Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A meta-analysis of peripheral blood nerve growth factor levels in patients with schizophrenia

Abstract

Neurotrophins particularly brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are crucial modulators in the neurodevelopment and maintenance of central and peripheral nervous systems. Neurotrophin hypothesis of schizophrenia (SCZ) postulated that the changes in the brains of SCZ patients are the result of disturbances of developing processes involving neurotrophic factors. This hypothesis was mainly supported by the abnormal regulation of BDNF in SCZ, especially the decreased peripheral blood BDNF levels in SCZ patients validated by several meta-analyses. However, the regulation of NGF in SCZ remains unclear because of the inconsistent findings from the clinical studies. Therefore, we undertook, to the best of our knowledge, the first systematic review with a meta-analysis to quantitatively summarize the peripheral blood NGF data in SCZ patients compared with healthy control (HC) subjects. A systematic search of Pubmed, PsycINFO and Web of Science identified 13 articles encompassing a sample of 1693 individuals for the meta-analysis. Random-effects meta-analysis showed that patients with SCZ had significantly decreased peripheral blood levels of NGF when compared with the HC subjects (Hedges’s g=−0.633, 95% confidence interval (CI)=−0.948 to −0.318, P<0.001). Subgroup analyses revealed reduced NGF levels both in serum (Hedges’s g=−0.671, 95% CI=−1.259 to −0.084, P=0.025) and plasma (Hedges’s g=−0.621, 95% CI=−0.980 to −0.261, P<0.001) of the patients, and in drug-free (Hedges’s g=−0.670, 95% CI=−1.118 to −0.222, P=0.003) and medicated (Hedges’s g=−0.357, 95% CI=−0.592 to −0.123, P=0.003) patients with SCZ. Furthermore, meta-regression analyses showed that age, gender and sample size had no moderating effects on the outcome of the meta-analysis, whereas disease severity might be a confounding factor for the meta-analysis. These results demonstrated that patients with SCZ are accompanied by the decreased peripheral blood NGF levels, strengthening the clinical evidence of an abnormal neurotrophin profile in the patients with SCZ.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Gogtay N, Vyas NS, Testa R, Wood SJ, Pantelis C . Age of onset of schizophrenia: perspectives from structural neuroimaging studies. Schizophr Bull 2011; 37: 504–513.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cassoli JS, Guest PC, Santana AG, Martins-de-Souza D . Employing proteomics to unravel the molecular effects of antipsychotics and their role in schizophrenia. Proteomics Clin Appl 2016; 10: 442–455.

    Article  CAS  PubMed  Google Scholar 

  3. Martins-de-Souza D, Guest PC, Rahmoune H, Bahn S . Proteomic approaches to unravel the complexity of schizophrenia. Exp Rev Proteomics 2012; 9: 97–108.

    Article  CAS  Google Scholar 

  4. Weickert TW, Goldberg TE, Gold JM, Bigelow LB, Egan MF, Weinberger DR . Cognitive impairments in patients with schizophrenia displaying preserved and compromised intellect. Arch Gen Psychiatry 2000; 57: 907–913.

    Article  CAS  PubMed  Google Scholar 

  5. Owen MJ, Sawa A, Mortensen PB . Schizophrenia. Lancet 2016; 388: 86–97.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Akhondzadeh S . The 5-HT hypothesis of schizophrenia. IDrugs 2001; 4: 295–300.

    CAS  PubMed  Google Scholar 

  7. Fatemi SH, Folsom TD . The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophr Bull 2009; 35: 528–548.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Howes OD, Kapur S . The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophr Bull 2009; 35: 549–562.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Moghaddam B, Javitt D . From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology 2012; 37: 4–15.

    Article  CAS  PubMed  Google Scholar 

  10. Smith T, Weston C, Lieberman J . Schizophrenia (maintenance treatment). Am Fam Phys 2010; 82: 338–339.

    Google Scholar 

  11. Tandon R, Keshavan MS, Nasrallah HA . Schizophrenia, "Just the Facts": what we know in 2008 part 1: overview. Schizophr Res 2008; 100: 4–19.

    Article  PubMed  Google Scholar 

  12. Casey DE . Neuroleptic-induced acute extrapyramidal syndromes and tardive dyskinesia. Psychiatr Clin North Am 1993; 16: 589–610.

    Article  CAS  PubMed  Google Scholar 

  13. Aloe L, Iannitelli A, Angelucci F, Bersani G, Fiore M . Studies in animal models and humans suggesting a role of nerve growth factor in schizophrenia-like disorders. Behav Pharmacol 2000; 11: 235–242.

    Article  CAS  PubMed  Google Scholar 

  14. Angelucci F, Brene S, Mathe AA . BDNF in schizophrenia, depression and corresponding animal models. Mol Psychiatry 2005; 10: 345–352.

