858.

    Article  CAS  PubMed  Google Scholar 

  87. Mikova O, Yakimova R, Bosmans, Kenis G, Maes M . Increased serum tumor necrosis factor alpha concentrations in major depression and multiple sclerosis. Eur Neuropsychopharmacol 2001; 11: 203–208.

    Article  CAS  PubMed  Google Scholar 

  88. Sluzewska A, Rybakowski J, Bostmans E, Sobieska M, Berghmans R, Maes M et al. Indictors of immune activation in major depression. Psychiatry Res 1996; 64: 161–167.

    Article  CAS  PubMed  Google Scholar 

  89. Su SC, Sun MT, Wen MJ, Lin CH, Chen YC, Hung YJ . Brain-derived neurotrophic factor, adiponectin, and proinflammatory markers in various subtypes of depression in young men. Int J Psychiatry Med 2011; 42: 211–226.

    Article  PubMed  Google Scholar 

  90. Sutcigil L, Oktenli C, Musabak U, Bozkurt A, Cansever A, Uzun O et al. Pro- and anti-inflammatory cytokine balance in major depression: effect of sertraline therapy. Clin Dev Immunol 2007; 2007: 76396.

    Article  PubMed  Google Scholar 

  91. Al-Asmari AK, Khan MW . Inflammation and schizophrenia: Alterations in cytokine levels and perturbation in antioxidative defense systems. Hum Exp Toxicol 2014; 33: 115–122.

    Article  CAS  PubMed  Google Scholar 

  92. Asevedo E, Rizzo LB, Gadelha A, Mansur R, Ota VK, Berberian AA et al. Peripheral interleukin-2 level is associated with negative symptoms and cognitive performance in schizophrenia. Physiol Behav 2014; 129: 194–198.

    Article  CAS  PubMed  Google Scholar 

  93. Barry S, Clarke G, Scully P, Dinan TG . Kynurenine pathway in psychosis: evidence of increased tryptophan degradation. J Psychopharmacol 2009; 23: 287–294.

    Article  CAS  PubMed  Google Scholar 

  94. Beumer W, Drexhage RC, De Wit H, Versnel MA, Drexhage HA, Cohen D . Increased level of serum cytokines, chemokines and adipokines in patients with schizophrenia is associated with disease and metabolic syndrome. Psychneuroendocrinology 2012; 37: 1901–1911.

    Article  CAS  Google Scholar 

  95. Bresee C, Rapaport MH . Persistently increased serum soluble interleukin-2 receptors in continuously ill patients with schizophrenia. Int J Neuropsychopharmacol 2009; 12: 861–865.

    Article  CAS  PubMed  Google Scholar 

  96. Chiang SSW, Ridel M, Schwarz M, Muller N . Is T-helper type 2 shift schizophrenia-specific? Primary results from a comparison of related psychiatric disorders and healthy controls. Psychiatry Clin Neurosci 2013; 67: 228–236.

    Article  CAS  PubMed  Google Scholar 

  97. Drexhage RC, Padmos RC, de Wit H, Versnel MA, Hooijkaas H, van der Lely AJ et al. Patients with schizophrenia show raised serum levels of the pro-inflammatory chemokine CCL2: association with the metabolic syndrome in patients? Schizophr Res 2008; 102: 352–355.

    Article  PubMed  Google Scholar 

  98. Francesconi LP, Cereser KM, Mascarenhas, Stertz L, Gama CS, Belmonte-de-Abreu P . Increased annexin-V and decreased TNF-alpha serum levels in chronic-medicated patients with schizophrenia. Neurosci Lett 2011; 502: 143–146.

    Article  CAS  PubMed  Google Scholar 

  99. Kuo F-C, Lee C-H, Hsieh C-H, Kuo P, Chen Y-C, Hung Y-J . Lifestyle modification and behavior therapy effectively reduce body weight and increase serum level of brain-derived neurotrophic factor in obsess non-diabetic patients with schizophrenia. Psychiatry Res 2013; 209: 150–154.