    Article  CAS  PubMed  Google Scholar 

  15. Fernandes BS, Steiner J, Berk M, Molendijk ML, Gonzalez-Pinto A, Turck CW et al. Peripheral brain-derived neurotrophic factor in schizophrenia and the role of antipsychotics: meta-analysis and implications. Mol Psychiatry 2015; 20: 1108–1119.

    Article  CAS  PubMed  Google Scholar 

  16. Green MJ, Matheson SL, Shepherd A, Weickert CS, Carr VJ . Brain-derived neurotrophic factor levels in schizophrenia: a systematic review with meta-analysis. Mol Psychiatry 2011; 16: 960–972.

    Article  CAS  PubMed  Google Scholar 

  17. Weickert CS, Hyde TM, Lipska BK, Herman MM, Weinberger DR, Kleinman JE . Reduced brain-derived neurotrophic factor in prefrontal cortex of patients with schizophrenia. Mol Psychiatry 2003; 8: 592–610.

    Article  CAS  PubMed  Google Scholar 

  18. Thome J, Foley P, Riederer P . Neurotrophic factors and the maldevelopmental hypothesis of schizophrenic psychoses. Review article. J Neural Trans 1998; 105: 85–100.

    Article  CAS  Google Scholar 

  19. Greenberg ME, Xu B, Lu B, Hempstead BL . New insights in the biology of BDNF synthesis and release: implications in CNS function. J Neurosci 2009; 29: 12764–12767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hempstead BL . Brain-derived neurotrophic factor: three ligands, many actions. Trans Am Clin Climatol Associ 2015; 126: 9–19.

    Google Scholar 

  21. Lu Y, Christian K, Lu B . BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol Learn Memory 2008; 89: 312–323.

    Article  CAS  Google Scholar 

  22. Sofroniew MV, Howe CL, Mobley WC . Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci 2001; 24: 1217–1281.

    Article  CAS  PubMed  Google Scholar 

  23. Durany N, Michel T, Zochling R, Boissl KW, Cruz-Sanchez FF, Riederer P et al. Brain-derived neurotrophic factor and neurotrophin 3 in schizophrenic psychoses. Schizophr Res 2001; 52: 79–86.

    Article  CAS  PubMed  Google Scholar 

  24. Jindal RD, Pillai AK, Mahadik SP, Eklund K, Montrose DM, Keshavan MS . Decreased BDNF in patients with antipsychotic naive first episode schizophrenia. Schizophr Res 2010; 119: 47–51.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cui H, Jin Y, Wang J, Weng X, Li C . Serum brain-derived neurotrophic factor (BDNF) levels in schizophrenia: A systematic review. Shanghai Arch Psychiatry 2012; 24: 250–261.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kale A, Joshi S, Pillai A, Naphade N, Raju M, Nasrallah H et al. Reduced cerebrospinal fluid and plasma nerve growth factor in drug-naive psychotic patients. Schizophr Res 2009; 115: 209–214.

    Article  PubMed  Google Scholar 

  27. Bersani G, Iannitelli A, Massoni E, Garavini A, Grilli A, Di Giannantonio M et al. Ultradian variation of nerve growth factor plasma levels in healthy and schizophrenic subjects. Int J Immunopathol Pharmacol 2004; 17: 367–372.

    Article  CAS  PubMed  Google Scholar 

  28. Xiong P, Zeng Y, Wan J, Xiaohan DH, Tan D, Lu J et al. The role of NGF and IL-2 serum level in assisting the diagnosis in first episode schizophrenia. Psychiatr Res 2011; 189: 72–76.

    Article  CAS  Google Scholar 

  29. Xiong P, Zeng Y, Wu Q, Han Huang DX, Zainal H, Xu X et al. Combining serum protein concentrations to diagnose schizophrenia: a preliminary exploration. J Clin Psychiatry 2014; 75: e794–e801.

    Article  CAS  PubMed  Google Scholar 

  30. Jockers-Scherubl MC, Matthies U, Danker-Hopfe H, Lang UE, Mahlberg R, Hellweg R . Chronic cannabis abuse raises nerve growth factor serum concentrations in drug-naive schizophrenic patients. J Psychopharmacol 2003; 17: 439–445.

    Article  PubMed  Google Scholar 

  31. Jockers-Scherubl MC, Rentzsch J, Danker-Hopfe H, Radzei N, Schurer F, Bahri S et al. Adequate antipsychotic treatment normalizes serum nerve growth factor concentrations in schizophrenia with and without cannabis or additional substance abuse. Neurosci lett 2006; 400: 262–266.

    Article  PubMed  Google Scholar 

  32. Martinez-Cengotitabengoa M, MacDowell KS, Alberich S, Diaz FJ, Garcia-Bueno B, Rodriguez-Jimenez R et al. BDNF and NGF signalling in early phases of psychosis: relationship with inflammation and response to antipsychotics after 1 year. Schizophr Bull 2016; 42: 142–151.

    CAS  PubMed  Google Scholar 

  33. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol 2009; 62: e1–34.

    Article  PubMed  Google Scholar 

  34. Qin XY, Feng JC, Cao C, Wu HT, Loh YP, Cheng Y . Association of peripheral blood levels of brain-derived neurotrophic factor with autism spectrum disorder in children: a systematic review and meta-analysis. JAMA Pediatr 2016; 170: 1079–1086.

    Article  PubMed  Google Scholar 

  35. Masi A, Quintana DS, Glozier N, Lloyd AR, Hickie IB, Guastella AJ . Cytokine aberrations in autism spectrum disorder: a systematic review and meta-analysis. Mol Psychiatry 2015; 20: 440–446.

    Article  CAS  PubMed  Google Scholar 

  36. Higgins JP, Thompson SG, Deeks JJ, Altman DG . Measuring inconsistency in meta-analyses. Br Med J 2003; 327: 557–560.

    Article  Google Scholar 

  37. Qin XY, Cao C, Cawley NX, Liu TT, Yuan J, Loh YP et al. Decreased peripheral brain-derived neurotrophic factor levels in Alzheimer's disease: a meta-analysis study (N=7277). Mol Psychiatry; advance online publication, 26 April 2016; doi: 10.1038/mp.2016.62.

    Article  PubMed  Google Scholar 

  38. Egger M, Davey Smith G, Schneider M, Minder C . Bias in meta-analysis detected by a simple, graphical test. Brit Med J 1997; 315: 629–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Molendijk ML, Spinhoven P, Polak M, Bus BA, Penninx BW, Elzinga BM . Serum BDNF concentrations as peripheral manifestations of depression: evidence from a systematic review and meta-analyses on 179 associations (N=9484). Mol Psychiatry 2014; 19: 791–800.

    Article  CAS  PubMed  Google Scholar 

  40. Soeken KL, Sripusanapan A . Assessing publication bias in meta-analysis. Nurs Res 2003; 52: 57–60.

    Article  PubMed  Google Scholar 

  41. Buckley PF, Pillai A, Evans D, Stirewalt E, Mahadik S . Brain derived neurotropic factor in first-episode psychosis. Schizophr Res 2007; 91: 1–5.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Miyatake R, Furukawa A, Suwaki H . Identification of a novel variant of the human NR2B gene promoter region and its possible association with schizophrenia. Mol Psychiatry 2002; 7: 1101–1106.

    Article  CAS  PubMed  Google Scholar 

  43. Roussos P, Giakoumaki SG, Zouraraki C, Fullard JF, Karagiorga VE, Tsapakis EM et al. The relationship of common risk variants and polygenic risk for schizophrenia to sensorimotor gating. Biol Psychiatry 2016; 79: 988–996.

    Article  PubMed  Google Scholar 

  44. Klyushnik TP, Danilovskaya EV, Vatolkina OE, Turkova IL, Tsutsul'kovskaya M, Orlova VA et al. Changes in the serum levels of autoantibody to nerve growth factor in patients with schizophrenia. Neurosci Behav Physiol 1999; 29: 355–357.

    Article  CAS  PubMed  Google Scholar 

  45. Klyushnik TP, Turkova IL, Danilovskaya EV, Kozlova IA, Bashina VM, Simashkova NV et al. Correlation between levels of autoantibodies to nerve growth factor and the clinical features of schizophrenia in children. Neurosci Behav Physiol 2000; 30: 119–121.

    Article  CAS  PubMed  Google Scholar 

  46. Shcherbakova IV, Siryachenko TM, Mazaeva NA, Kaleda VG, Krasnolobova SA, Klyushnik TP . Leukocyte elastase and autoantibodies to nerve growth factor in the acute phase of schizophrenia and their relationship to symptomatology. World J Biol Psychiatry 2004; 5: 143–148.

    Article  PubMed  Google Scholar 

  47. Bersani G, Aloe L, Iannitelli A, Maselli P, Venturi P, Garavini A et al. Low nerve growth factor (NGF) plasma levels in schizophrenic patients: a pilot study. Schizophr Res 1996; 18: 159–160.

    Article  Google Scholar 

  48. Xiong P, Zeng Y, Zhu Z, Tan D, Xu F, Lu J et al. Reduced NGF serum levels and abnormal P300 event-related potential in first episode schizophrenia. Schizophr Res 2010; 119: 34–39.

    Article  PubMed  Google Scholar 

  49. Aloe L, Iannitelli A, Bersani G, Alleva E, Angelucci F, Maselli P et al. Haloperidol administration in humans lowers plasma nerve growth factor level: evidence that sedation induces opposite effects to arousal. Neuropsychobiology 1997; 36: 65–68.