    Article  CAS  PubMed  Google Scholar 

  100. Liu H, Kang Y, Liang J, Li C, Xiu M, Chen D et al. Lower serum interleukin-2 levels in schizophrenic patients with tardive dyskinesia. Psychiatry Res 2012; 198: 329–331.

    Article  CAS  PubMed  Google Scholar 

  101. Pedrini M, Massuda R, Fries GR, de Bittencourt Pasquali MA, Schnorr CE, JCP Moreira et al. Similarities in serum oxidative stress markers and inflammatory cytokines in patients with overt schizophrenia at early and late stages of chronicity. J Psychiatr Res 2012; 46: 819–824.

    Article  PubMed  Google Scholar 

  102. Sasayama D, Wakabayash C, Hori H, Teraishi T, Hattori K, Ota M et al. Association of plasma IL-6 and soluble IL-6 receptor levels with the Asp358Ala polymorphism of the IL-6 receptor gene in schizophrenic patients. J Psychiatr Res 2011; 45: 1439–1444.

    Article  PubMed  Google Scholar 

  103. Sasayama D, Hattori K, Wakabayash C, Teraishi T, Hori H, Ota M et al. Increased cerebrospinal fluid inteleukin-6 levels in patients with schizophrenia and those with major depressive disorder. J Psychiatr Res 2013; 47: 401–406.

    Article  PubMed  Google Scholar 

  104. Singh B, Bera NK, Nayak CR, Chaudhuri TK . Decreased serum levels of interleukin-2 and interleukin-6 in Indian Bengalee schizophrenic patients. Cytokine 2009; 47: 1–5.

    Article  CAS  PubMed  Google Scholar 

  105. Stojanovic A, Martorell, Montalvo I, Ortega L, Monseny R, Vilella E et al. Increased serum interleukin-6 levels in early stages of psychosis: associations with at-risk mental states and the severity of psychotic symptoms. Psychneuroendocrinology 2014; 41: 23–32.

    Article  CAS  Google Scholar 

  106. Suvisaari J, Loo BM, Saarni SE, Haukka J, Perala J, Saarni SI et al. Inflammation in psychotic disorders: a population-based study. Psychiatry Res 2011; 189: 305–311.

    Article  PubMed  Google Scholar 

  107. Dimitrov DH, Lee S, Yantis J, Valdez C, Paredes RM, Braida N et al. Differential correlations between inflammatory cytokine sand psychopathology in veterans with schizophrenia: potential role for Il-17 pathway. Schizohpr Res 2013; 151: 29–35.

    Article  Google Scholar 

  108. Noto C, Gadelha A, Belangero SI, Spindola LM, Rocha NP, de Miranda AS et al. Circulating levels of sTNFR1 as a marker of severe clinical course in schizophrenia. J Psychiatr Res 2013; 47: 467–471.

    Article  PubMed  Google Scholar 

  109. Bai YM, Su TP, Tsai SJ, Wen-Fei C, Li CT, Pei-Chi T et al. Comparison of inflammatory cytokine levels among type I/type II and manic/hypomanic/euthymic/depressive states of bipolar disorder. J Affect Disord 2014; 166: 187–192.

    Article  CAS  PubMed  Google Scholar 

  110. Barbosa IG, Rocha NP, de Miranda AS, Magalhaes PV, Huguet RB, de Souza LP et al. Increased levels of adipokines in bipolar. J Psychiatr Res 2012; 46: 389–393.

    Article  PubMed  Google Scholar 

  111. Barbosa IG, Nogueira CR, Rocha NP, Queiroz AL, Vago JP, Tavares LP et al. Altered intracellular signaling cascades in peripheral blood mononuclear celles from BD patients. J Psychiatr Res 2013; 47: 1949–1954.

    Article  PubMed  Google Scholar 

  112. Brietzke E, Kauer-Sant-Anna M, Teixeira AL, Kapczinski F . Abnormalities in serum chemokine levels in euthymic patients with bipolar disorder. Brain Behav Immun 2009; 23: 1079–1082.

    Article  CAS  PubMed  Google Scholar 

  113. Brietzke E, Teixeira AL . Similar immune profile in bipolar disorder and schizophrenia, selective increase in soluble tumor necrosis factor receptor I and von Willebrand factor. Bipolar Disord 2010; 12: 453–454.

    Article  CAS  PubMed  Google Scholar 

  114. Cetin T, Guloksuz S, Cetin EA, Gazioglu SB, Deniz G, Oral ET et al. Plasma concentrations of soluble cytokine receptors in euthymic bipolar paitents with and without subsyndromal symptoms. BMC Psychiatry 2012; 12: 158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Doganavsargil-Baysal O, Cinemre B, Aksoy UM, Akbas H, Metin O, Fettahoglu C et al. Levels of TNF-α, soluble TNF receptors (sTNFR1, sTNFR2), and cognition in bipolar disorder. Hum Psychopharmacol 2013; 28: 160–167.

    Article  CAS  PubMed  Google Scholar 

  116. Guloksuz S, Cetin EA, Cetin T, Geniz G, Oral ET, Nutt DJ . Cytokine levels in euthymic bipolar patients. J Affect Disord 2010; 126: 458–462.

    Article  CAS  PubMed  Google Scholar 

  117. Hope S, Dieset I, Agartz I, Steen NE, Ueland T, Melle I et al. Affective symptoms are associated with markers of inflammation and immune activation in bipolar disorders but not in schizophrenia. J Psychiatr Res 2011; 45: 1608–1616.

    Article  PubMed  Google Scholar 

  118. Hsu JW, Lirng JF, Wang SJ, Lin CL, Yang KC, Liao MH et al. Association of thalamic serotonin transporter and interleukin-10 in bipolar I disorder: a SPECT study. Bipolar Disord 2014; 16: 241–248.

    Article  CAS  PubMed  Google Scholar 

  119. Lotrich FE, Butters MA, Aizenstein H, Marron MM, Reynolds CF, Gildengers AG . The relationship between interleukin-1 receptor antagonist and cognitive function in older adults with bipolar disorder. Int J Geriatr Psychiatry 2014; 29: 635–644.

    Article  PubMed  Google Scholar 

  120. Mota R, Gazal M, Acosta BA, de Leon PB, Jansen K, Pinheiro RT et al. Interleukin-1β is associated with depressive episode in major depression but not in bipolar disorder. J Psychaitr Res 2013; 47: 2011–2014.

    Article  Google Scholar 

  121. Rapaport MH . Immune parameters in euthymic bipolar patients and normal volunteers. J Affect Disord 1994; 32: 149–156.

    Article  CAS  PubMed  Google Scholar 

  122. Remlinger-Molenda A, Wojciak P, Michalak M, Karczewski J, Rybakowski JK . Selected cytokine profiles during remission in bipolar patients. Neuropsychobiology 2012; 66: 193–198.

    Article  CAS  PubMed  Google Scholar 

  123. Baek D, Park Y . Association between erythrocyte n-3 polyunsaturated fatty acids and biomarkers of inflammation and oxidative stress in patients with and without depression. Prostaglandins Leukot Essent Fatty Acids 2013; 89: 291–296.

    Article  CAS  PubMed  Google Scholar 

  124. Dhabhar FS, Burke HM, Epel ES, Mellon SH, Rosser R, Reus VI et al. Low serum IL-10 concentrations and loss of regulatory association between IL-6 and IL-10 in adults with major depression. J Psychiatric Res 2009; 43: 962–969.