    Article  CAS  PubMed  Google Scholar 

  50. Ajami A, Hosseini SH, Taghipour M, Khalilian A . Changes in serum levels of brain derived neurotrophic factor and nerve growth factor-beta in schizophrenic patients before and after treatment. Scand J Immunol 2014; 80: 36–42.

    Article  CAS  PubMed  Google Scholar 

  51. Bersani G, Iannitelli A, Maselli P, Pancheri P, Aloe L, Angelucci F et al. Low nerve growth factor plasma levels in schizophrenic patients: a preliminary study. Schizophr Res 1999; 37: 201–203.

    CAS  PubMed  Google Scholar 

  52. Lee BH, Kim YK . Increased plasma brain-derived neurotropic factor, not nerve growth factor-Beta, in schizophrenia patients with better response to risperidone treatment. Neuropsychobiology 2009; 59: 51–58.

    Article  CAS  PubMed  Google Scholar 

  53. Parikh V, Evans DR, Khan MM, Mahadik SP . Nerve growth factor in never-medicated first-episode psychotic and medicated chronic schizophrenic patients: possible implications for treatment outcome. Schizophr Res 2003; 60: 117–123.

    Article  PubMed  Google Scholar 

  54. Perez-Polo JR, Dy P, Westlund K, Hall K, Livingston K . Levels of serum nerve growth factor in schizophrenia. Birth Defects Orig Artic Ser 1978; 14: 311–321.

    CAS  PubMed  Google Scholar 

  55. Zakharyan R, Atshemyan S, Gevorgyan A, Boyajyan A . Nerve growth factor and its receptor in schizophrenia. BBA Clin 2014; 1: 24–29.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Black JE, Kodish IM, Grossman AW, Klintsova AY, Orlovskaya D, Vostrikov V et al. Pathology of layer V pyramidal neurons in the prefrontal cortex of patients with schizophrenia. Am J Psychiatry 2004; 161: 742–744.

    Article  PubMed  Google Scholar 

  57. Glantz LA, Lewis DA . Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 2000; 57: 65–73.

    Article  CAS  PubMed  Google Scholar 

  58. Kheirollahi M, Kazemi E, Ashouri S . Brain-derived neurotrophic factor gene Val66Met polymorphism and risk of schizophrenia: a meta-analysis of case-control studies. Cell Mol Neurobiol 2016; 36: 1–10.

    Article  CAS  PubMed  Google Scholar 

  59. Watanabe Y, Nunokawa A, Someya T . Association of the BDNF C270T polymorphism with schizophrenia: updated meta-analysis. Psychiatr Clin Neurosci 2013; 67: 123–125.

    Article  CAS  Google Scholar 

  60. Sokolowski M, Wasserman J, Wasserman D . Polygenic associations of neurodevelopmental genes in suicide attempt. Mol Psychiatry 2016; 21: 1381–1390.

    Article  CAS  PubMed  Google Scholar 

  61. Sokolowski M, Wasserman J, Wasserman D . An overview of the neurobiology of suicidal behaviors as one meta-system. Mol Psychiatry 2015; 20: 56–71.

    Article  CAS  PubMed  Google Scholar 

  62. Goldsmith DR, Rapaport MH, Miller BJ . A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry 2016; 21: 1696–1709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Merenlender-Wagner A, Malishkevich A, Shemer Z, Udawela M, Gibbons A, Scarr E et al. Autophagy has a key role in the pathophysiology of schizophrenia. Mol Psychiatry 2015; 20: 126–132.

    Article  CAS  PubMed  Google Scholar 

  64. Shoval G, Weizman A . The possible role of neurotrophins in the pathogenesis and therapy of schizophrenia. Eur Neuropsychopharmacol 2005; 15: 319–329.

    Article  CAS  PubMed  Google Scholar 

  65. D'Onofrio M, Paoletti F, Arisi I, Brandi R, Malerba F, Fasulo L et al. NGF and proNGF regulate functionally distinct mRNAs in PC12 cells: an early gene expression profiling. PLoS ONE 2011; 6: e20839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fahnestock M, Yu G, Coughlin MD . ProNGF: a neurotrophic or an apoptotic molecule? Progr Brain Res 2004; 146: 101–110.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, USA, and the Minzu University Research Fund (ydzxxk201619&18, 2016SHXY01) and the 111 Project of China (B08044).

Author contributions

X-YQ and YC conceived and designed the study; CC and H-TW collected the data. X-YQ, CC, H-TW and YC analyzed and interpreted the data. YC drafted the manuscript with critical revisions from all the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Cheng.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, XY., Wu, HT., Cao, C. et al. A meta-analysis of peripheral blood nerve growth factor levels in patients with schizophrenia. Mol Psychiatry 22, 1306–1312 (2017). https://doi.org/10.1038/mp.2016.235

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2016.235

This article is cited by

Search

Quick links