    Article  Google Scholar 

  125. Diniz BS, Teixeira AL, Talib L, Gattaz WF, Forlenza OV . Interleukin-1β serum levels is increased in antidepressant-free elderly depressed patients. Am J Geriatr Psychiatry 2010; 18: 172–176.

    Article  PubMed  Google Scholar 

  126. Einvik G, Vistnes M, Hrubos-Strom H, Randby A, Namtvedt SK, Nordhus IH et al. Circulating cytokine concentrations are no associated with major depressive disorder in a community-based cohort. Gen Hosp Psychiatry 2012; 34: 262–267.

    Article  PubMed  Google Scholar 

  127. Eller T, Aluoja A, Maron E, Vasar V . Soluble interleukin-2 receptor and tumor necrosis factor levels in depressed patients in Estonia. Medicina (Kaunas) 2009; 45: 971–977.

    Article  Google Scholar 

  128. Maes M, Ringel K, Kubera M, Berk M, Rybakowski J . Increased autoimmune activity against 5-HT: a key component of depression that is associated with inflammation and activation of cell-mediated immunity, and with severity and staging of depression. J Affect Disord 2012; 136: 386–392.

    Article  CAS  PubMed  Google Scholar 

  129. Motovala SJ, Sarfatti A, Olmos L, Irwin MR . Inflammatory markers and sleep disturbance in major depression. Psychosom Med 2005; 67: 187–194.

    Article  CAS  Google Scholar 

  130. O’Brien SM, Scully P, Fitzgerald P, Scott LV, Dinan TG . Plasma cytokine profiles in depressed patients who fail to respond to selective serotonin reuptake inhibitor therapy. J Psychiatric Res 2007; 41: 326–331.

    Article  Google Scholar 

  131. Pavon L, Sandoval-Lopez G, Hernandez ME, Loria F, Estrada I, Perez M et al. Th2 cytokine response in major depressive disorder patients before treatment. J Neuroimmunol 2006; 172: 156–165.

    Article  CAS  PubMed  Google Scholar 

  132. Pike JL, Irwin MR . Dissociation of inflammatory markers and natural killer cell activity in major depressive disorder. Brain Behav Immun 2006; 20: 169–174.

    Article  CAS  PubMed  Google Scholar 

  133. Simon NM, McNamara K, Chow CW, Maser RS, Papkostas GI, Pollack MH et al. A detailed examination of cytokine abnormalities in major depressive disorder. Eur Neuropsychopharmacol 2008; 18: 230–233.

    Article  CAS  PubMed  Google Scholar 

  134. Yoshimura R, Umene-Nakano W, Hoshuyama T, Ikenouchi-Sugita A, Hori K, Katsuki A et al. Plasma levels of brain-derived neurotrophic factor and interleukin-6 in patients with dysthymic disorder: comparison with age- and sex-matched major depressed patients and healthy controls. Hum Psychopharmacol 2010; 25: 566–569.

    Article  CAS  PubMed  Google Scholar 

  135. Hernandez AV, Guarnizo M, Miranda Y et al. Association between insulin resistance and breast carcinoma: a systematic review and meta-analysis. PLoS One 2014; 9: e99317.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  136. Higgins J, Deeks J Selecting studies and collecting data. Cochrane Handbook for Systematic Reviews of Interventions Version 510 (updated March 2011) The Cochrane Collaboration, 2011. Available at: www.cochrane-handbook.org.

  137. Cochran WB . The comparison of percentages in matched samples. Biometrika 1950; 37: 256–266.

    Article  CAS  PubMed  Google Scholar 

  138. Song F, Sheldon TA, Sutton AJ, Abrams KR, Jones DR . Methods for exploring heterogeneity in meta-analysis. Eval Health Prof 2001; 24: 126–151.

    Article  CAS  PubMed  Google Scholar 

  139. Higgins JPT, Green S . Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. 9.7. Sensitivity analyses. The Cochrane Collaboration, 2011. Available at: www.cochrane-handbook.org.

  140. Sterne JAC, Egger M . Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. J Clin Epidemiol 2001; 54: 1046–1055.

    Article  CAS  PubMed  Google Scholar 

  141. Egger M, Davey Smith G, Schneider M, Minder C . Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315: 629–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Akira S, Kishimoto T . NF-IL6 and NF-kappa B in cytokine gene regulation. Adv Immunol 1997; 65: 1–46.

    Article  CAS  PubMed  Google Scholar 

  143. Pace TW, Miller AH . Cytokines and glucocorticoid receptor signaling. Relevance to major depression. Ann NY Acad Sci 2009; 1179: 86–105.

    Article  CAS  PubMed  Google Scholar 

  144. Thomas R . The TRAF6-NF kappa B signaling pathway in autoimmunity: not just inflammation. Arthritis Res Ther 2005; 7: 170–173.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Derry HM, Fagundes CP, Andridge R, Glaser R, Malarkey WB, Kiecolt-Glaser JK . Lower subjective social status exaggerates interleukin-6 responses to a laboratory stressor. Psychoneuroendocrinology 2013; 38: 2676–2685.

    Article  CAS  PubMed  Google Scholar 

  146. Gouin JP, Glaser R, Malarkey WB, Beversdorf D, Kiecolt-Glaser J . Chronic stress, daily stressors, and circulating inflammatory markers. Health Psychol 2012; 31: 264–268.

    Article  PubMed  Google Scholar 

  147. Maes M, Song C, Lin A, De Jongh R, Van Gastel A, Kenis G et al. The effects of psychological stress on humans: increased production of pro-inflammatory cytokines and a Th1-like response in stress-induced anxiety. Cytokine 1998; 10: 313–318.

    Article  CAS  PubMed  Google Scholar 

  148. Raison CL, Miller AH . When not enough is too much: the role of insufficient glucocorticoid signaling in the pathophysiology of stress-related disorders. Am J Psychiatry 2003; 160: 1554–1565.

    Article  PubMed  Google Scholar 

  149. Frank MG, Baratta MV, Sprunger DB, Watkins LR, Maier SF . Microglia serve as a neuroendocrine substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Bran Behav Immun 2007; 21: 47–59.

    Article  CAS  Google Scholar 

  150. Hunter CA, Jones SA . IL-6 as a keystone cytokine in health and disease. Nat Immunol 2015; 16: 448–457.

    Article  CAS  PubMed  Google Scholar 

  151. Piccioli P, Rubartelli A . The secretion of IL-1B and options for release. Semin Immunol 2013; 25: 425–429.

    Article  CAS  PubMed  Google Scholar 

  152. Caruso C, Candore G, Cigna D, Colucci AT, Modica MA . Biological significance of soluble IL-2 receptor. Mediat Inflamm 1993; 2: 3–21.

    Article  CAS  Google Scholar 

  153. De Jager W, Bourcier K, Rijkers GT, Prakken BJ, Seyfert-Margolis V . Prerequisites for cytokine measurements in clinical trials with multiplex immunoassays. BMC Immunol 2009; 10: 52.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  154. Keustermans GC, Hoeks SM, Meerding JM, Prakken BJ, de Jager W . Cytokine assays: an assessment of the preparation and treatment of blood and tissue samples. Methods 2013; 61: 10–17.

    Article  CAS  PubMed  Google Scholar 

  155. Leng SX, McElhaney JE, Walston JD, Xie D, Fedarko NS, Kechel GA . ELISA and multiplex technologies for cytokine measurement in inflammation and aging research. J Gerontol A 2008; 63: 879–888.

    Article  Google Scholar 

  156. O’Connor MF, Bower JE, Cho HJ, Creswell JD, Dimitrov S, Hamby ME et al. To assess, to control, to exclude: effects of biobehavioral factors on circulating inflammatory markers. Brain Behav Immun 2009; 23: 887–897.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  157. De Berardis D, Conti CM, Serroni N, Moschetta FS, Olivieri L, Carano A et al. The effect of newer serotonin–noradrenalin antidepressants on cytokine production: a review of the current literature. Int J Immunopathol Pharmacol 2010; 23: 417–422.

    Article  CAS  PubMed  Google Scholar 

  158. Młodzikowska-Albrecht J, Steinborn B, Zarowski M . Cytokines, epilepsy and epileptic drugs—is there a mutual influence? Pharmacol Rep 2007; 59: 129–138.

    PubMed  Google Scholar 

  159. Raghavendra PB, Lee E, Parameswaran N . Regulation of macrophage biology by lithium: a new look at an old drug. J Neuroimmune Pharmacol 2014; 9: 277–284.

    Article  PubMed  Google Scholar 

  160. Tourjman V, Kouassi É, Koué MÈ, Rocchetti M, Fortin-Fournier S, Fusar-Poli P et al. Antipsychotics' effects on blood levels of cytokines in schizophrenia: a meta-analysis. Schizophr Res 2013; 151: 43–47.

    Article  PubMed  Google Scholar 

  161. Klemettilia JP, Kampman O, Seppala N, Viikki M, Hamalainen M, Moilanen E et al. Cytokine and adipokine alterations in patients with schizophrenia treated with clozapine. Psychiatry Res 2014; 218: 277–283.

    Article  CAS  Google Scholar 

  162. Maes M, Bocchio Chiavetto L, Bignotti S, Battisa Tura GJ, Piolo R, Boin F et al. Increased serum interleukin-8 and interleukin-10 in schizophrenic patients resistant to treatment with neuroleptics and the stimulatory effects of clozapine on serum leukemia inhibitory factor receptor. Schizophr Res 2002; 54: 281–291.

    Article  PubMed  Google Scholar 

  163. Lin A, Kenis G, Bignotti S, Tura GJ, De Jong R, Bosmans E et al. The inflammatory response system in treatment-resistant schizophrenia: increased serum interleukin-6. Schizophr Res 1998; 32: 9–15.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Author contributions

Drs Goldsmith and Miller designed the study, managed the literature searches and the analyses. Drs Goldsmith, Rapaport and Miller wrote the first draft of the manuscript. All authors contributed to and have approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D R Goldsmith.

Ethics declarations

Competing interests

Dr Goldsmith has nothing to disclose relevant to the present work. In the past 12 months, Dr Goldsmith received grant funding from the Janssen Academic Research Mentoring program. Dr Goldsmith has also recieved training support from the National Institute of Mental Health (R25MH101079). Dr Rapaport has nothing to disclose relevant to the present work. In the past 12 months, Dr Rapaport is a member of the scientific advisory board for Pax (unpaid) and the Depression and Bipolar Alternative Therapies Foundation, and a consultant for the American Psychiatric Association. Dr Miller has nothing to disclose relevant to present work. In the past 12 months, Dr Miller has received grant support from the National Institute of Mental Health (1K23MH098014-01) and the American Psychiatric Association; Research support from the National Institutes of Health Clinical Loan Repayment Program and Georgia Regents University; Honoraria from Psychiatric Times; and Speaker fees for lectures from the University of Nevada, Reno and Emory University.

Additional information

Previous Presentation: This manuscript has been presented at the American College of Neuropsychopharmacology annual meeting, 7–11 December 2014, Phoenix, Arizona, the biennial International Congress on Schizophrenia Research, 28 March–1 April 2015, Colorado Springs, Colorado, the Society of Biological Psychiatry annual meeting, 14–16 May 2015, Toronto, Canada, and the American Society of Clinical Psychopharmacology annual meeting, 22–25 June 2015, Miami, FL, USA.

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldsmith, D., Rapaport, M. & Miller, B. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry 21, 1696–1709 (2016). https://doi.org/10.1038/mp.2016.3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2016.3

This article is cited by

Search

Quick links